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Abstract

Decision-theoretic planning with nonlinear utility furas

is important since decision makers are often risk-sermsitiv
high-stake planning situations. One-switch utility fuoos

are an important class of nonlinear utility functions thah c
model decision makers whose decisions change with their
wealth level. We study how to maximize the expected utility
of a Markov decision problem for a given one-switch utility
function, which is difficult since the resulting planningppr

lem is not decomposable. We first study an approach that
augments the states of the Markov decision problem with the
wealth level. The properties of the resulting infinite Marko
decision problem then allow us to generalize the standard
risk-neutral version of value iteration from manipulativey-

ues to manipulating functions that map wealth levels to val-
ues. We use a probabilistic blocks-world example to demon-
strate that the resulting risk-sensitive version of vabeea-

tion is practical.

Introduction

Utility theory (von Neumann & Morgenstern, 1944) is a nor-
mative theory of decision making under uncertainty. Itegat
that every rational decision maker who accepts a small num-
ber of axioms has a strictly monotonically increasing tyili
function that transforms their wealth level into a utility
U(w) so that they always choose the course of action that
maximizes their expected utility. The utility function meld
their risk attitudes. A decision maker is risk-neutral iéith
utility function s linear, risk-averse if their utility foction is
concave, and risk-seeking if their utility function is cenv
Decision-theoretic planning with nonlinear utility fuins

is important since decision makers are often risk-semsitiv
in high-stake planning situations (= planning situatiorithw
the possibility of large wins or losses) and their risk att#
affects their decisions. For example, some decision mak-

ers buy insurance in business decision situations and some

do not. Furthermore, their decisions often change wittrthei
wealth level. In particular, they are often risk-averselmt
come risk-neutral in the limit as their wealth level incresis
One-switch utility functions are an important class of non-
linear utility functions that can model such decision maker
We model probabilistic planning problems as fully observ-
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able Goal-Directed Markov Decision Problems (GDMDPSs)
and investigate how to maximize their expected utility for a
given one-switch utility function, which is difficult sindae
resulting planning problem is not decomposable. The opti-
mal course of action now depends not only on the current
state of the GDMDP but also the wealth level (= accumu-
lated rewards). Thus, we first study an approach that trans-
forms a risk-sensitive GDMDP into a risk-neutral one, basi-
cally by augmenting the states of the risk-sensitive GDMDP
with the possible wealth levels. The resulting risk-nelutra
GDMDP has an infinite state space but its properties allow
us to generalize the standard risk-neutral version of vidlue
eration, which manipulates values (one for each state), to a
risk-sensitive version of value iteration, which maniges
functions (one for each state) that map wealth levels to val-
ues. We use a probabilistic blocks-world example to demon-
strate that the resulting risk-sensitive version of vateea-

tion is practical. Our research is intended to be a first step
toward better probabilistic planners for high-stake plagn
situations such as environmental crisis situations (EBlyth
1997), business decisions situations (Goodwin, Akkir&ju,
Wu, 2002), and planning situations in space (Zilberstgin
al., 2002).

GDMDPs

We model probabilistic planning problems as finite Goal-
Directed Markov Decision Problems (GDMDPs), which are
characterized by a finite set of stat€sa finite set of goal
states; C S, and a finite set of actiond that can be exe-
cuted in all non-goal statese S\G. The decision maker al-
ways chooses which actiane A to execute in their current
non-goal state € S\ G. Its execution results with proba-
bility P(s'|s, a) in finite (immediate) reward(s, a,s’) < 0

and a transition to stat€ € S in the next time step. The
decision maker stops acting when they reach a goal state
s € G, whichis modeled as them executing a dummy action
whose execution results with probability 1.0 in reward 0.0
and leaves their current goal state unchangde.denotes

the set of all histories at time stép> 0. A history at time
stept is any sequenckg; = (s, ag, -+ ,St—1,01—1,5¢t) €

(S x A)t x S of states and actions from the state at time
step0 to the current state at time stephat can occur with
positive probability if the decision maker executes the cor
responsing actions in sequence. The (planning) horizon of a



decision maker is the number of time stdps T < oo that
they plan for. A trajectory is an element &f;.

