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Abstract

Decision-theoretic planning with nonlinear utility functions
is important since decision makers are often risk-sensitive in
high-stake planning situations. One-switch utility functions
are an important class of nonlinear utility functions that can
model decision makers whose decisions change with their
wealth level. We study how to maximize the expected utility
of a Markov decision problem for a given one-switch utility
function, which is difficult since the resulting planning prob-
lem is not decomposable. We first study an approach that
augments the states of the Markov decision problem with the
wealth level. The properties of the resulting infinite Markov
decision problem then allow us to generalize the standard
risk-neutral version of value iteration from manipulatingval-
ues to manipulating functions that map wealth levels to val-
ues. We use a probabilistic blocks-world example to demon-
strate that the resulting risk-sensitive version of value itera-
tion is practical.

Introduction
Utility theory (von Neumann & Morgenstern, 1944) is a nor-
mative theory of decision making under uncertainty. It states
that every rational decision maker who accepts a small num-
ber of axioms has a strictly monotonically increasing utility
function that transforms their wealth levelw into a utility
U(w) so that they always choose the course of action that
maximizes their expected utility. The utility function models
their risk attitudes. A decision maker is risk-neutral if their
utility function is linear, risk-averse if their utility function is
concave, and risk-seeking if their utility function is convex.
Decision-theoretic planning with nonlinear utility functions
is important since decision makers are often risk-sensitive
in high-stake planning situations (= planning situations with
the possibility of large wins or losses) and their risk attitude
affects their decisions. For example, some decision mak-
ers buy insurance in business decision situations and some
do not. Furthermore, their decisions often change with their
wealth level. In particular, they are often risk-averse butbe-
come risk-neutral in the limit as their wealth level increases.
One-switch utility functions are an important class of non-
linear utility functions that can model such decision makers.
We model probabilistic planning problems as fully observ-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

able Goal-Directed Markov Decision Problems (GDMDPs)
and investigate how to maximize their expected utility for a
given one-switch utility function, which is difficult sincethe
resulting planning problem is not decomposable. The opti-
mal course of action now depends not only on the current
state of the GDMDP but also the wealth level (= accumu-
lated rewards). Thus, we first study an approach that trans-
forms a risk-sensitive GDMDP into a risk-neutral one, basi-
cally by augmenting the states of the risk-sensitive GDMDP
with the possible wealth levels. The resulting risk-neutral
GDMDP has an infinite state space but its properties allow
us to generalize the standard risk-neutral version of valueit-
eration, which manipulates values (one for each state), to a
risk-sensitive version of value iteration, which manipulates
functions (one for each state) that map wealth levels to val-
ues. We use a probabilistic blocks-world example to demon-
strate that the resulting risk-sensitive version of value itera-
tion is practical. Our research is intended to be a first step
toward better probabilistic planners for high-stake planning
situations such as environmental crisis situations (Blythe,
1997), business decisions situations (Goodwin, Akkiraju,&
Wu, 2002), and planning situations in space (Zilbersteinet
al., 2002).

GDMDPs
We model probabilistic planning problems as finite Goal-
Directed Markov Decision Problems (GDMDPs), which are
characterized by a finite set of statesS, a finite set of goal
statesG ⊆ S, and a finite set of actionsA that can be exe-
cuted in all non-goal statess ∈ S\G. The decision maker al-
ways chooses which actiona ∈ A to execute in their current
non-goal states ∈ S \ G. Its execution results with proba-
bility P (s′|s, a) in finite (immediate) rewardr(s, a, s′) < 0
and a transition to states′ ∈ S in the next time step. The
decision maker stops acting when they reach a goal state
s ∈ G, which is modeled as them executing a dummy action
whose execution results with probability 1.0 in reward 0.0
and leaves their current goal state unchanged.Ht denotes
the set of all histories at time stept ≥ 0. A history at time
stept is any sequenceht = (s0, a0, · · · , st−1, at−1, st) ∈
(S × A)t × S of states and actions from the state at time
step0 to the current state at time stept that can occur with
positive probability if the decision maker executes the cor-
responsing actions in sequence. The (planning) horizon of a



decision maker is the number of time steps1 ≤ T ≤ ∞ that
they plan for. A trajectory is an element ofHT .

