Speeding up the Convergence of Real-Time Search

David Furcy and Sven Koenig
Georgia Institute of Technology
College of Computing
Atlanta, GA 30332-0280
{dfurcy,skoenig}@cc.gatech.edu

Abstract

Learning Real-Time A* (LRTA*) is a real-time search
method that makes decisions fast and still converges to a
shortest path when it solves the same planning task repeat-
edly. In this paper, we propose new methods to speed up
its convergence. We show that LRTA* often converges sig-
nificantly faster when it breaks ties towards successors with
smallest f-values (a la A*) and even faster when it moves
to successors with smallest f-values instead of only break-
ing ties in favor of them. FALCONS, our novel real-time
search method, uses a sophisticated implementation of this
successor-selection rule and thus selects successors very dif-
ferently from LRTA*, which always minimizes the estimated
cost to go. We first prove that FALCONS terminates and
converges to a shortest path, and then present experiments
in which FALCONS finds a shortest path up to sixty percent
faster than LRTA* in terms of action executions and up to
seventy percent faster in terms of trials. This paper opens up
new avenues of research for the design of novel successor-
selection rules that speed up the convergence of both real-
time search methods and reinforcement-learning methods.

Introduction

Real-time (heuristic) search methods interleave planning
(via local searches) and plan execution, and allow for fine-
grained control over how much planning to perform be-
tween plan executions. They have successfully been ap-
plied to a variety of planning problems, including traditional
search problems (Korf 1990), moving-target search prob-
lems (Ishida & Korf 1991), STRIPS-type planning problems
(Bonet, Loerincs, & Geffner 1997), robot navigation and
localization problems with initial pose uncertainty (Koenig
& Simmons 1998), robot exploration problems (Koenig
1999), totally observable Markov decision process problems
(Barto, Bradtke, & Singh 1995), and partially observable
Markov decision process problems (Geffner & Bonet 1998).
Learning-Real Time A* (LRTA*) is probably the most pop-
ular real-time search method (Korf 1990). It converges to a
shortest path when it solves the same planning task repeat-
edly. Unlike traditional search methods, such as A* (Nilsson
1971), it can not only act in real time (which is important,
for example, for real-time control) but also amortize learning

Copyright (© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

over several planning episodes. This allows it to find a sub-
optimal path fast and then improve the path until it follows a
shortest path. Thus, the sum of planning and plan-execution
time is always small, yet LRTA* follows a shortest path in
the long run.

Recently, researchers have attempted to speed up the
convergence of LRTA* while maintaining its advantages
over traditional search methods, that is, without increasing
its lookahead. Ishida, for example, achieved a significant
speedup by sacrificing the optimality of the resulting path
(Ishida & Shimbo 1996; Ishida 1997). We, on the other
hand, show how to achieve a significant speedup without
sacrificing the optimality of the resulting path. FALCONS
(FAst Learning and CONverging Search), our novel real-
time search method, looks similar to LRTA* but selects suc-
cessors very differently. LRTA* always greedily minimizes
the estimated cost to go (in A* terminology: the sum of the
cost of moving to a successor and its h-value). FALCONS,
on the other hand, always greedily minimizes the estimated
cost of a shortest path from the start to a goal via the suc-
cessor it moves to (in A* terminology: the f-value of the
successor). This allows FALCONS to focus the search more
sharply on the neighborhood of an optimal path. Our ex-
periments on standard search domains from the artificial in-
telligence literature show that FALCONS indeed converges
typically about twenty percent faster and in some cases even
sixty percent faster than LRTA* in terms of travel cost. It
also converges typically about forty percent faster and in
some cases even seventy percent faster than LRTA* in terms
of trials, even though it looks at the same states as LRTA*
when it selects successors and even though it is not more
knowledge-intensive to implement.

This paper, in addition to its relevance to the real-time
search community, also sends an important message to
reinforcement-learning researchers. Indeed, they are typi-
cally interested in fast convergence to an optimal behavior
and use methods that, just like LRTA*, interleave planning
(via local searches) and plan execution and converge to op-
timal behaviors when they solve the same planning task re-
peatedly (Barto, Bradtke, & Singh 1995). Furthermore, dur-
ing exploitation, all commonly-used reinforcement-learning
methods, again just like LRTA*, always greedily move to
minimize the expected estimated cost to go (Thrun 1992).
The results of this paper therefore suggest that it might be

possible to design reinforcement-learning methods that con-
verge substantially faster to optimal behaviors than state-of-
the-art reinforcement-learning methods, by using informa-
tion to guide exploration and exploitation that is more di-
rectly related to the learning objective.