Decision-theoretic planners determine policies, where a
policy = consists of a decision rulé, for every time step
0 < t < T within the horizon. A decision rule determines
which action the decision maker should execute in their cur-
rent state. The most general policies are those that carisist
potentially different decision rules for the time stepsgngh
every decision rule is a mapping from histories at the curren
time step to probability distributions over actions, cditan-
domized history-dependent (HR) decision rules. We denote
the class of such policies a&8'R. More restricted policies
consist of the same decision rule for every time step, where
the decision rule is a mapping from only the current state to
actions, called deterministic stationary (SD) decisidesu
We denote the class of such policied&2.

Consider a decision maker with an arbitrary utility func-
tion U. If the horizonT is finite and the decision maker
starts in initial states € .S, then the expected utility of their
total reward under policy € IT"R is

T—1
U (Z r(st, at, st+1)>] ,

t=0

where the expectation is taken over all possible trajecto-
ries. The expected utilities exist and are finite because
the number of trajectories is finite. We refer to the value
wy = Zﬁ;é r(si, a;, 8;+1) as their wealth level at time step

t. (Note thatwy = 0.) If the horizon is infinite and the de-
cision maker starts in initial statee S, then the expected
utility of their total reward under policy € IT"R is

T—1
U<Z r(st, ag, st+1)>] .

t=0

The expected utilities exist since the valugs,.(s) exist
and are decreasing ili. However, some or all expected
utilities can be minus infinity. The maximal expected utili-
ties of the total reward arg;(s) = sup,ennr (5 (s). They
exist because the expected utilities exist under all pesici
However, some or all maximal expected utilities can be mi-
nus infinity. To simplify our terminology, we refer to the
expected utilityv]; (s) as the risk-sensitive value of state
under policyr and to the maximal expected utility; (s)

as the optimal risk-sensitive value of statander policyr.

A risk-sensitive optimal policyr € II"R is one for which

vl (s) = vj;(s) for all statess € S. Itis important for all
risk-sensitive values to be finite because the definition of a
risk-sensitive optimal policy can otherwise be inconsiste
with commonsense (Liu, 2005).

U;},T(S) = E57

v (s) = lim vf; () = lim E*™
T—oo 7’ T—o0

Transforming the GDMDP

A probabilistic planning problem is decomposable under
utility function U if there exists a functiorfy; such that, for

all random variables (here: representing the reward at the
current time step) and random variablethat depend on
(here: representing the total reward from the next time step
on), it holds that

E[U(z +y)] = E|fu (= EUW))]

The expected utility of the total reward can then be obtained
by combining the reward at the current time step with the
expected utility of the total reward from the next time step
on. Probabilistic planning problems under linear and expo-
nential utility functions are decomposable. The optimdl va
ues and policies for GDMDPs under such utility functions
can be determined with dynamic programming algorithms,
such as value iteration (Bertsekas & Tsitsiklis, 1991; Rate
2001), that manipulate one value for each state. Probtbilis
planning problems under other utility functions are not de-
composable. The optimal values and policies for GDMDPs
under such utility functions thus cannot be determined with
dynamic programming algorithms that manipulate one value
for each state. Instead, we transform the problem of find-
ing an optimal risk-sensitive policy for the original GDMDP
into the problem of finding an optimal risk-neutral policy fo
an augmented GDMDP, where the augmented GDMDP is
obtained by augmenting the states of the original GDMDP
with the possible wealth levels. An optimal policy for the
augmented GDMDP can then, in principle, be obtained with
existing dynamic programming algorithms.

