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Abstract

Gridworlds are popular testbeds for planning with incomplete
information but not much is known about their properties.
We study a fundamental planning problem, localization, to
investigate whether gridworlds make good testbeds for plan-
ning with incomplete information. We find empirically that
greedy planning methods that interleave planning and plan
execution can localize robots very quickly on random grid-
worlds or mazes. Thus, they may not provide adequately
challenging testbeds. On the other hand, we show that find-
ing localization plans that are within a log factor of optimal is
NP-hard. Thus there are instances of gridworlds on which all
greedy planning methods perform very poorly, and we show
how to construct them. These theoretical results help em-
pirical researchers to select appropriate planning methods for
planning with incomplete information as well as testbeds to
demonstrate them.

Introduction
Testbeds (prototypical test domains) are planning domains
that allow researchers to evaluate their planning methods,
communicate performance results of their methods to oth-
ers, interpret published performance results of others more
easily, and compare their methods against these perfor-
mance results (Hanks, Pollack, & Cohen 1993). Testbeds
should be easy to describe, but they should also provide
a wide enough variety to mimic real domains. In partic-
ular, testbeds must include cases that are not too easy to
solve because otherwise planning methods would appear to
be more efficient than they actually are in some of the do-
mains of interest. Consequently, planning researchers have
studied in detail the properties of their testbeds for planning
with complete information, such as blocksworlds and slid-
ing tile puzzles. Examples of such experimental and theo-
retical studies include (Gupta & Nau 1992; Reinefeld 1993;
Slaney & Thiébaux 1996; Koenig & Simmons 1996).

In recent years, planning researchers have become in-
terested in planning with incomplete information. This is
an important research direction because, in the real world,
complete information is often not available. Gridworlds ap-
pear to be by far the most frequently used testbeds for this
work. However, not much is known about their properties.
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In this paper, we therefore investigate whether gridworlds
are good testbeds for planning with incomplete information.
We study localization tasks, which are fundamental plan-
ning tasks for robots. We find experimentally that greedy
planning methods that interleave planning and plan execu-
tion can localize robots very quickly on gridworlds with ran-
dom obstacles or random mazes. Thus, random gridworlds
or mazes may not provide adequately challenging cases to
push the state of the art. Although the theoretical planning
community has shown the complexity of planning tasks with
incomplete information to be difficult in general (Littman
1994; Madani, Hanks, & Condon 1999), the reported suc-
cess of current greedy methods on some gridworlds (Nour-
bakhsh 1997; Koenig & Simmons 1998a) and our experi-
ments on random gridworlds and mazes reported here sug-
gest that the constrained topology of gridworlds may make
them easy to solve. However, we analyze the performance of
one greedy planning method in detail, namely the Delayed
Planning Architecture (Genesereth & Nourbakhsh 1993),
and show that there exist gridworlds on which its perfor-
mance is poor. Furthermore, we prove that localization even
with only suboptimal worst-case performance is NP-hard.
Thus there are instances of gridworlds on which all greedy
planning methods perform very poorly, and we show how
they can be constructed. In general, our results improve
the understanding of previously used planning methods and
testbeds for planning with incomplete information and help
empirical researchers to select appropriate planning methods
as well as testbeds to demonstrate them.

Gridworlds
We study planning with incomplete information in grid-
worlds of the kind shown in Figure 1. Gridworlds are fi-
nite rectangular areas of square cells. Each cell can be either
traversable or untraversable. A robot is always in exactly
one cell. It starts in a traversable cell and can then always
move north, east, south, or west. Gridworlds have been
used as testbeds for different planning methods. Planning
tasks with a known start cell and deterministic movement
have often been modeled as traditional graph search prob-
lems. Planning tasks with nondeterministic movement and
automatic sensing that determines the current cell uniquely
have been modeled as totally observable Markov decision
process models (Dean et al. 1993). Planning tasks with
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Figure 1: Simple Gridworld

incompletely known start cell or nondeterministic move-
ment, and nondeterministic sensing or sensing on demand
have been modeled as partially observable Markov deci-
sion process models (McCallum 1995; Hansen 1997). Plan-
ning tasks with incompletely known start cell, determin-
istic movement, and automatic deterministic sensing have
been modeled as AND-OR search tasks (Nourbakhsh 1997;
Koenig & Simmons 1998a). In this paper, we present a first
analysis of the last case.