Decision-theoretic planners determine policies, where a
policy π consists of a decision ruledt for every time step
0 ≤ t < T within the horizon. A decision rule determines
which action the decision maker should execute in their cur-
rent state. The most general policies are those that consistof
potentially different decision rules for the time steps, where
every decision rule is a mapping from histories at the current
time step to probability distributions over actions, called ran-
domized history-dependent (HR) decision rules. We denote
the class of such policies asΠHR. More restricted policies
consist of the same decision rule for every time step, where
the decision rule is a mapping from only the current state to
actions, called deterministic stationary (SD) decision rules.
We denote the class of such policies asΠSD.

Consider a decision maker with an arbitrary utility func-
tion U . If the horizonT is finite and the decision maker
starts in initial states ∈ S, then the expected utility of their
total reward under policyπ ∈ ΠHR is

vπ
U,T (s) = Es,π

[

U

(

T−1
∑

t=0

r(st, at, st+1)

)]

,

where the expectation is taken over all possible trajecto-
ries. The expected utilities exist and are finite because
the number of trajectories is finite. We refer to the value
wt =

∑t−1
i=0 r(si, ai, si+1) as their wealth level at time step

t. (Note thatw0 = 0.) If the horizon is infinite and the de-
cision maker starts in initial states ∈ S, then the expected
utility of their total reward under policyπ ∈ ΠHR is

vπ
U (s) = lim

T→∞
vπ

U,T (s) = lim
T→∞

Es,π

[

U

(

T−1
∑

t=0

r(st, at, st+1)

)]

.

The expected utilities exist since the valuesvπ
U,T (s) exist

and are decreasing inT . However, some or all expected
utilities can be minus infinity. The maximal expected utili-
ties of the total reward arev∗U (s) = supπ∈ΠHR vπ

U (s). They
exist because the expected utilities exist under all policies.
However, some or all maximal expected utilities can be mi-
nus infinity. To simplify our terminology, we refer to the
expected utilityvπ

U (s) as the risk-sensitive value of states
under policyπ and to the maximal expected utilityv∗U (s)
as the optimal risk-sensitive value of states under policyπ.
A risk-sensitive optimal policyπ ∈ ΠHR is one for which
vπ

U (s) = v∗U (s) for all statess ∈ S. It is important for all
risk-sensitive values to be finite because the definition of a
risk-sensitive optimal policy can otherwise be inconsistent
with commonsense (Liu, 2005).

Transforming the GDMDP

A probabilistic planning problem is decomposable under
utility functionU if there exists a functionfU such that, for
all random variablesx (here: representing the reward at the
current time step) and random variablesy that depend onx
(here: representing the total reward from the next time step
on), it holds that

E[U(x+ y)] = E
[

fU

(

x,E[U(y)]
)

]

.

The expected utility of the total reward can then be obtained
by combining the reward at the current time step with the
expected utility of the total reward from the next time step
on. Probabilistic planning problems under linear and expo-
nential utility functions are decomposable. The optimal val-
ues and policies for GDMDPs under such utility functions
can be determined with dynamic programming algorithms,
such as value iteration (Bertsekas & Tsitsiklis, 1991; Patek,
2001), that manipulate one value for each state. Probabilistic
planning problems under other utility functions are not de-
composable. The optimal values and policies for GDMDPs
under such utility functions thus cannot be determined with
dynamic programming algorithms that manipulate one value
for each state. Instead, we transform the problem of find-
ing an optimal risk-sensitive policy for the original GDMDP
into the problem of finding an optimal risk-neutral policy for
an augmented GDMDP, where the augmented GDMDP is
obtained by augmenting the states of the original GDMDP
with the possible wealth levels. An optimal policy for the
augmented GDMDP can then, in principle, be obtained with
existing dynamic programming algorithms.

We first define the possible wealth levelsW used in the
construction of the augmented GDMDP. LetR = {0} ∪
{r(s, a, s′) | s, s′ ∈ S, a ∈ A with P (s′|s, a) > 0}. Let
W 0 = {0} andW t+1 = {r + w | r ∈ R,w ∈ W t} for
all time steps0 ≤ t < T . The finite setW t includes the
possible wealth levels at time stept ≥ 0, and the countably
infinite setW =

⋃∞
t=0W

t includes the possible wealth lev-
els at any time step within the horizon.