We first define the possible wealth levéi$ used in the
construction of the augmented GDMDP. LBt = {0} U
{r(s,a,s')|s,s’ € S,a € Awith P(s'|s,a) > 0}. Let
WO = {0} and W = {r + w|r € R,w € Wt} for
all time steps) < t < T. The finite setW? includes the
possible wealth levels at time step> 0, and the countably
infinite seti = (J;2, W* includes the possible wealth lev-
els at any time step within the horizon.

We now define the augmented GDMDP for a given
GDMDP and utility functionU. We distinguish it from the
original GDMDP by enclosing all of its elements in angu-
lar brackets. The augmented GDMDP is characterized by a
countably infinite set of state$) = S x W, a countably
infinite set of goal state&?) = G x W, and a finite set of
actionst4) = A. (We continue to use the notatiane A
instead ofa € (A) for the augmented GDMDP.) The deci-
sion maker always chooses which actioE A to execute
in their current non-goal state < (S} \ (G). Assume that
@ = (s,w) andw’ = (s’,w’). The execution of the action
then results with probability

/
(PY(9'|@,a) = {OP(S |s,a),

in finite rewardr | (s, a,@’) = U(w') — U(w) < 0 and

a transition to states’ € (S) in the next time step. The
decision maker stops acting when they reach a goal state
) € (G).

We first relate the histories of the original and augmented
GDMDP. A historyh; = (so, a0, $1,---,5:) € H in the
original GDMDP corresponds to a set of historiés, =
(so, w + wo), ag, (s1,w + wi), ..., (ss, w + wt)) c (H),
in the augmented GDMDP, where the initial wealth level
w € W is arbitrary andw;, = > i_o7(si,ai,si41) for
all time stepst. Let ¢, be the mapping from histo-
ries of the original GDMDP to the corresponding histo-
ries of the augmented GDMDP with initial wealth level
w. Also, lety be the mapping from histories of the aug-

if w=w+r(s,a,s),
otherwise

—~



mented GDMDP to the corresponding histories of the orig-
inal GDMDP. Then, for all historied € H, of the orig-
inal GDMDP and all wealth levelsy € W, it holds that

h = ¥ (¢pw(h)). Also, for all historiesh) € (H); of the aug-
mented GDMDP, there exists a wealth leuwele W such
that(h) = ¢,, (1({h))). This correspondence in histories be-
tween the original and augmented GDMDP implies a corre-
spondence in policies. L&t, be the mapping from policies

7 = (do,dy,...,dr_1) € II"R in the original GDMDP to
policies? (71) = ({do, (D1, . .., {d7r_1) € AD"R inthe aug-
mented GDMDP such théb, ((h)) = d; (1 ((h))) for all his-
toriesth) € (H), of the augmented GDMDP. Also, Iét, be

the mapping from policiesn = ({dg,{d1,...,{dr_1) €
(IDHR in the augmented GDMDP to policieB,, (m) =
(do,dy,...,dp_1) € TI"R in the original GDMDP such
thatd,(h) = (d)t(%(h)) for all historiesh € H; in the
original GDMDP. Then, for all wealth levels € W, it
holds that®,, (¥ (7)) = = However, it is not guaran-
teed that there exists a wealth lewel € W such that
V(Do (M) = am.

We now relate the values and policies of the original and
augmented GDMDP. The following notation is helpful in
this context: We use[; (s) to denote the risk-sensitive value
of states in the original GDMDP under policy and for util-
ity functionU. We usew|)™ () = w|)™ (s, w) to denote
the risk-neutral value of state = (s, w) in the augmented
GDMDP under policym, that is, for the identity function as
utility function. We also introduce a means for transform-
ing utility functions: We can consider the utility function
U(w + w') to be a utility function of wealth levely’ ob-
tained by shifting the utility functio/(w’) to the left by
wealth levelw. U<w denotes this utility function. It thus
holds, for example, that.., 1-(s) = E>7[U(w + wr)].

Theorem 1. Consider a policyr € IIHR for the original

GDMDP. The risk-neutral values|»¥ (™ (s, w) exist for
the augmented GDMDP and it holds that? (™) (s, w) =

Ve (8) — U(w) for all statess € S and wealth levels
weWw.