Definitions

Throughout this paper, we use the following notation and
definitions. S denotes the finite state space; ot € S
denotes the start state; and sg0. € S denotes the goal
state.! succ(s) C S denotes the set of successors of state
s, and pred(s) C S denotes the set of its predecessors.
¢(s, s') > 0 denotes the cost of moving from state s to suc-
cessor s’ € succ(s). The goal distance gd(s) of state s
is the cost of a shortest path from state s to the goal, and
the start distance sd(s) of state s is the cost of a shortest
path from the start to state s. Each state s has a g-value and
an h-value associated with it, two concepts known from A*
search (Nilsson 1971). We use the notation g(s)/h(s) to de-
note these values. The h-value of state s denotes an estimate
of its true goal distance h*(s) := gd(s). Similarly, the g-
value of state s denotes an estimate of its true start distance
g*(s) := sd(s). Finally, the f-value of state s denotes an es-
timate of the cost f*(s) := g*(s) + h*(s) of a shortest path
from the start to the goal through state s. H-values are called
admissible iff 0 < h(s) < gd(s) for all states s, that is, if
they do not overestimate the goal distances. They are called
consistent iff h(sg0q:) = 0and 0 < h(s) < ¢(s, s') + h(s')
for all states s with s # sg0a1 and s’ € succ(s), that
is, if they satisfy the triangle inequality. It is known that
zero-initialized h-values are consistent, and that consistent
h-values are admissible (Pearl 1985). The definition of ad-
missibility can be extended in a straightforward way to the
g- and f-values, and the definition of consistency can be ex-
tended to the g-values (Furcy & Koenig 2000).

Assumptions

In this paper, we assume that the given heuristic values
are admissible. Almost all commonly-used heuristic values
have this property. If h(s,s’) denotes h(s) with respect to
goal s', then we initialize the g- and h-values as follows:
h(s) = h(s, sgoar) and g(s) = h(Sstart,s) for all states s.
We also assume that the domain is safely explorable, i.e.,
the goal distances of all states are finite, which guarantees
that the task remains solvable by real-time search methods
since they cannot accidentally reach a state with infinite goal
distance.

Learning Real-Time A*

In this section, we describe Learning Real-Time A*
(LRTA*) (Korf 1990), probably the most popular real-time
search method. LRTA* (with lookahead one) is shown in
Figure 1. Each state s has an h-value associated with it.

1We assume that there is only one goal throughout this paper
(with the exception of Figure 5) to keep the notation simple. All of
our results continue to hold in domains with multiple goals.

1. s = Sstart.
2. ' = argming: esyee(s)(c(s, s”) + h(s")).

Break ties arbitrarily.
3. h(s) = ifs = s40a1 then h(s)'

else max(h(s), ming ¢ syee(s)(c(s, s”) + h(s"))).

If s = sgoat, then stop successfully.
s=4.
. Goto2.

oo~

Figure 1: LRTA*

LRTA* first decides which successor to move to (successor-
selection rule, Step 2). It looks at the successors of the cur-
rent state and always greedily minimizes the estimated cost
to go, that is, the sum of the cost of moving to a successor
and the estimated goal distance of that successor (i.e., its h-
value). Then, LRTA* updates the h-value of its current state
to better approximate its goal distance (value-update rule,
Step 3). Finally, it moves to the selected successor (Step 5)
and iterates the procedure (Step 6). LRTA* terminates suc-
cessfully when it reaches the goal (Step 4). A more compre-
hensive introduction to LRTA* and other real-time search
methods can be found in (Ishida 1997).

The following properties of LRTA* are known: First, its
h-values never decrease and remain admissible. Second,
LRTA* terminates (Korf 1990). We call a trial any execu-
tion of LRTA™* that begins at the start and ends in the goal.
Third, if LRTA* is reset to the start whenever it reaches the
goal and maintains its h-values from one trial to the next,
then it eventually follows a shortest path from the start to
the goal (Korf 1990). We call a run any sequence of trials
from the first one until convergence is detected. We say that
LRTA* breaks ties systematically if it breaks ties for each
state according to an arbitrary ordering on its successors that
is selected at the beginning of each run. If LRTA* breaks ties
systematically, then it must have converged when it did not
change any h-value during a trial. We use this property to
detect convergence. To represent the state of the art, we
use LRTA* that “breaks ties randomly,” meaning that ties
are broken systematically according to orderings on the suc-
cessors that are randomized before each run.

Tie-Breaking
LRTA* terminates and eventually follows a shortest path no
matter how its successor-selection rule breaks ties among
successors. In this section, we demonstrate, for the first
time, that the tie-breaking criterion crucially influences the
convergence speed of LRTA*. We present an experimental
study that shows that LRTA* converges significantly faster
to a shortest path when it breaks ties towards successors
with smallest f-values rather than, say, randomly or towards
successors with largest f-values. Breaking ties towards suc-
cessors with smallest f-values is inspired by the A* search
method, that efficiently finds a shortest path by always ex-

This test could be eliminated by moving Step 4 before Step 2
so that the h-value of sg404; is never modified. However, we prefer
the current (equivalent) formulation since it makes the value-update
rule for the h-values completely symmetrical with the value-update
rule for the g-values to be introduced in FALCONS.

