S. Skyler, D. Atzmon, A. Felner, O. Salzman, H. Zhang, S. Koenig, W. Yeoh and C. Hernandez. Bounded-Cost Bi-Objective Heuristic Search [Short Paper]. In Symposium on Combinatorial Search (SoCS), pages 239-243, 2022.

Abstract: There are many settings that extend the basic shortest-path search problem. In Bounded-Cost Search, we are given a constant bound, and the task is to find a solution within the bound. In Bi-Objective Search, each edge is associated with two costs (objectives), and the task is to minimize both objectives. In this paper, we combine both settings into a new setting of Bounded-Cost Bi-Objective Search. We are given two bounds, one for each objective, and the task is to find a solution within these bounds. We provide a scheme for normalizing the two objectives, introduce several algorithms for this new setting and compare them experimentally.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.

This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.