Proof. The risk-neutral values],, (s) exist for all states
s € S and wealth levelsy € W since the values of GDMDP
states exist under all policies and utility functions:sif =
(s, w + wy) for all time stepst > 0, then it holds for all
finite horizonsT" that

T-1
<v|U>?(W)( ) = E® ¥ Z () t7at7<8>t+1)]
t=0
T-1
<S>W Z w+wt+1 U(U/+U1t))
t=0
T T-1
= poY@ ZUw—t—wt ZUw—t—wt)
=1 =0
[U(w—kwT U(w+wo)]
= EYO[U (w + wr) — U(w)]

=E*"U(w + wr)] —

= UU<<<w,T(S) - U(w),

U(w)

where the second-to-last equality is due to the fact that
policy 7 in the original GDMDP with initial states and
policy ¥(r) in the augmented GDMDP with initial state
©® = (s,w) induce the same random process of original
states and actions. The theorem then follows by letting the
horizonT approach infinity. O

The theorem implies that| ¥ () (s, 0) = v (s) —U/(0) for
all statess € S.

Theorem 2. Consider a policym € (IDHR for the aug-
mented GDMDP. The risk-sensitive valuds (™ (s) exist

Kw

for the original GDMDP and it holds thab? (™ (s) =

U<w
w|)™ (s, w) + U(w) for all statess € S and wealth lev-
elsw € V.

Proof. The risk-sensitive values|,)™ (s, w) exist for all
statess € S and wealth levelsy € W since the values of
GDMDP states exist under all policies and utility functions
If ¢ = (s¢, w + wy) for all time stepg > 0, then it holds
for all finite horizonsTl that

W[ (s, w) = Elsw)m Z T (19, Gty (S41)
t=0
T—1
= Elsw)m (U(w 4+ wig1) — U(w + wy))
t=0
T T—1
= plsw)m ZU w + wy) ZU(w—t—wt)
t=1 t=0
= Elsw)m [U(w + wr) — U(w + wo)]
= E(sw)m [U(w+ wr) — U(w)]
= B w0+ )] - Uw)
Doy, (1m
= vl (s) = U(w),

where the second-to-last equality is due to the fact that pol

icy «o in the augmented GDMDP with initial state =

(s, w) and policy®,, («m) in the original GDMDP with ini-

tial states induce the same random process of original states
and actions. The theorem then follows by letting the horizon
T approach infinity. O

The theorem |mpI|e$vq50 (™) (5) = w|)™(s,0) + U(0) for

all statess € S. Consequently, we can obtain an optimal
risk-sensitive policy for the original GDMDP by obtaining
an optimal risk-neutral policy for the augmented GDMDP,
as stated in the following theorem.

Theorem 3. There exists an optimal risk-neutral policy in
(IDSP for the augmented GDMDP. If poliey is an optimal
risk-neutral policy for the augmented GDMDP then policy
do(im) is an optimal risk-sensitive policy for the original
GDMDP.

Proof. There exists an optimal risk-neutral policy (i)S°
for the augmented GDMDP according to Puterman (1994).
Now assume that there exists a risk-sensitive patignd
a states for the original GDMDP such thavf(s) >



Ugo(m)(s). Then,
w|e” ™ (s,0) = v (s) — U(0)

> v ™ () = U(0) = wl)™(s,0)
according to Theorem 1 and Theorem 2, which contradicts

the fact thatm is an optimal risk-neutral policy for the aug-
mented GDMDP. O

It is known that there does not necessarily exist an op-
timal risk-sensitive policy ilISP for the original GDMDP
(White, 1987). However, since there exists an optimal risk-
neutral policy iIDSP for the augmented GDMDP, there ex-
ists an optimal risk-sensitive policy for the original GDNAD
that consists of the same decision rule for every time step,
where the decision rule is a mapping from the current state
and wealth level to actions. We refer to such a policy as
augmented SD-optimal.