1. s = Sstart-

§' = argming ¢ gyees) (c(s, s") + h(s")). Break ties in fa-
vor of a successor s” with a smallest f-value, where f(s") :=
g(s") + h(s"). Break remaining ties arbitrarily (but systemati-
cally).

3. g(s) :i= if s = sstart then g(s)

else max(g(s), mins”epred(s)(g(s”) + 0(3”’ 3)))
h(s) = if s = Sgoa1 then h(s)
else max(h(s), mins”Esucc(s)(C(sa S”) + h(S”))).
4. If s = sgoat, then stop successfully.
s =5,

6. Goto 2.

n

o

Figure 2: TB-LRTA*

panding a leaf node of the search tree with the smallest f-
value, where f(s) := g*(s) + h(s) for all states s (Pearl
1985). If the g- and h-values are perfectly informed (that
is, the g-value of each state is equal to its start distance and
its h-value is equal to its goal distance), then the states with
smallest f-values are exactly those on shortest paths from the
start to the goal. Thus, if LRTA* breaks ties towards succes-
sors with smallest f-values, it breaks ties towards a shortest
path. If the g- and h-values are not perfectly informed (the
more common case), then LRTA* breaks ties towards what
currently looks like a shortest path and may thus converge
faster. To implement this tie-breaking criterion, LRTA* does
not have the g*-values available but can approximate them
with g-values. It can update the g-values in a way simi-
lar to how it updates the h-values, except that it uses the
predecessors instead of the successors. Figure 2 shows TB-
LRTA* (Tie-Breaking LRTA¥*), our real-time search method
that maintains g- and h-values and breaks ties towards suc-
cessors with smallest f-values, where f(s) := g(s) + h(s)
for all states s. Remaining ties can be broken arbitrarily (but
systematically). We compared TB-LRTA* against versions
of LRTA* that break ties randomly or towards successors
with largest f-values. We performed experiments in thirteen
combinations of standard search domains from the artificial
intelligence literature and heuristic values, averaged over at
least one thousand runs each. The section on “Experimen-
tal Results” contains additional information on the domains,
heuristic values, and experimental setup. Table 1 shows that
in all cases but one (Permute-7 with the zero (Z) heuristic?)
breaking ties towards successors with smallest f-values (sta-
tistically) significantly sped up the convergence of LRTA*
in terms of travel cost (action executions).

FALCONS: A Naive Approach

We just showed that TB-LRTA* converges significantly
faster than LRTA* because it breaks ties towards succes-
sors with smallest f-values. We thus expect real-time search
methods that implement this principle more consequently
and always move to successors with smallest f-values to con-
verge even faster. Figure 3 shows Naive FALCONS (FAst
Learning and CONverging Search), our real-time search
method that maintains g- and h-values, always moves to suc-
cessors with smallest f-values, and breaks ties to minimize

2This exception will disappear in our results with FALCONS.

domain and LRTA* that breaksties...
heuristic towards randomly | towardsasmallest

values alargest f-value f-value (TB-LRTA*)
8-Puzzle M 64,746.47| 45,979.19 18,332.39
T 911,934.40| 881,315.71 848,814.91

Z| 2,200,071.25|2,167,621.63 2,141,219.97

Gridworld N 116.50 97.32 82.08
z 1,817.57 1,675.87 1,562.46

Permute-7 A 302.58 298.42 288.62
z 16,346.56| 16,853.69 16,996.51

Arrow F 1,755.42 1,621.26 1,518.27
z 7,136.93 7,161.71 7,024.11

Tower of D 145,246.55| 130,113.43 116,257.30
Hanoi z 156,349.86| 140,361.39 125,332.52
Words L 988.15 813.66 652.95
z 16,207.19| 16,137.67 15,929.81

Table 1: Travel Cost to Convergence

1 s:= Sstart-
!

§' 1= argmingnr ggyec(s) F(8'), where f(s") := g(s”)+h(s").
Break ties in favor of a successor s’ with the smallest value of
c(s,8") + h(s"). Break remaining ties arbitrarily (but system-
atically).

3. g(s) = if s = sstart then g(s)

else max(g(s), mingepreacs)(9(s”) + c(s”, 8))).
h(s) = if s = 8401 then h(s)
else max(h(s), mins”Esucc(s)(c(S: 5”) + h(su)))'

4. If s = 54041, then stop successfully.

5 s:i=¢§.

