Z. Ren, J. Li, H. Zhang, S. Koenig, S. Rathinam and H. Choset. Binary Branching Multi-Objective Conflict-Based Search for Multi-Agent Path Finding. In International Conference on Automated Planning and Scheduling (ICAPS), pages 361-369, 2023.

Abstract: This paper considers a multi-agent multi-objective path-finding problem that requires not only finding collision-free paths for multiple agents from their respective start locations to their respective goal locations but also optimizing multiple objectives simultaneously. In general, there is no single solution that optimizes all the objectives simultaneously, and the problem is thus to find the so-called Pareto-optimal frontier. To solve this problem, an algorithm called Multi-Objective Conflict-Based Search (MO-CBS) was recently developed and is guaranteed to find the exact Pareto-optimal frontier. However, MO-CBS does not scale well with the number of agents due to the large branching factor of the search, which leads to a lot of duplicated effort in agent-agent collision resolution. This paper therefore develops a new algorithm called Binary Branching MO-CBS (BB-MO-CBS) that reduces the branching factor as well as the duplicated collision resolution during the search, which expedites the search as a result. Our experimental results show that BB-MO-CBS reduces the number of conflicts by up to two orders of magnitude and often doubles or triples the success rates of MO-CBS on various maps given a runtime limit.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.

This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.