The Gridworld Planning Tasks
We study localization tasks in gridworlds. Localization is
a prototypical planning task with incomplete information.
The robot knows a map of the gridworld but does not know
its start cell. Evidently, the robot may need to localize prior
to performing many other tasks. The sensors on-board the
robot tell it in every cell whether the cells immediately adja-
cent to it in the four compass directions (north, east, south,
west) are traversable. (The border of the gridworld is un-
traversable and observed as such.) The robot can then move
one cell to the north, east, south, or west, unless that cell is
outside of the gridworld or untraversable (in which case the
robot remains in its current cell). We assume that there is
no uncertainty in actuation and sensing and that the robot
always knows its orientation from the on-board compass.
These assumptions are simplifying but sufficiently close to
reality to enable one to use the resulting planning methods
on real robots (Nourbakhsh 1996).

The robot is localized if it knows its current cell. A de-
terministic (randomized) localization plan specifies (a prob-
ability distribution for) the movement to execute based on
all previous movements and observations. A localization
plan is valid iff, no matter which cell the robot is started
in, it eventually prints out its current cell or correctly deter-
mines that localization is impossible. The objective of plan-
ning then is to determine a valid deterministic or random-
ized localization plan that minimizes the expected number of
movements for the worst possible start cell (the “worst-case
expected performance”), in the followingsense: We first cal-
culate the expected number of movements for each possible
start cell. The expectation is only important for probabilistic
plans and is taken with respect to the randomization of the
probabilistic plans. The worst-case expected performance is
then the maximum of these values.

Modeling the Planning Tasks
The gridworld planning tasks can be modeled as tree search
tasks. The states of the tree search tasks are sets of cells, cor-
responding to cells that the robot could be in. For example, if
the robot has no knowledge of its start cell for the gridworld

A1 E3 C5

B1 D5F3

D6B2B1 D5 C1 E5

A1 E3 C5 A1 E3 C5 A1 E3 C5

A1 C5

N untraversable
W
S
E

untraversable
traversable
untraversable

N traversable
W
S
E

traversable
untraversable
traversable

N untraversable
W
S
E

untraversable
traversable
untraversable

N traversable
W
S
E

untraversable
traversable
traversable

N untraversable
W
S
E

untraversable
traversable
untraversable

N untraversable
W
S
E

untraversable
traversable
untraversable

N untraversable
W
S
E

traversable
traversable
untraversable

N untraversable
W
S
E

traversable
traversable
traversable

N traversable
W
S
E

untraversable
traversable
traversable

N traversable
W
S
E

untraversable
traversable
traversable

move N move W move S move E

move N move W move S move E

AND node OR node

Figure 2: AND-OR Search Tree

planning task from Figure 1 but observes untraversable cells
in all compass directions except to its south, then the start
state of the robot contains three possible start cells: A1, E3,
and C5. In each state, the robot can choose a movement
(“OR” nodes of the search tree) and, if it does not stop, then
makes a new observation (“AND” nodes of the search tree).
For example, Figure 2 shows the beginning of a search tree
for the gridworld planning task. (The dashed part of the tree
is unnecessary and could be deleted.) A deterministic lo-
calization plan assigns each OR node a movement (“deter-
ministic OR node”). Similarly, a randomized localization
plan assigns each OR node a probability distributionover the
movements (“randomized OR node”). The following the-
orem shows that valid randomized localization plans cannot
perform better than valid deterministic localization plans.

Theorem 1 No valid randomized localization plan has a
better worst-case expected performance than a valid deter-
ministic localization plan with optimal worst-case perfor-
mance.

Proof Sketch: Given a valid randomized localization plan,
transform it into a valid deterministic localization plan by itera-
tively pruning all but the best alternative, in the worst-case sense,
from the lowest nondeterministic node.