Functional Value lteration

The augmented GDMDP has a countably infinite set of
states and a finite set of actions. In principle, value itera-
tion can be used to find an optimal risk-neutral policy for

w

Figure 1: One-Switch Utility Function

= max P(s'|s,a)[U(w +7(s,a,s")) — U(w)
s’esS
+ | (', w+7r(s,a,8"))] + U(w)
! !/
= l;neaj{gqp(s |s,a)[U(w+1(s,a,s"))
+ Wl (s, w+r(s,a,5"))]

= max Z P(s'|s,a) - V(s ) (w +7(s, a, 8'))

s'eS
= rilea‘i( ZSP(SI|S7 a) ’ V(}<<<r(s,a,s’)(sl)<w)7 s ¢ G.
s'e

The valuesV/(s)(w) converge to the value¥;;(s)(w)

the augmented GDMDP (Puterman, 1994). Its update equa- 35 the number of time stepg approaches infin-

tions are for all states € S, wealth levelav € W, and time
stepst > 0:
w0 (s, w)

0, s€S,

[U(w—&—r(& a,s’))

W[ (s,w) = max Y P(s']s,a)
a€A
s'eS

— U(w) + w' (s, w+r(s, a, s’))}7 s¢ Q.

The valuesv|t (s, w) converge to the optimal risk-neutral
values w|»*(s,w) as the number of time steps ap-
proaches infinity. An optimal risk-neutral policy ihD>P

for the augmented GDMDP then is to execute action
argmaxeea Y g P(8'|s,a)[U(w+7r(s,a,s")) —U(w)+
w|* (', w+r(s,a,s"))] innon-goal statés, w) € (SY\(G).
Applying @, to this policy results in an augmented SD-
optimal risk-sensitive policy for the original GDMDP.

Value iteration updates the values of augmented states

with the same original state and different wealth levels in
a similar way since they have the same transition probabil-
ities. We exploit this similarity by defining the functional
value functionsVy : S — (W — R) that map original
states to functions, namely functions from wealth levels to
values. We defind’/ (s)(w) = w|»'(s,w) + U(w) and
Vi (s)(w) = w|p* (s, w)+U(w) for all statess € .S, wealth
levelsw € W and time stepg > 0. We then re-write the
above version of value iteration for the augmented GDMDP
so that it looks like value iteration for the original GDMDP
except that it uses functional value functions for the o
states instead of values. We refer to this version of value it
eration as functional value iteration. Its update equatare
for all statess € S, wealth levelsw € W, and time steps
t>0:

Vi (s)(w) = wip(s,w) + U(w) = U(w),

Vi (s)(w) = w5, w) + U (w)

seSs

ity. An optimal risk-neutral policy in (IDSP for
the augmented GDMDP then is to execute action
argmaxaea ) geg P(S']8,0) Vi, (50,5 (8")(w) in non-
goal statgs, w) € (S)\ (G). Again, applying? to this pol-

icy results in an augmented SD-optimal risk-sensitiveqyoli
for the original GDMDP.

One needs to perform three operations on functional
value functions to carry out functional value iteration.
To calculate the expressiomax,ca ., g P(s']s,a) -
Vieer(s.asn(8)(), one needs to shift a functional value

function to the left by reward(s, a, "), calculate the prob-
abilistically weighted average of several functional alu
functions and calculate the maximum of several functional
value functions. We need to restrict the class of utilitydun
tions to be able to perform these operations efficiently.

