Abstract
S. Koenig, M. Likhachev and D. Furcy. Lifelong Planning A*. Artificial Intelligence Journal, 155, (1-2), 93-146, 2004.Abstract: Heuristic search methods promise to find shortest paths for path-planning problems faster than uninformed search methods. Incremental search methods, on the other hand, promise to find shortest paths for series of similar path-planning problems faster than is possible by solving each path-planning problem from scratch. In this article, we develop Lifelong Planning A* (LPA*), an incremental version of A* that combines ideas from the artificial intelligence and the algorithms literature. It repeatedly finds shortest paths from a given start vertex to a given goal vertex while the edge costs of a graph change or vertices are added or deleted. Its first search is the same as that of a version of A* that breaks ties in favor of vertices with smaller g-values but many of the subsequent searches are potentially faster because it reuses those parts of the previous search tree that are identical to the new one. We present analytical results that demonstrate its similarity to A* and experimental results that demonstrate its potential advantage in two different domains if the path-planning problems change only slightly and the changes are close to the goal. Errata:The statement 'UpdateVertex(s)' on page 19, figure 7, line 27'' of the pseudocode should be directly outside of the score of preceeding if-statement.
Download the paper in gzipped postscript (large download time).
Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.
This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.