6. Goto2.

n

Figure 3: Naive FALCONS (initial, non-functional version)

the estimated cost to go. Remaining ties can be broken ar-
bitrarily (but systematically). To understand why ties are
broken to minimize the estimated cost to go, consider g-
and h-values that are perfectly informed. In this case, all
states on a shortest path have the same (smallest) f-values
and breaking ties to minimize the estimated cost to go en-
sures that Naive FALCONS moves towards the goal. (All
real-time search methods discussed in this paper have the
property that they follow a shortest path right away if the g-
and h-values are perfectly informed.) To summarize, Naive
FALCONS is identical to TB-LRTA™* but switches the pri-
mary and secondary successor-selection criteria. Unfortu-
nately, we show in the remainder of this section that Naive
FALCONS does not necessarily terminate nor converge to a
shortest path. In both cases, this is due to Naive FALCONS
being unable to increase misleading f-values of states that it
visits, because they depend on misleading g- or h-values of
states that it does not visit and thus cannot increase.

Naive FALCONS can cycle forever: Figure 4 shows
an example of a domain where Naive FALCONS does
not terminate for g- and h-values that are admissible but
inconsistent. Naive FALCONS follows the cyclic path
S0, 1, 82, S3, S2, 83, ... Without modifying the g- or h-
values of any state. For example during the first trial, Naive
FALCONS updates g(s2) to one (based on g(s7)) and h(s2)
to one (based on h(sg)), and thus does not modify them.
g(s7) and h(sg) are both zero and thus strictly underestimate

@ SB
all costs are one

Figure 4: Naive FALCONS Cycles Forever

So= Sstan ioall
initial g- value/ mmal h-value
Se Sa = Syoal2

all costs are one

Figure 5: Naive FALCONS Converges to a Suboptimal Path

S0 = Sgtart

initial g-value/ initia h-value

the true start and goal distances of their respective states.
Unfortunately, the successor of state so with the smallest f-
value is state s3. Thus, Naive FALCONS moves to state
s3 and never increases the misleading g(s7) and h(sg) val-
ues. Similarly, when Naive FALCONS is in state s3 it moves
back to state s», and thus cycles forever.

Naive FALCONS can converge to suboptimal paths:
Figure 5 shows an example of a domain where Naive FAL-
CONS terminates but converges to a suboptimal path even
though the g- and h-values are consistent. Naive FAL-
CONS converges to the suboptimal path sg, s1, s2, s3, and
s4. The successor of state s» with the smallest f-value is state
s3. f(ss) is two and thus clearly underestimates f*(ss3).
Even though Naive FALCONS moves to state ss, it never
increases its f-value because it updates its g-value to one
(based on g(s¢)) and h(s3) to one (based on h(s4)), and thus
does not modify them. Naive FALCONS then moves to state
s4. Thus, the trial ends and Naive FALCONS has followed a
suboptimal path. Since no g- or h-values changed during the
trial, Naive FALCONS has converged to a suboptimal path.

FALCONS: The Final Version

In the previous section, we showed that Naive FALCONS
does not necessarily terminate nor converge to a shortest
path. Figure 6 shows the final (improved) version of FAL-
CONS that solves both problems. We can prove the follow-
ing theorems provided that the assumptions described earlier
are satisfied.

Theorem 1 Eachtrial of FALCONSterminates.

Theorem 2 FALCONS eventually converges to a path from
the start to the goal if it is reset to the start whenever it
reachesthe goal and maintainsits g- and h-values from one
trial to the next one.

Theorem 3 The path from the start to the goal that FAL-
CONS eventually convergesto is a shortest path.

1. s = Sstart-

s' 1= argming e gyce(s) F(8"), Where f(s") := max(g(s") +
h(s"), h(sstart)). Break ties in favor of a successor s” with
the smallest value of c(s, s") + h(s"). Break remaining ties
arbitrarily (but systematically).

3. g(s) = if s = sstart then g(s)

else max(g(s),
miHS”Epred(s)(g(S") + C(S”: S))'
maxs”Esucc(s)(g(S”) - C(S, s”)))'
h(s) = if s = 8401 then h(s)
else max(h(s),
mins”Esucc(s)((3 3)+h(”))
maXs”epred(S)(()_C(S)8)))-
4. If s = sg0ai, then stop successfully.
s:=s.

6. Goto2.

N

o

Figure 6: FALCONS (final version)

The proofs of these theorems are nontrivial and much
more complex than their counterparts for LRTA*. They
can be found in (Furcy & Koenig 2000). In the following,
we give some intuitions behind the new value-update and
successor-selection rules and show that they solve the prob-
lems of Naive FALCONS for the examples introduced in the
previous section.

