Abstract

S. Koenig and M. Likhachev. Real-Time Adaptive A*. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 281-288, 2006.

Abstract: Characters in real-time computer games need to move smoothly and thus need to search in real time. In this paper, we describe a simple but powerful way of speeding up repeated A* searches with the same goal states, namely by updating the heuristics between A* searches. We then use this technique to develop a novel real-time heuristic search method, called Real-Time Adaptive A*, which is able to choose its local search spaces in a fine-grained way. It updates the values of all states in its local search spaces and can do so very quickly. Our experimental results for characters in real-time computer games that need to move to given goal coordinates in unknown terrain demonstrate that this property allows Real-Time Adaptive A* to follow trajectories of smaller cost for given time limits per search episode than a recently proposed real-time heuristic search method that is more difficult to implement.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.


This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.