Abstract
W. Yeoh, A. Felner and S. Koenig. BnB-ADOPT: An Asynchronous Branch-and-Bound DCOP Algorithm. Journal of Artificial Intelligence Research, 38, 85-133, 2010.Abstract: Distributed constraint optimization (DCOP) problems are a popular way of formulating and solving agent-coordination problems. A DCOP problem is a problem where several agents coordinate their values such that the sum of the resulting constraint costs is minimal. It is often desirable to solve DCOP problems with memory-bounded and asynchronous algorithms. We introduce Branch-and-Bound ADOPT (BnB-ADOPT), a memory-bounded asynchronous DCOP search algorithm that uses the message-passing and communication framework of ADOPT (Modi, Shen, Tambe, & Yokoo, 2005), a well known memory-bounded asynchronous DCOP search algorithm, but changes the search strategy of ADOPT from best-first search to depth-first branch-and-bound search. Our experimental results show that BnB-ADOPT finds cost-minimal solutions up to one order of magnitude faster than ADOPT for a variety of large DCOP problems and is as fast as NCBB, a memory-bounded synchronous DCOP search algorithm, for most of these DCOP problems. Additionally, it is often desirable to find bounded-error solutions for DCOP problems within a reasonable amount of time since finding cost-minimal solutions is NP-hard. The existing bounded-error approximation mechanism allows users only to specify an absolute error bound on the solution cost but a relative error bound is often more intuitive. Thus, we present two new bounded-error approximation mechanisms that allow for relative error bounds and implement them on top of BnB-ADOPT.
Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.
This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.