FALCONS terminates: The new value-update rules of
FALCONS cause it to terminate. We first derive the new
value-update rule for the h-values. It provides more in-
formed but still admissible estimates of the h-values than
the old value-update rule, by making better use of infor-
mation in the neighborhood of the current state. The new
value-update rule makes the h-values locally consistent and
is similar to the path-max equation used in conjunction with
A*. If the h-values are consistent, then there is no differ-
ence between the old and new value-update rules. To mo-
tivate the new value-update rule, assume that the h-values
are admissible and FALCONS is currently in some state s
with s # sg40a. The old value-update rule used two lower
bounds on the goal distance of state s, namely h(s) and
Ming: ¢ gyce(s) (€(8,8") +h(s")). The new value-update rule
adds a third lower bound, namely max ¢ preq(s) (h(s") —
¢(s",s)). To understand the third lower bound, note that
the goal distance of any predecessor s of state s is at least
h(s") since the h-values are admissible. This implies that
the goal distance of state s is at least h(s") — ¢(s", s). Since
this is true for all predecessors of state s, the goal distance
of state s is at least max, cpreq(s)(h(s") — c(s",5)). The
maximum of the three lower bounds then is an admissible
estimate of the goal distance of state s and thus becomes its
new h-value. This explains the new value-update rule for the
h-values. The new value-update rule for the g-values can be
derived in a similar way.

As an example, we show that Naive FALCONS with the
new value-update rules now terminates in the domain from
Figure 4. When Naive FALCONS is in state s, during the
first trial, it increases both g(s,) and h(s2) to two and then
moves to state s3. The successor of state s3 with the small-
est f-value is state s4, and no longer state s», because f(s2)

domain and LRTA*

heuristic that breaks TB-LRTA* FALCONS
values tie randomly
8-Puzzle 45,979.19 (100%) 18,332.39| 18,332.39 (39.87%)

881,315.71 (100%)| 848,814.91| 709,416.75 (80.50%)
2,167,621.63 (100%) | 2,141,219.97 | 1,955,762.18 (90.23%)

M
T
z
Gridworld N 97.32 (100%) 82.08 57.40 (58.98%)
Z| 167587 (100%)| 1,562.46| 1,440.02 (85.93%)
Permute7 A 298.42 (100%) 288.62 284.95 (95.49%)
Z| 1685369 (100%)| 1699651 16,334.67 (96.92%)
Arrow F| 162126 (100%)| 151827| 1,372.62 (84.66%)
Z| 716171 (100%)| 7,02411| 6,763.49 (94.44%)
Towerof D| 130,11343 (100%)| 116,257.30| 107,058.94 (82.28%)
Hanoi Z| 140,361.39 (100%)| 12533252| 116,389.79 (82.92%)
Words L 813.66 (100%) 652.95 560.71 (70.02%)
z

16,137.67 (100%)| 15929.81| 15,530.42 (96.24%)
Table 2: Travel Cost to Convergence

was increased to four. Thus, Naive FALCONS now moves
to state s4 and breaks the cycle. Unfortunately, the new
value-update rules are not sufficient to guarantee that Naive
FALCONS converges to a shortest path. The domain from
Figure 5 still provides a counterexample.

FALCONS converges to a shortest path: The new
successor-selection rule of FALCONS causes it to converge
to a shortest path by using more informed but still admissible
estimates of the f*-values. In the following, we assume that
the g- and h-values are admissible and we present two lower
bounds on f*(s). First, f*(s) is at least g(s) + h(s), since
the g- and h-values are admissible. Second, f*(s) is at least
as large as the cost of a shortest path from the start to the
goal, a lower bound of which is (st), Since the h-values
are admissible. The maximum of the two lower bounds is an
admissible estimate of f*(s) and thus becomes the new f-
value of s. This explains the new calculation of the f-values
performed by the successor-selection rule. The other parts
of the successor-selection rule remain unchanged. The new
f-value of state s, unfortunately, cannot be used to update
its g- or h-values, because it is unknown by how much to
update the g-value and by how much to update the h-value.

As an example, we show that FALCONS now converges
to a shortest path in the domain from Figure 5. When FAL-
CONS reaches state so in the first trial, f(s) is now three.
All three successors of state s, have the same f-value and
FALCONS breaks ties in favor of the one with the small-
est h-value, namely state s5. Thus, the trial ends and FAL-
CONS has followed a shortest path. Since no g- or h-values
changed, FALCONS has converged to a shortest path.

Experimental Results

In this section, we describe our evaluation of FALCONS,
that we tested against LRTA* that breaks ties randomly and
TB-LRTA*. We used the following domains from the ar-
tificial intelligence literature in conjunction with consistent
heuristic values: 8-Puzzle (Korf 1990), Gridworld (Ishida
1997), Permute-7 (Holte et al. 1994), Arrow (Korf 1980),
Tower of Hanoi(Holte et al. 1994), and Words (Holte et
al. 1996). All of these domains satisfy our assumptions.
The domains and heuristic values are described in (Furcy
& Koenig 2000). Tables 2, 3, and 4 report the travel cost

domain and LRTA*
heuristic that breaks | TB-LRTA* FALCONS
values tie randomly
8-Puzzle M| 214.37 (100%) 58.30| 58.30 (27.20%)

T |1,42857 (100%)| 1,214.63|797.26 (55.81%)
Z|1,428.59 (100%)| 1,227.74|756.47 (52.95%)