This theorem implies that there is no point in having
robots flip coins (that is, move nondeterministically) to
localize them in gridworlds with optimal worst-case (ex-
pected) performance. In the following, we therefore con-
sider only deterministic localization plans. The tree search
tasks in this case are AND-OR search tasks and valid local-
ization plans are decision trees.

Solving the Planning Tasks Greedily

Nourbakhsh and Genesereth noticed experimentally that
using a complete AND-OR search to find valid localization
plans with optimal worst-case performance for gridworld
planning tasks was completely infeasible but that planning
methods that interleave planning and plan execution could
efficiently find valid localization plans with good worst-
case performance for their gridworlds (Genesereth & Nour-
bakhsh 1993; Nourbakhsh 1997). Their Delayed Planning



Table 1: Random Gridworlds
gridworld obstacle av. number of av. number of av. total

size density subplans steps per number of
subplan steps���������

9.9 % 3.1 1.0 3.2
29.8 % 1.7 1.0 1.8
49.6 % 1.2 1.1 1.3
70.2 % 0.6 1.0 0.7
90.1 % 0.0 1.0 0.0���������
10.0 % 5.7 1.1 6.1
30.0 % 3.0 1.0 3.2
50.0 % 2.3 1.1 2.5
70.0 % 1.3 1.1 1.5
90.0 % 0.3 1.0 0.3���������
10.0 % 7.2 1.1 7.5
30.0 % 3.7 1.0 3.9
50.0 % 2.8 1.1 3.1
70.0 % 1.6 1.2 1.1
90.0 % 0.3 1.0 0.3

Table 2: Acyclic Mazes
gridworld obstacle av. number of av. number of av. total

size density subplans steps per number of
subplan steps���������

41.3 % 2.4 1.5 3.6	�����	��
45.4 % 3.3 1.7 5.4���������
46.8 % 3.8 1.7 6.6
�����
��
47.6 % 4.1 1.8 7.5���������
48.1 % 4.5 1.8 8.0���������
48.4 % 4.7 1.8 8.6� ��� � �
48.6 % 4.9 1.9 9.1

Architecture with the viable plan heuristic uses breadth-first
search (iterative deepening) in the deterministic part of the
state space around the current state in conjunction with prun-
ing rules to find a subplan (movement sequence) that reduces
the number of possible robot cells with the smallest num-
ber of steps (movements). The robot executes the subplan
and then repeats the process until it is localized or detects
that localization is impossible. Subsequently, Koenig and
Simmons developed a generalization of the Delayed Plan-
ning Architecture (Koenig & Simmons 1998a). The De-
layed Planning Architecture has been applied to a variety of
planning problems with incomplete information, including
the Bay Area Transit Problem (Hsu 1990) and the Tool Box
Problem (Olawsky, Krebsbach, & Gini 1993). In the context
of gridworlds, it has been demonstrated experimentally by
their authors on real robots and in simulation.

We re-implemented the Delayed Planning Architecture
and performed experiments in gridworlds with random ob-
stacles, averaged over 1000 runs with randomly selected
start cells. The results in Table 1 show that current plan-
ning methods perform very well on random gridworlds. No
matter what the size or obstacle density of the gridworld is,
the robot can gain information with only slightly more than
one move on average, and localizes in a small number of
total moves. Table 2 shows that similar results also hold
for random acyclic mazes that were generated by depth-first
search (using code provided by Joseph Pemberton). There-
fore, we need new gridworlds to push the state of the art.
Furthermore, the following theorem shows that the worst-
case performance of the Delayed Planning Architecture can
be extremely suboptimal, much worse than the experimental
results in random gridworlds and mazes suggest. All of our
example gridworlds are connected and not completely sym-
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Figure 3: Greedy Performance

metrical (localization is possible). This demonstrates that
our lower bounds already hold for these kinds of gridworlds.

Theorem 2 The worst-case performance of plans gener-
ated by the Delayed Planning Architecture can be a factor
of

����� ���

worse than the optimal worst-case performance,
where

�
is the number of cells of the gridworld, even in grid-

worlds that are connected (every cell can be reached from
every other cell).