We now define the augmented GDMDP for a given
GDMDP and utility functionU . We distinguish it from the
original GDMDP by enclosing all of its elements in angu-
lar brackets. The augmented GDMDP is characterized by a
countably infinite set of states〈〈〈S〉〉〉 = S × W , a countably
infinite set of goal states〈〈〈G〉〉〉 = G ×W , and a finite set of
actions〈〈〈A〉〉〉 = A. (We continue to use the notationa ∈ A
instead of〈〈〈a〉〉〉 ∈ 〈〈〈A〉〉〉 for the augmented GDMDP.) The deci-
sion maker always chooses which actiona ∈ A to execute
in their current non-goal state〈〈〈s〉〉〉 ∈ 〈〈〈S〉〉〉 \ 〈〈〈G〉〉〉. Assume that
〈〈〈s〉〉〉 = (s, w) and〈〈〈s〉〉〉

′ = (s′, w′). The execution of the action
then results with probability

〈〈〈P 〉〉〉(〈〈〈s〉〉〉
′|〈〈〈s〉〉〉, a) =

{

P (s′|s, a), if w′ = w + r(s, a, s′),

0, otherwise.

in finite reward〈〈〈r|U 〉〉〉(〈〈〈s〉〉〉, a, 〈〈〈s〉〉〉
′) = U(w′) − U(w) < 0 and

a transition to state〈〈〈s〉〉〉
′ ∈ 〈〈〈S〉〉〉 in the next time step. The

decision maker stops acting when they reach a goal state
〈〈〈s〉〉〉 ∈ 〈〈〈G〉〉〉.

We first relate the histories of the original and augmented
GDMDP. A historyht = (s0, a0, s1, . . . , st) ∈ Ht in the
original GDMDP corresponds to a set of histories〈〈〈h〉〉〉t =
(

(s0, w + w0), a0, (s1, w + w1), . . . , (st, w + wt)
)

∈ 〈〈〈H〉〉〉t

in the augmented GDMDP, where the initial wealth level
w ∈ W is arbitrary andwt =

∑t−1
i=0 r(si, ai, si+1) for

all time stepst. Let φw be the mapping from histo-
ries of the original GDMDP to the corresponding histo-
ries of the augmented GDMDP with initial wealth level
w. Also, letψ be the mapping from histories of the aug-



mented GDMDP to the corresponding histories of the orig-
inal GDMDP. Then, for all historiesh ∈ Ht of the orig-
inal GDMDP and all wealth levelsw ∈ W , it holds that
h = ψ(φw(h)). Also, for all histories〈〈〈h〉〉〉 ∈ 〈〈〈H〉〉〉t of the aug-
mented GDMDP, there exists a wealth levelw ∈ W such
that〈〈〈h〉〉〉 = φw

(

ψ(〈〈〈h〉〉〉)
)

. This correspondence in histories be-
tween the original and augmented GDMDP implies a corre-
spondence in policies. LetΨw be the mapping from policies
π = (d0, d1, . . . , dT−1) ∈ ΠHR in the original GDMDP to
policiesΨ(π) = (〈〈〈d〉〉〉0, 〈〈〈d〉〉〉1, . . . , 〈〈〈d〉〉〉T−1) ∈ 〈〈〈Π〉〉〉HR in the aug-
mented GDMDP such that〈〈〈d〉〉〉t(〈〈〈h〉〉〉) = dt

(

ψ(〈〈〈h〉〉〉)
)

for all his-
tories〈〈〈h〉〉〉 ∈ 〈〈〈H〉〉〉t of the augmented GDMDP. Also, letΦw be
the mapping from policies〈〈〈π〉〉〉 = (〈〈〈d〉〉〉0, 〈〈〈d〉〉〉1, . . . , 〈〈〈d〉〉〉T−1) ∈
〈〈〈Π〉〉〉HR in the augmented GDMDP to policiesΦw(〈〈〈π〉〉〉) =
(d0, d1, . . . , dT−1) ∈ ΠHR in the original GDMDP such
that dt(h) = 〈〈〈d〉〉〉t

(

φw(h)
)

for all historiesh ∈ Ht in the
original GDMDP. Then, for all wealth levelsw ∈ W , it
holds thatΦw(Ψ(π)) = π. However, it is not guaran-
teed that there exists a wealth levelw ∈ W such that
Ψ(Φw(〈〈〈π〉〉〉)) = 〈〈〈π〉〉〉.