Gridworld N| 6.06 (100%) 501 2.90 (47.85%)
Z| 3202 (100%) 26.30| 19.77 (61.74%)
Permute7 A | 26.91 (100%) 25.55| 22.10 (82.13%)
Z| 117.82 (100%) 92.63| 75.22 (63.84%)

Arrow 114.94 (100%) 110.60| 89.01 (77.44%)
171.50 (100%) 135.13]105.92 (61.76%)

F
z
Towerof D| 21447 (100%)| 177.96|109.13 (50.88%)
z
L

Hanoi 216.77 (100%)| 166.55|101.44 (46.80%)
Words 32.82 (100%) 22.72| 18.40 (56.06%)
Z| 71.86 (100%) 55.77| 50.10 (69.72%)

Table 3: Trials to Convergence

domain and LRTA*
heuristic that breaks TB-LRTA* FALCONS
values tie randomly
8-Puzzle M 311.18 (100%) 452.84| 452.84 (145.52%)

T| 1,34275 (100%)| 970.87| 1,057.86 (78.78%)
7 |81,570.22 (100%)| 81,585.44|81,526.34 (99.95%)

Gridworld N| 1215 (100%) 1270 2092 (172.18%)
Z| 18237 (100%)| 18255| 183.13 (100.42%)
Permute7 A 8.14 (100%) 7.75 8.13 (99.88%)
Z| 2,637.86 (100%)| 2,639.13| 2,639.13 (100.05%)

Arrow 15.85 (100%) 16.62
1,016.33 (100%)| 1,016.83| 1,016.83 (100.05%)

F 33.61 (212.05%)
z

Towerof D| 4,457.86 (100%)| 3,654.80| 391046 (87.72%)
z
L

Hanoi 4,839.49 (100%)| 4,803.81| 4,801.84 (99.22%)
Words 24.27 (100%) 27.79] 37.80 (155.75%)
2,899.73 (100%)| 2,900.36| 2,900.68 (100.03%)

Table 4: Travel Cost of the First Trial

(action executions) until convergence, the number of trials
until convergence, and the travel cost of the first trial, re-
spectively. The data in all three cases were averaged over
at least one-thousand runs, each with different start states
and ways how the remaining ties were broken in case the
successor-selection rule and tie-breaking criterion did not
uniquely determine the successor. The remaining ties were
broken systematically, that is, for each state according to an
ordering on its successors that was selected at the beginning
of each run. The orderings were randomized between runs.
Convergence was detected when no g- or h-values changed
during a trial. Additional details on the experimental setup
can be found in (Furcy & Koenig 2000).

N

Table 2 shows that, in all cases, FALCONS converged to
a shortest path with a smaller travel cost (action executions)
than LRTA™* that breaks ties randomly and, in all cases but
one, faster than TB-LRTA*. The percentages in the last
column compare the travel cost of FALCONS with that of
LRTA*. FALCONS converged 18.57 percent faster over all
thirteen cases and in one case even 60.13 percent faster. We
tested these results for pairwise significance using the (non-
parametric) sign test. All the comparisons stated above are
significant at the one-percent confidence level with only one
exception: The comparison of FALCONS and TB-LRTA* in
the Permute-7 domain with the zero (Z) heuristic is signif-

icant only at the five-percent confidence level. The heuris-
tic values for each domain are listed in order of their de-
creasing informedness (sum of the heuristic values over all
states). For example, the (completely uninformed) zero (2)
heuristic is listed last. Table 2 then, shows that the speedup
of FALCONS over LRTA* was positively correlated with
the informedness of the heuristic values. This suggests that
FALCONS makes better use of the given heuristic values.
Notice that it cannot be the case that FALCONS converges
more quickly than LRTA* because it looks at different (or
more) states than LRTA* when selecting successor states.
FALCONS looks at both the predecessors and successors of
the current state while LRTA* looks only at the successors,
but all of our domains are undirected and thus every prede-
cessor is also a successor. This implies that FALCONS and
LRTA* look at exactly the same states.

Table 3 shows that, in all cases, FALCONS converged to
a shortest path with a smaller number of trials than LRTA*
that breaks ties randomly and, in all cases but one, faster
than TB-LRTA*. FALCONS converged 41.94 percent faster
over all thirteen cases and in some cases even 72.80 percent
faster.

To summarize, Table 2 and Table 3 show that FALCONS
converges faster than LRTA* and even TB-LRTA¥*, both in
terms of travel cost and trials. The first measure determines
the total time during the trials. The second measure deter-
mines the total time between the trials, for example, to set
up the next trial. This is important in case the set-up time is
large.

