H. Zhang, J. Li, P. Surynek, S. Koenig and S. Kumar. Multi-Agent Path Finding with Mutex Propagation. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), pages (in print), 2020.

Abstract: Mutex propagation is a form of efficient constraint propagation popularly used in AI planning to tightly approximate the reachable states from a given state. We utilize this idea in the context of Multi-Agent Path Finding (MAPF). When adapted to MAPF, mutex propagation provides stronger constraints for conflict resolution in Conflict-Based Search (CBS), a popular optimal MAPF algorithm, and provides it with the ability to identify and reason with symmetries in MAPF. While existing work identifies a limited form of symmetries using rectangle reasoning and requires the manual design of symmetry-breaking constraints, mutex propagation is more general and allows for the automated design of symmetry-breaking constraints. Our experimental results show that CBS with mutex propagation is capable of outperforming CBSH with rectangle reasoning, a state-of-the-art variant of CBS, with respect to runtime and success rate.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.

This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.