We now relate the values and policies of the original and
augmented GDMDP. The following notation is helpful in
this context: We usevπ

U (s) to denote the risk-sensitive value
of states in the original GDMDP under policyπ and for util-
ity functionU . We use〈〈〈v|U 〉〉〉

〈〈〈π〉〉〉(〈〈〈s〉〉〉) = 〈〈〈v|U 〉〉〉
〈〈〈π〉〉〉(s, w) to denote

the risk-neutral value of state〈〈〈s〉〉〉 = (s, w) in the augmented
GDMDP under policy〈〈〈π〉〉〉, that is, for the identity function as
utility function. We also introduce a means for transform-
ing utility functions: We can consider the utility function
U(w + w′) to be a utility function of wealth levelw′ ob-
tained by shifting the utility functionU(w′) to the left by
wealth levelw. U≪w denotes this utility function. It thus
holds, for example, thatvπ

U≪w,T (s) = Es,π [U(w + wT )].

Theorem 1. Consider a policyπ ∈ ΠHR for the original
GDMDP. The risk-neutral values〈〈〈v|U 〉〉〉Ψ(π)(s, w) exist for
the augmented GDMDP and it holds that〈〈〈v|U 〉〉〉Ψ(π)(s, w) =
vπ

U≪w(s) − U(w) for all statess ∈ S and wealth levels
w ∈W .

Proof. The risk-neutral valuesvπ
U≪w(s) exist for all states

s ∈ S and wealth levelsw ∈W since the values of GDMDP
states exist under all policies and utility functions. If〈〈〈s〉〉〉t =
(st, w + wt) for all time stepst ≥ 0, then it holds for all
finite horizonsT that

〈〈〈v|U 〉〉〉
Ψ(π)
T (〈〈〈s〉〉〉) = E 〈〈〈s〉〉〉,Ψ(π)

[

T−1
∑

t=0

〈〈〈r|U 〉〉〉(〈〈〈s〉〉〉t, at, 〈〈〈s〉〉〉t+1)

]

= E 〈〈〈s〉〉〉,Ψ(π)

[

T−1
∑

t=0

(

U(w + wt+1) − U(w + wt)
)

]

= E 〈〈〈s〉〉〉,Ψ(π)

[

T
∑

t=1

U(w + wt) −

T−1
∑

t=0

U(w + wt)

]

= E 〈〈〈s〉〉〉,Ψ(π)
[

U(w + wT ) − U(w + w0)
]

= E 〈〈〈s〉〉〉,Ψ(π)
[

U(w + wT ) − U(w)
]

= Es,π[U(w + wT )] − U(w)

= vπ
U≪w,T (s) − U(w),

where the second-to-last equality is due to the fact that
policy π in the original GDMDP with initial states and
policy Ψ(π) in the augmented GDMDP with initial state
〈〈〈s〉〉〉 = (s, w) induce the same random process of original
states and actions. The theorem then follows by letting the
horizonT approach infinity.

The theorem implies that〈〈〈v|U 〉〉〉Ψ(π)(s, 0) = vπ
U (s)−U(0) for

all statess ∈ S.

Theorem 2. Consider a policy〈〈〈π〉〉〉 ∈ 〈〈〈Π〉〉〉HR for the aug-
mented GDMDP. The risk-sensitive valuesvΦw(〈〈〈π〉〉〉)

U≪w (s) exist

for the original GDMDP and it holds thatvΦw(〈〈〈π〉〉〉)
U≪w (s) =

〈〈〈v|U 〉〉〉
〈〈〈π〉〉〉(s, w) + U(w) for all statess ∈ S and wealth lev-

elsw ∈ W .

