J. Li, Z. Chen, Y. Zheng, S.-H. Chan, D. Harabor, P. Stuckey, H. Ma and S. Koenig. Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge. In International Conference on Automated Planning and Scheduling (ICAPS), pages 477-485, 2021.

Abstract: Multi-Agent Path Finding (MAPF) is the combinatorial problem of finding collision-free paths for multiple agents on a graph. This paper describes MAPF-based software for solving train planning and replanning problems on large-scale rail networks under uncertainty. The software recently won the 2020 Flatland Challenge, a NeurIPS competition trying to determine how to efficiently manage dense traffic on rail networks. The software incorporates many state-of-the-art MAPF or, in general, optimization technologies, such as prioritized planning, large neighborhood search, safe interval path planning, minimum communication policies, parallel computing, and simulated annealing. It can plan collision-free paths for thousands of trains within a few minutes and deliver deadlock-free actions in real-time during execution.

For more information on winning the Flatland competition, see our overview page.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.

This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.