One-Switch Utility Functions

Most research on decision-theoretic planning in artificial
telligence has used linear utility functions and, to a much
lesser degree, exponential utility functions (Koenig & Sim
mons, 1994; Koenig & Liu, 1999). However, linear and
exponential utility functions have the property that the de
cisions of a decision maker depend only on the increase
in wealth level but not the wealth level itself. This prop-
erty is unrealistic since decision makers are often riskrse

but become risk-neutral in the limit as their wealth level in
creases. One-switch utility functions are an importantgla
of nonlinear utility functions that can model such decision
makers. Their name is due to the property that a deci-
sion maker with a one-switch utility function who is con-
fronted with two courses of actions switches at most once
from one course of action to another course of action as their
wealth level increases. This property was proposed in (Bell



1988) and studied in detail in (Bell, 1988; Nakamura, 1996; ment of the new piecewise one-switch value function from
Gelles & Mitchell, 1999; Bell & Fishburn, 2001). The only  the corresponding segments of the given piecewise one-
one-switch utility functions that model decision makersowh  switch value functions. For example, if we have two piece-
are risk averse but become risk-neutral in the limit as their wise one-switch value functiong’ and V" that are rep-

wealth level increases have the fothtw) = Cw— D~ for resented agw!,d', '), (w?,d?,e?),..., (w' d* ) and
C,D > 0and0 < v < 1 (Bell, 1988). In the following, we (wh,d*, el), (w?,d2,é2),. .., (w,d’, é'), then their proba-
assume that the utility functioti has this particular form, bilistically weighted averaggV’ +qV" for p+q = 1 can be

which we refer to as a one-switch utility function. Figure 1
shows an example.

Probabilistic planning problems with one-switch utility
functions are not decomposable but can be solved with
functional value iteration. The functional value functon
Vit (s)(w) of functional value iteration are then piecewise
one-switch value functions, that is, consist of segments of
one-switch utility functions of the fornC'w — dy* — e,
whereC > 0 and0 < ~ < 1 are parameters of the
one-switch utility function/ andd > 0 ande > 0 are

represented gsv’, pd'+qd!, pe*+qet), (w?, pd2+qd?, pe>+
qé?), ..., (w’, pd’+qd’, pe’ +qé").

If we have several piecewise one-switch value functions
then their maximum is also a piecewise one-switch value
function, which can be calculated in three steps: The first
step is identical to the step given above for calculating
the probabilistically weighted average. The second step
is more complicated since we might have to introduce ad-
ditional breakpoints. For example, assume that we have

: ; S . "

parameters of the segment. We represent piecewise one-g’;'grg'eéivgftiggglsg{th)Va(lluge ;‘;”CQ')OVS a{]dgvdg théa)t

switch value functions with segments as lists of triples Fi S G @ C )y (W 8 €

(wh,d, el), (w?,d2,e?),. .., (w',d',e’), where —oo = and(w', d*, él), (w?,d?, é?),..., (v, d" é"). Consider the

w0 < wl < w? < .- < wt = 0. We refer to the values segment of the new piecewise one-switch value function
. . . i . i i—1 i

w' as breakpoints of the piecewise one-switch value func- Over the intervalw'™" < w < w'. There are three

tion. The value of the piecewise one-switch value functioni  ¢ases: In the first case, the first piecewise one-switch value

Cw—diny® — et if wi~1 < w < w' for somel < i < £. We function dominates the other one over the whole segment
need to show how to shift a piecewise one-switch value func- (V/(w'™") = V"(w'"") andV'(w’) > V"(w')) and the
tion to the left, calculate the probabilistically weightaer- maximum of the two piecewise one-switch value functions

culate the maximum of several piecewise one-switch value S€cond piecewise one-switch value function dominates the
functions. We show in the remainder of this section that Other one over the whole segment and the maximum of the

this can be done in a finite amount of time and with a finite WO piecewise one-switch value functions over the segment
amount of memory despite the number of augmented states S thus the second one. In the third case, neither piecewise

being infinite. one-switch value function dominates the other one over the

If we have a piecewise one-switch value functidrthat whole segment and their two segments thus intersect. There
is represented a&v!, d!, e!), (w?, 2, e?), .. ., (w',d’, b, is only one intersection, and the intersection pairsatisfies
then shifting it to the left by reward results also in a piece- V' (w) = V" (w)

wise one-switch value function, which can be calculated in

\ . . ] _diw_i: _dAiw_Ai
two steps: The first step is to calculate the new piecewise Cw " ¢ =Cuw ‘ v €

