C. Hernandez, W. Yeoh, J. Baier, H. Zhang, L. Suazo, S. Koenig and O. Salzman. Simple and Efficient Bi-Objective Search Algorithms via Fast Dominance Checks. Artificial Intelligence, 314, 2023.

Abstract: Many interesting search problems can be formulated as bi-objective search problems, that is, search problems where two kinds of costs have to be minimized, for example, travel distance and time for transportation problems. Instead of looking for a single optimal path, we compute a Pareto-optimal frontier in bi-objective search, which is a set of paths in which no two paths dominate each other. Bi-objective search algorithms perform dominance checks each time a new path is discovered. Thus, the efficiency of these checks is key to performance. In this article, we propose algorithms for two kinds of bi-objective search problems. First, we consider the problem of computing the Pareto-optimal frontier of the paths that connect a given start state with a given goal state. We propose Bi-Objective A* (BOA*), a heuristic search algorithm based on A*, for this problem. Second, we consider the problem of computing one Pareto-optimal frontier for each state s of the search graph, which contains the paths that connect a given start state with s. We propose Bi-Objective Dijkstra (BOD), which is based on BOA*, for this problem. A common feature of BOA* and BOD is that all dominance checks are performed in constant time, unlike the dominance checks of previous algorithms. We show in our experimental evaluation that both BOA* and BOD are substantially faster than state-of-the-art bi-objective search algorithms.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.

This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.