Proof Sketch: We construct a gridworld on which the De-
layed Planning Architecture has the worst-case performance ra-
tio claimed in the theorem. The gridworld contains many copies
of rectangular “blocks” of size �����������! "�#�$�%�&� . Along the
south side of each block is a wall of length �'�(�)� and imme-
diately to the north of the wall is an east-west corridor of length
�'�$�*� . There are � north-south corridors +-, �/.0.�. +-,�1 of length
� each, separated by walls, that branch off of the east-west cor-
ridor to the north, starting in the sixth column of the block. To
their immediate left is a winding corridor that goes up � cells, goes
left two cells, and then goes down �324� cells. Figure 3 (left)
shows an example. The gridworld consists of a column of �5���
blocks, from block 6 � on top to block 6 187 	 at the bottom. In the ex-
treme west, we add a full length north-south hallway, which makes
the gridworld connected. Figure 3 (right) shows an example. We
make the last cell of north-south corridor +-, 1�9-: of block 6 1�7 	 9-:
untraversable, for all ;�<>=?<@��2%A . We also make the last =
cells of the winding corridor of block 6 187 	 9B: untraversable, for all
;C<D=E<F�G�)A . This completes the description of how the grid-
world is constructed. Clearly, the gridworld is connected and has
,EH)���'���GI&�J�#���?�&�J�#���G���-H)K!�#� � � cells (which does not include
the untraversable border of the gridworld).

The robot can find the beginning of some winding corridor from
any starting point with at most L&���M� movements and then move
at most �'�N2OA into the winding corridor, counting its length,
which identifies the block and thus localizes the robot. Thus, the
worst-case number of movements in an optimal plan is at most
I'���FA3HPK!�#�-� . Now we show that the Delayed Planning Ar-
chitecture performs many more than K!�#�-� movements if the robot
starts at the east end of the east-west corridor of block 6 � (in the fig-
ure: marked X). When the robot is started, it knows where it is with
the exception of which block it is in. The robot makes �Q23A move-
ments into north-south corridor +-, 1 because this is the fastest way
of reducing the number of possible robot cells. At this point the
robot can eliminate block 6J1�7 	 . The robot then returns to the east-
west corridor and makes �R2�A movements into north-south corridor
+S, 1�9 � , at which point it can eliminate block 6 1�7 � , and so on. Fi-
nally, it makes �R2�A movements into the winding corridor, at which
point it can eliminate block 6 	 and has localized. The robot has
made a total number of movements equal to �'� 	 �5�E2�ATH)K!�#� 	 � .
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It follows that the worst-case performance of plans generated by
the Delayed Planning Architecture is �E�#� 	�� �-��H��E�#�-��H��E� �� ,'�
worse than the worst-case performance of an optimum plan.

Analysis of the Planning Tasks
The Delayed Planning Architecture can be applied to find-
ing homing sequences or adaptive homing sequences for de-
terministic finite state automata whose states are colored,
a concept from theoretical computer science. A homing
sequence is a linear plan (movement sequence) with the
property that the state colors observed during its execution
uniquely determine the resulting state (Kohavi 1978), and it
is known that finding a shortest homing sequence is NP-hard
in general (Schapire 1992). It could be the case that the con-
strained topology of gridworlds makes them easy to solve
and thus that valid localization plans with optimal worst-
case performance for the gridworld planning tasks can be
found in polynomial time. We prove, however, that find-
ing valid localization plans even with suboptimal worst-case
performance in gridworlds is NP-hard and thus that there are
instances of gridworlds on which the Delayed Planning Ar-
chitecture does not perform well. The following theorem
shows that it is easy to find valid localization plans in grid-
worlds.

Theorem 3 (Part 1:) For every gridworld of size ���
	 ,
there exists a valid localization plan that executes � � ��	 �
movements and that can be found in time � � �
	 � . (Part 2:)
This result is the best possible in the sense that there exist
gridworlds of size ����	 in which every valid localization
plan must execute


�� ��	 � movements and can only be found
in time


�� ��	 � , even in gridworlds that are connected.