51

one-switch value function. Note that = e —e'

Viw+r) = Clw +7) —dig"" — ¢l di—d

=Cw —d'y"y" — (e = Cr) and thus
for wi=1 <w+r <w' or, equivalentlyw’ =t —r <w <w'—r. w = 1o el — et
The new piecewise one-switch value functidir can &y di — di
1 1 1 2 . . . . . .

thegefroreQ be representez\d @s e dz Ve =Cr), (w - with w'~! < w < w'. We add the intersection point
r,dy" et =Cr),..., (W' —r,d’y",e"=Cr). The second 44 4 preakpoint. The maximum of the two piecewise one-

step is to simplify the new piecewise one-switch value func- - gitch value functions is just the first one on one side of
tion. The piecewise one-switch value func_t|on was actually he breakpoint and the second one on the other side of the
shifted to the right since the rewards negative. Allwealth  preaknoint. The third step is to merge adjacent segments of
levels are non-positive and we can thus speed up subsequentne new piecewise one-switch value function, if possilde, t

operatio_ns on the new piecewise one-switch value function emove unnecessary breakpoints and speed up subsequent
by keeping only the part to the left af = 0. operations on it.

If we have several piecewise one-switch value functions
then their probabilistically weighted average is also @@ie o
wise one-switch value function, which can be calculated in _ letene_$_ P_r operty )
two steps: The first step is to introduce additional break- We mentioned earlier that it is important that all optimaltva
points to the representations of each piecewise one-switch ues be finite. The following theorem states a condition when
value function (without changing the functions themsejyes  this is the case for one-switch utility functions.
if needed, to make all of them have the same breakpoints. Thegrem 4. Consider any one-switch utility function
The second step is to calculate the parameters of each seg/()) = Cw — Dy* with C,D > 0 and0 < v < 1.
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Figure 2: Probabilistic Blocks-World Example
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Figure 3: Optimal Policy for One-Switch Utility Function

The optimal valuesy; (s) for the one-switch utility function

are finite for all statess € S if there exists a policy whose
valuesv];, (s) for the concave exponential utility function
U'(w) = —™ are finite for all states; € S.

Proof. There exist’,d’ > 0 such that, for all wealth levels
w <0,
Uw) > —c —d~" = - +d'U'(w)
since the ternd’y* dominated/ (w). Therefore, it holds for
the given policyr and all states € S and horizond" that
vir(s) = B> [U(wr)]

> E5T [~ —dyvT] =

and thus also

—c + d'vg,_’T(s)

o (s) = lim of 1 (s)
> Tlim (= +d'vf 1(s)) = = + d'vf (s).
It therefore holds that
vg(s) = sup_vgr () = v (s)
7/ €TIHR
> —c +d'vj(s) > —occ. O
Example

We use a probabilistic blocks-world example to illustrate
risk-sensitive planning with one-switch utility functisn
(Koenig & Simmons, 1994). The domain is a standard
block-world domain with five blocks that are either white
(W or black B). However, the move action succeeds only
with probability 0.5. When it fails, the block drops directl
onto the table. (Thus, moving a block to the table always
succeeds.) There is also a paint action that changes the
color of any one block and always succeeds. The move
action has a reward of 1, and the paint action has a re-
ward of —3. Figure 2 shows the initial configuration of the
blocks. The goal is to build a stack of three blocks: black
(at the bottom), white, and black (on top). The remaining
two blocks can be anywhere and can have any color. The
probabilistic blocks-world example has 162 states, which

-

{WBBW,B}

?j

{WBBW,B}

{BBB,B,W} {BWB,B,W}

Figure 5: Optimal Policy for Exponential Utility Function

we describe as a set of stacks by listing the blocks in each
stack from bottom to top. For example, the initial configura-
tion is {\W\BBW B}. We use functional value iteration to find
the augmented SD-optimal policy for the one-switch utility
functionU(w) = w — 0.5 x 0.6*. Functional value itera-
tion terminates quickly. Figure 3 depicts the augmented SD-
optimal policy and Figure 6 shows the optimal functional
value functions for the five non-goal states that are reach-
able from the initial configuration under the augmented SD-
optimal policy. Table 1 shows the breakpoints of the func-
tional value function and the values of the piecewise one-
switch value function at the breakpoints in parentheses fol
lowed by thed ande values of the segments to their imme-
diate left.