We originally expected that FALCONS would increase
the travel cost during the first trial, since the successor-
selection rule of LRTA* (minimize the cost to go) has ex-
perimentally been shown to result in a small travel cost dur-
ing the first trial under various conditions. Table 4 shows
that, in four of the thirteen cases, the travel cost of FAL-
CONS during the first trial was larger than that of LRTA*;
in seven cases it was approximately the same (99 percent
to 101 percent); and in two cases it was lower. The travel
cost of FALCONS during the first trial was 19.35 percent
larger than that of LRTA* over the thirteen cases. Overall,
there is no systematic relationship between the travel cost of
FALCONS and LRTA* during the first trial, and the sum of
planning and plan-execution times is always small for FAL-
CONS, just like for LRTA*.

Discussion of Results and Future Work

In future theoretical work, we intend to derive analytical up-
per bounds on the travel cost to convergence of FALCONS,
similar to those given in (Koenig & Simmons 1995) for
LRTA*.

On the experimental side, all of our domains have uniform
costs (i.e., all actions have cost one). Although the theory
behind FALCONS guarantees that it will terminate and con-
verge to an optimal path even in domains with non-uniform
costs, FALCONS may not converge with smaller travel
cost than LRTA* in such domains because the successor-
selection rule of FALCONS chooses a successor state with
lowest f-value even if the cost of moving to it is very large.

domain and FALCONS
heuristic LRTA* FALCONS without
values g updates

8-Puzzle M| 45979.19 (100%)| 18,332.39 (39.87%)| 19,222.08 (41.81%)
T|881,315.71 (100%) |709,416.75 (80.50%) |817,078.12 (92.71%)

Gridworld N 97.32 (100%) 57.40 (58.98%) 58.82 (60.44%)
Permute7 A| 29842 (100%)| 28495 (95.49%)| 263.00 (88.13%)
Arow F| 1,621.26 (100%)| 1,372.62 (84.66%)| 1,533.11 (94.56%)

T.Hanoi D[130,113.43 (100%) | 107,058.94 (82.28%) |128,987.97 (99.14%)
Words ~ L| 81366 (100%)| 569.71 (70.02%)| 547.35 (67.27%)

Table 5: Travel Cost to Convergence

This property of FALCONS is inherited from A*, which al-
ways expands a leaf node of the search tree with the smallest
f-value, regardless of the cost of reaching the corresponding
state from the current state, since A* only simulates these
actions in memory. In future work, we intend to modify the
successor-selection rule of FALCONS so that it takes into
account the immediate action cost.

So far, one of the main evaluation criteria has been the
travel cost to convergence. One may complain that the
speedup exhibited by FALCONS over LRTA* comes at an
extra computational cost, namely an extra value update per
action execution. To decrease the total computational cost
(value updates), FALCONS would have to cut the travel cost
to convergence at least in half. However, it reduces the travel
cost by only 18.57 percent. We also compared FALCONS
with a variant of LRTA* that performs two value updates per
action execution. This can be done in various ways. Among
the ones we tried, our best results were obtained with a vari-
ant of LRTA* that first updates h(d) (where s’ is the succes-
sor of the current state s with the smallest ¢(s, s') + h(s")),
then updates A(s), and finally selects the successor ¢’ of s
with the smallest c(s, s'") + h(s""), which may be different
from s'. Empirically, this algorithm had a smaller travel cost
to convergence than FALCONS. However, we can modify
FALCONS so that it never updates the g-values, resulting
in one value-update per action execution, just like LRTA*.
In (Furcy & Koenig 2000), we prove that our Theorems 1
through 3 can be extended to FALCONS without g updates,
provided that the g-values are consistent. Table 5 reports
experimental results that clearly show that FALCONS with-
out g updates had a smaller travel cost to convergence than
LRTA* (with lookahead one). The speedup was 22.28 per-
cent on average, and up to 58.19 percent. Additional results
show that the number of trials to convergence for FALCONS
without g updates was 25.97 percent less than for LRTA*
on average (and up to 68.71 percent less), and that FAL-
CONS executed an average of 57.51 percent more actions
than LRTA* in the first trial> These results are important for
two reasons. First, they support the claim that the successor-
selection rule of FALCONS speeds up convergence by mak-
ing better use of the available heuristic knowledge and is
able to decrease both the travel cost and computational cost
to convergence. Second, they suggest that FALCONS may

3In domains with uniform costs, with consistent h-values, and
with zero-initialized g-values, FALCONS without g updates re-
duces to LRTA*. Thus, Table 5 does not show results for com-
pletely uninformed heuristic values and our averages do not include
them.

benefit from an enhanced successor-selection rule that fo-
cuses the search even more sharply around an optimal path
by speeding up the learning of more accurate g-values, while
still making efficient use of the initial heuristic knowledge.
Finally, we intend to apply FALCONS to domains from
real-time control. These domains require real-time action-
selection and convergence to optimal behaviors but, at the
same time, the setup for each trial is expensive and thus it
is important to keep the number of trials small. For learn-
ing how to balance poles or juggle devil-sticks (Schaal &
Atkeson 1994), for example, the pole needs to be picked
up and brought into the initial position before every trial.
Domains from real-time control are typically directed and
sometimes probabilistic, and we have not yet applied FAL-
CONS to domains with these properties. The main difficulty
of applying FALCONS to probabilistic domains is to adapt
the notion of f-values to probabilistic domains. In contrast,
FALCONS can be applied without modification to directed
domains since all of our theoretical results continue to hold.