Proof Sketch: For Part 1, first determine the connected com-
ponents � : of the given map of the gridworld. Second, acquire a
map ��� of the gridworld component where the robot is, by moving
the robot in a depth-first search manner. Third, determine which
of the � : are identical to map � � , by depth-first search of every
map, starting from the west-most cell of the north-most traversable
cells. If exactly one � : matches � � , the robot has been local-
ized. If more than one � : matches � � then the robot cannot lo-
calize. This algorithm is correct, needs time �!���$+S� , and executes
�!���5+-� movements. For Part 2, construct a gridworld consisting
of two spirals as shown in Figure 4. The gridworld is connected.
If the start cell is at the end of one of the spirals (in the figure: X),
then any valid localization plan has to execute �E���5+-� movements
(in the figure: move to cell Z) before it can distinguish which spiral
it is in. Thus, every valid localization plan must execute �E���5+-�
movements and can only be found in time �E���5+-� .

Theorem 3 leaves open the possibility that optimum lo-
calization plans may be so complex that they cannot be en-
coded in polynomial length. Fortunately, the following theo-
rem shows that finding valid localization plans with optimal
worst-case performance is in NP.

Theorem 4 Determining whether there exists a valid local-
ization plan that executes no more movements than a given
value is in NP.

Proof Sketch: First, use the method from Theorem 3 to find
the start cells from which the robot cannot localize. Second, guess
a deterministic localization plan (decision tree). Third, simulate a
fictitious robot that executes the localization plan on the map of the
gridworld from each possible start cell, verifying that the number
of movements is smaller than the given value, and that the local-
ization plan yields a correct answer, when it is possible to localize.
Therefore, a decision tree can be guessed and verified in polyno-
mial time, provided that the decision tree has polynomial size. We
now ensure this provision to complete the proof. The algorithm
needs to guess only decision trees that have as many leaf nodes
as there are possible start cells, that is, no more than �$+ . This
is so because there is at most one branch from the root to a leaf
for each start cell. Since there are at most �5+ leaves, there are at
most �5+�2�A AND nodes with two or more children. The algo-
rithm needs to guess only decision trees that have, on any branch, at
most �5+52"A AND nodes with only one child between two AND
nodes with two or more children. If there were more, then a be-
lief state would repeat on that branch and the part of the branch
between two repeating belief states (including one of them) could
be cut out. Thus, the decision tree has �!��� 	 + 	 � AND nodes and
thus �!��� 	 + 	 � nodes, which is at most quadratic in the size of the
problem description.

The following theorem, our main theorem, shows that
finding valid localization plans even with suboptimal worst-
case performance is NP-hard.

Theorem 5 It is NP-hard to find a valid localization plan in
gridworlds of size ����	 whose worst-case performance is
within a factor � �������-� ��	 �J� of optimum, even in gridworlds
that are connected.

Proof Sketch: An instance of set cover consists of a base set� H��� � .�.�.  1"! and a collection of sets
� ��# .�.�. # �%$
&'� . A set

cover is a collection of these sets whose union is
�

, and the ob-
jective is to find a set cover of small cardinality. Finding a set
cover whose cardinality is within a factor �!��(*),+T�-� of minimum is
NP-hard (Lund & Yannakakis 1994). Let -/.G<%� denote the car-
dinality of a minimum set cover for the given instance of the set
cover problem. We reduce this problem to finding a valid localiza-
tion plan in a gridworld of size �P 3+ with � H L&� � - �)A and
+5H%�#�%- ���&�J�#���?A8� whose worst-case performance is within a fac-
tor �!��(*)0+S���$+-��� of optimal. We assume without loss of generality
that (*)0+1- H2�!��(*),+ �-� .