We compare the augmented SD-optimal policy for the
one-switch utility functionl/ (w) = w — 0.5 x 0.6" against
two other policies that are easier to calculate. Figure 5
shows the optimal policy for the concave exponential util-

ity function U(w) = —0.6“, and Figure 4 shows the op-
U U
(a) {\BBW B} (b) {VBB, BWt and {BW W\B, B}
U U
7 ] 05 0 25 2 15 1 o5 0] w
i ~10.0 /quu
(c) {\BB, B, W (d) {BBB, B, W}

Figure 6: Optimal Functional Value Function



Table 1: Segments of the Value Functions from Figure 6

{\BB, BW and{BW VB, B} (BBB, B, W
( w®, u®) d* e’ ( w®, u®) d* e’
(0.00,—4.50) 2.50 2.00 (0.00,—5.31) 2.32 3.00

{(VBBW B} (BB, B, W
', u®) d* e’ ( w', u’) d’ X
( 0.00,—15.72) 11.47 4.25 ( 0.00,—15.72) 11.47 4.25
(—0.38,—18.52) 11.26 4.50 (—0.38,—18.52) 11.26 4.50
(—1.38,—28.61) 11.02 5.00 (—1.38,—28.61) 11.02 5.00
(—2.38,—44.43) 10.72 6.00

timal policy for the linear utility function/ (w) = w, that
is, the optimal risk-neutral policy. Both of these policies

can be calculated with standard versions of value iteration

since the optimal policies for linear and exponential wili
functions are known to be ifiSP (Bertsekas & Tsitsiklis,
1991; Patek, 2001). The three policies differ in the actions
that they execute in state\BB, B, W. The optimal pol-
icy for the concave exponential utility function always exe
cutes a move action in staf&\BB, B, W, and the optimal
policy for the linear utility function always executes apai
action in statg \BB, B, W. The optimal policy for the one-
switch utility function, on the other hand, executes an ac-
tion in state{\\BB, B, W that depends on the wealth level.
It is @ move action for wealth level1 or —2 and a paint
action for wealth level-3 or smaller. The augmented SD-
optimal policy executes the same move action in the initial
configuration until it succeeds or has tried it three timé#. |
succeeds, it then solves the problem by repeatedly exgcutin
another move action until it succeeds, otherwise it soles t
problem by executing two different paint actions. The opti-
mal policies for the concave exponential and linear utility
functions are not optimal for decision makers with the given
one-switch utility function. If we evaluate the policiestvi
the one-switch utility function, then the expected utilitfy
the initial configuration is-16.01 for the concave exponen-
tial utility function and—16.50 for the linear utility function,
whereas the maximal expected utility-45.72 for the one-
switch utility function.

Conclusions

In this paper, we studied how to maximize the expected util-
ity of a Markov decision problem for a given one-switch
utility function. We first studied an approach that augments
the states of the Markov decision problem with the wealth
level. The properties of the resulting infinite Markov deci-
sion problem then allowed us to generalize the standard risk
neutral version of value iteration from manipulating vaue
to manipulating functions that map wealth levels to values.
Large parts of this paper applied to arbitrary utility func-
tions, only the part about how to represent the functional
value functions used by the new version of value iteration
was specific to one-switch utility functions. We therefore
expect our ideas to apply to additional nonlinear utilitgidu

tions as well. In the meantime, we have been able to use

properties of one-switch utility functions to derive an exa
algorithm for them, similar to backward induction, but this
algorithm is specific to one-switch utility functions (Liu &
Koenig, 2005).
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