Conclusions

The research presented in this paper is a first step towards
real-time search methods that converge to a shortest path
faster than existing real-time search methods. We presented
FALCONS, a real-time search method that looks similar to
LRTA* but selects successors very differently, proved that
it terminates and converges to a shortest path, and demon-
strated experimentally, using standard search domains
from the artificial intelligence literature, that it converges
typically about twenty percent faster to a shortest path and
in some cases even sixty percent faster than LRTA* in terms
of travel cost (action executions). It also converges typically
about forty percent faster and in some cases even seventy
percent faster than LRTA™* in terms of trials. The key idea
behind FALCONS is to maintain f-values, that can be used
to focus the search more sharply on the neighborhood of
optimal paths. First, we demonstrated that breaking ties in
favor of successors with smallest f-values speeds up the
convergence of LRTA*, resulting in our TB-LRTA*. Then,
we demonstrated that selecting successors with smallest f-
values (instead of only breaking ties in favor of them) speeds
up the convergence of LRTA* even further, resulting in our
FALCONS. Our approach differs from that of Ishida who
had to sacrifice the optimality of the resulting paths to speed
up the convergence of LRTA* (Ishida & Shimbo 1996;
Ishida 1997). It opens up new avenues of research for the
design of real-time search methods and reinforcement-
learning methods that converge substantially faster to a
shortest path, by guiding exploration and exploitation with
information that is more directly related to the overall
learning objective.

Acknowledgments

We thank Eric Hansen, Maxim Likhachev, Yaxin Liu, Bill
Murdock, Joseph Pemberton, and Patrawadee Prasangsit for
interesting discussions about the convergence behavior of
real-time search methods. The Intelligent Decision-Making
Group is supported by an NSF Career Award under contract
11S-9984827. The views and conclusions contained in this

document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the sponsoring organizations and agencies or
the U.S. Government.

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming. Artificial Intelligence 73(1):81-
138.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism. In Proceedings of the National
Conference on Artificial Intelligence, 714-719.

Furcy, D., and Koenig, S. 2000. Speeding up the convergence of
real-time search: Empirical setup and proofs. Technical Report
GIT-COGSCI-2000/01, College of Computing, Georgia Institute
of Technology, Atlanta (Georgia).

Geffner, H., and Bonet, B. 1998. Solving large POMDPs by real-
time dynamic programming. Technical report, Departamento de
Computacion, Universidad Simon Bolivar, Caracas (Venezuela).

Holte, R.; Drummond, C.; Perez, M.; Zimmer, R.; and MacDon-
ald, A. 1994. Searching with abstractions: A unifying frame-
work and new high-performance algorithm. In Proceedings of
the Canadian Conference on Artificial Intelligence, 263-270.

Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A. 1996.
Hierarchical A*: Searching abstraction hierarchies efficiently. In
Proceedings of the National Conference on Artificial Intelligence,
530-535.

Ishida, T., and Korf, R. 1991. Moving target search. In Pro-
ceedings of the International Joint Conference on Artificial Intel-
ligence, 204-210.

Ishida, T., and Shimbo, M. 1996. Improving the learning efficien-
cies of real-time search. In Proceedings of the International Joint
Conference on Artificial Intelligence, 305-310.

Ishida, T. 1997. Real-Time Search for Learning Autonomous
Agents. Kluwer Academic Publishers.

Koenig, S., and Simmons, R. 1995. Real-time search in non-
deterministic domains. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1660-1667.

Koenig, S., and Simmons, R. 1998. Solving robot navigation
problems with initial pose uncertainty using real-time heuristic
search. In Proceedings of the International Conference on Artifi-
cial Intelligence Planning Systems, 154-153.

Koenig, S. 1999. Exploring unknown environments with real-
time search or reinforcement learning. In Proceedings of the Neu-
ral Information Processing Systems, 1003-1009.

Korf, R. 1980. Towards a model of representation changes. Arti-
ficial Intelligence 14:41-78.

Korf, R. 1990. Real-time heuristic search. Artificial Intelligence
42(2-3):189-211.

Nilsson, N. 1971. Problem-Solving Methods in Artificial Intelli-
gence. McGraw-Hill.

Pearl, J. 1985. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.

Schaal, S., and Atkeson, C. 1994. Robot juggling: An imple-
mentation of memory-based learning. Control Systems Magazine
14.

Thrun, S. 1992. The role of exploration in learning control with
neural networks. In White, D., and Sofge, D., eds., Handbook of
Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Van
Nostrand Reinhold. 527-559.