We now explain how the gridworld is constructed from the given
instance of the set cover problem. The gridworld contains many
copies of rectangular “blocks” of size �#L3-��� �#�4- �M��� . Along the
south side of each block is a wall of length L3- and immediately to
the north of the wall is an east-west corridor of length L3- . There are- north-south corridors ns � .�.�. ns

$
of length �%- each, separated by

walls, that branch off of the east-west corridor to the north, starting
in the second column of the block. Figure 5 shows an example.
The gridworld contains an array of �#� � �E C�#� �)A�� blocks. Thus,
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there are � � blocks 6�� .�.0. 6 1 � 9 � in the same row. Their east-west
corridors form one long east-west hallway. There are �G�)A east-
west hallways ew � .0.�. ew 1 of length L�� � - each. In the extreme
west, we add a full length north-south hallway, which makes the
gridworld connected. Figure 6 shows an example. We make the
last = cells of north-south corridor ns� of each block in east-west
hallway ew : untraversable iff  �:�� � � . (Since there is no element � , no north-south corridor of any block in east-west hallway ew �
is shortened.) To be able to distinguish between the blocks in the
same east-west hallway, we put a “signature” at the east end of
each block . For block 6�� , this signature encodes � in binary form,
which needs at most L (*),+T� bits. The signature is in the form of
northerly “alcoves,” followed by a southerly alcove which marks
the beginning of the signature. This completes the description of
how the gridworld is constructed in polynomial time.

We now calculate an upper bound �
	 on the number of move-
ments of a valid localization plan with optimal worst-case perfor-
mance. Consider the following localization plan: If only north is
unblocked, move north one place (since the robot was in a southerly
alcove). Otherwise, move south until the robot sees an opening to
the west or east (the robot is now in an east-west hallway), then
move east to the end of a signature or until the robot gets blocked
(the robot is now directly east of a signature). Move west and read
the signature. At this point, the robot knows where it is with the
exception of which east-west hallway it is in. The robot then moves
west and, every time it encounters one of the - . north-south cor-
ridors in the current block that corresponds to a smallest set cover

Table 3: Gridworlds used to Prove Theorem 2
gridworld obstacle av. number of av. number of av. total

size density subplans steps per number of
subplan steps������	��

50.2 % 4.5 (4) 2.3 (5) 10.2 (20)�#�������
50.2 % 5.9 (5) 2.9 (7) 16.9 (35)�#����
��
50.2 % 7.4 (6) 3.2 (9) 23.7 (54)� � ����

50.2 % 8.9 (7) 3.4 (11) 30.6 (77)�
�������
50.2 % 10.4 (8) 4.0 (13) 42.0 (104)	������ ��� 50.1 % 11.5 (9) 4.4 (15) 50.0 (135)	�� ���#	��
50.1 % 13.4 (10) 4.5 (17) 60.4 (170)	�� ���#
�

50.1 % 14.4 (11) 4.9 (19) 71.1 (209)	 � ���#���
50.1 % 16.0 (12) 5.2 (21) 82.5 (252)	�� ���
���
50.1 % 18.0 (13) 5.4 (23) 98.0 (299)������	�	��
50.1 % 19.4 (14) 5.7 (25) 110.5 (350)��� ��	����
50.1 % 20.8 (15) 5.8 (27) 121.5 (405)��� ��	����
50.1 % 22.5 (16) 6.1 (29) 137.7 (464)

for the given instance of the set cover problem, it moves to the end
of the north-south corridor and back to the east-west hallway. If
the robot is in east-west hallway ew � with ���4; then it will visit
at least one north-south corridor that is shorter than �%- . Its length
uniquely identifies the east-west hallway the robot is in, which lo-
calizes the robot. Otherwise the robot must be in east-west hallway
ew � and is localized as well. Thus, the localization plan is valid.
An easy calculation shows that the total number of movements is
bounded by � 	 <M�0-�.��%-���� - <NL -�.��%- .

