Abstract
J. Marecki, S. Koenig and M. Tambe. A Fast Analytical Algorithm for Solving Markov Decision Processes with Real-Valued Resources. In International Joint Conference on Artificial Intelligence (IJCAI), pages 2536-2541, 2007.Abstract: Agents often have to construct plans that obey deadlines or, more generally, resource limits for real-valued resources whose consumption can only be characterized by probability distributions, such as execution time or battery power. These planning problems can be modeled with continuous state Markov decision processes (MDPs) but existing solution methods are either inefficient or provide no guarantee on the quality of the resulting policy. We therefore present CPH, a novel solution method that solves the planning problems by first approximating with any desired accuracy the probability distributions over the resource consumptions with phasetype distributions, which use exponential distributions as building blocks. It then uses value iteration to solve the resulting MDPs by exploiting properties of exponential distributions to calculate the necessary convolutions accurately and efficiently while providing strong guarantees on the quality of the resulting policy. Our experimental feasibility study in a Mars rover domain demonstrates a substantial speedup over Lazy Approximation, which is currently the leading algorithm for solving continuous state MDPs with quality guarantees.
Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.
This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.