W. Yeoh, A. Felner and S. Koenig. BnB-ADOPT: An Asynchronous Branch-and-Bound DCOP Algorithm. In International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 591-598, 2008.

Abstract: Distributed constraint optimization (DCOP) problems are a popular way of formulating and solving agent-coordination problems. It is often desirable to solve DCOP problems optimally with memory-bounded and asynchronous algorithms. We introduce Branch-and-Bound ADOPT (BnB-ADOPT), a memory-bounded asynchronous DCOP algorithm that uses the message passing and communication framework of ADOPT, a well known memory-bounded asynchronous DCOP algorithm, but changes the search strategy of ADOPT from best-first search to depth-first branch-and-bound search. Our experimental results show that BnB-ADOPT is up to one order of magnitude faster than ADOPT on a variety of large DCOP problems and faster than NCBB, a memory-bounded synchronous DCOP algorithm, on most of these DCOP problems.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.

This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.