It remains to be shown that a solution to the localization
problem implies a solution to the set cover problem. As-
sume that we have found a valid localization plan whose per-
formance is within a factor �!��(*)0+S���$+-��� of optimal. An upper
bound on the number of movements of this localization plan is
�!��(*),+-���5+-����� 	 H2�!��(*)0+S���#L&� � - �NA��J�#�%- � ���J�#�Q�NA������ L3-�. �%- H
�!��(*),+-�#� � - 	 ��� L3-�. �%- H �!��I (*),+-�#�-�C� � (*)0+ ��-���� L3-�.��4- H
�!��� (*)0+S�#�-��� L - . �%- H �!��(*)0+S�#�-��� L - . �%- < � L - . �%- < L&� � - .
Thus, the number of movements is no larger than the length of
an east-west hallway. Now assume that the robot starts at the east
end of east-west hallway ew � . Thus, it cannot visit a different east-
west hallway and, as part of the localization, must determine that
no north-south corridor in a block is shorter than �%- . If the robot
moves into a north-south corridor less than �4- 2 � 2GA , it cannot de-
tect whether the corridor is shorter than �%- because all north-south
corridors are at least �4-!2N� long. Thus, consider all north-south
corridors that the robot moves into at least �%-!2N�G2�A . The col-
lection of subsets that these corridors correspond to must be a set
cover, for otherwise the robot could not distinguish between the
east-west hallways ew � and ew : for the elements  : not covered
by the collection of subsets. Let -"� denote the cardinality of this
set cover. To determine how close to minimum the set cover is,
we determine a lower bound on the total number of movements
of the robot. A straightforward calculation shows that the robot
makes at least ���,- � 2%A��J�#�4-(2 �C2%A8� moves. Combined with
the �!��(*),+-�#�-��� L - . �%- upper bound shown earlier, this implies that
-3�QH �!��(*),+-�#�-��� - . , which implies that the set cover is within a
factor �!��(*),+-�#�-��� of minimum.

To summarize, Theorem 3 shows that is easy to find valid
plans in gridworlds, while Theorems 4 and 5 together show
that it is NP-hard to find valid localization plans with optimal
or even near-optimal worst-case performance. Combining
Theorems 4 and 5 also tells us that the problem stated in
Theorem 4 is NP-complete.



Testbeds
As part of the theoretical results in the previous two sec-
tions we constructed hard instances of gridworlds on which
greedy planning methods, such as the Delayed Planning
Architecture, do not perform well. These gridworlds can
be used in test suites in addition to random gridworlds or
mazes. Table 3 contains the results of the same experiments
that Table 1 reported on, except that we now use the De-
layed Planning Architecture in conjunction with the grid-
worlds that we constructed as part of the proof of Theorem 2
instead of random gridworlds. (The numbers in parentheses
refer to the particularly bad case used in the proof, where
the robot starts at the east end of the east-west corridor of
the top-most block.) Clearly, the robot now needs to execute
a larger number of movements to reduce the number of pos-
sible cells than in random gridworlds or mazes, and the total
number of movements is larger than for random gridworlds
or mazes of comparable sizes and obstacle densities as well.
Similarly, the gridworlds that we constructed as part of the
proof of Theorem 5 also provide challenging testbeds.

Conclusions
While testbeds for planning with complete information have
been studied extensively, this paper provides a first study
of testbeds for planning with incomplete information. We
studied localization tasks in gridworlds. Previous experi-
mental work had shown that greedy planning methods, such
as the Delayed Planning Architecture (Genesereth & Nour-
bakhsh 1993; Nourbakhsh 1997), can efficiently find valid
localization plans with good performance in random grid-
worlds and mazes. Our theoretical analysis showed that it is
easy to find valid localization plans in arbitrary gridworlds
but, perhaps surprisingly, NP-hard to find valid localization
plans even with only suboptimal worst-case performance in
some gridworlds, even if the gridworlds are connected. This
suggests that gridworlds are appropriate testbeds for plan-
ning with incomplete information. As part of our proofs, we
also showed how to construct hard instances of gridworlds
on which the Delayed Planning Architecture and all other
greedy planning methods do not perform well at all. These
gridworlds can be used in addition to random gridworlds
and mazes. In the future, we intend to apply similar ideas
to localization tasks where the robots use partially observ-
able Markov decision process models (Koenig & Simmons
1998b).
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