Proof. The risk-sensitive values〈〈〈v|U 〉〉〉
〈〈〈π〉〉〉(s, w) exist for all

statess ∈ S and wealth levelsw ∈ W since the values of
GDMDP states exist under all policies and utility functions.
If 〈〈〈s〉〉〉t = (st, w + wt) for all time stepst ≥ 0, then it holds
for all finite horizonsT that

〈〈〈v|U 〉〉〉
〈〈〈π〉〉〉

T (s, w) = E(s,w),〈〈〈π〉〉〉

[

T−1
∑

t=0

〈〈〈r|U 〉〉〉(〈〈〈s〉〉〉t, at, 〈〈〈s〉〉〉t+1)

]

= E(s,w),〈〈〈π〉〉〉

[

T−1
∑

t=0

(U(w + wt+1) − U(w + wt))

]

= E(s,w),〈〈〈π〉〉〉

[

T
∑

t=1

U(w + wt) −
T−1
∑

t=0

U(w + wt)

]

= E(s,w),〈〈〈π〉〉〉
[

U(w + wT ) − U(w + w0)
]

= E(s,w),〈〈〈π〉〉〉 [U(w + wT ) − U(w)]

= Es,Φw(〈〈〈π〉〉〉)[U(w + wT )] − U(w)

= v
Φw(〈〈〈π〉〉〉)
U≪w,T (s) − U(w),

where the second-to-last equality is due to the fact that pol-
icy 〈〈〈π〉〉〉 in the augmented GDMDP with initial state〈〈〈s〉〉〉 =
(s, w) and policyΦw(〈〈〈π〉〉〉) in the original GDMDP with ini-
tial states induce the same random process of original states
and actions. The theorem then follows by letting the horizon
T approach infinity.

The theorem impliesvΦ0(〈〈〈π〉〉〉)
U (s) = 〈〈〈v|U 〉〉〉

〈〈〈π〉〉〉(s, 0) + U(0) for
all statess ∈ S. Consequently, we can obtain an optimal
risk-sensitive policy for the original GDMDP by obtaining
an optimal risk-neutral policy for the augmented GDMDP,
as stated in the following theorem.

Theorem 3. There exists an optimal risk-neutral policy in
〈〈〈Π〉〉〉SD for the augmented GDMDP. If policy〈〈〈π〉〉〉 is an optimal
risk-neutral policy for the augmented GDMDP then policy
Φ0(〈〈〈π〉〉〉) is an optimal risk-sensitive policy for the original
GDMDP.

Proof. There exists an optimal risk-neutral policy in〈〈〈Π〉〉〉SD

for the augmented GDMDP according to Puterman (1994).
Now assume that there exists a risk-sensitive policyπ and
a states for the original GDMDP such thatvπ

U (s) >



v
Φ0(〈〈〈π〉〉〉)
U (s). Then,

〈〈〈v|U 〉〉〉Ψ(π)(s, 0) = vπ
U (s) − U(0)

> v
Φ0(〈〈〈π〉〉〉)
U (s) − U(0) = 〈〈〈v|U 〉〉〉

〈〈〈π〉〉〉(s, 0)

according to Theorem 1 and Theorem 2, which contradicts
the fact that〈〈〈π〉〉〉 is an optimal risk-neutral policy for the aug-
mented GDMDP.

It is known that there does not necessarily exist an op-
timal risk-sensitive policy inΠSD for the original GDMDP
(White, 1987). However, since there exists an optimal risk-
neutral policy in〈〈〈Π〉〉〉SD for the augmented GDMDP, there ex-
ists an optimal risk-sensitive policy for the original GDMDP
that consists of the same decision rule for every time step,
where the decision rule is a mapping from the current state
and wealth level to actions. We refer to such a policy as
augmented SD-optimal.

Functional Value Iteration
The augmented GDMDP has a countably infinite set of
states and a finite set of actions. In principle, value itera-
tion can be used to find an optimal risk-neutral policy for
the augmented GDMDP (Puterman, 1994). Its update equa-
tions are for all statess ∈ S, wealth levelsw ∈W , and time
stepst ≥ 0:

〈〈〈v|U 〉〉〉0(s, w) = 0, s ∈ S,

〈〈〈v|U 〉〉〉t+1(s, w) = max
a∈A

∑

s′∈S

P (s′|s, a)
[

U(w+r(s, a, s′))

− U(w) + 〈〈〈v|U 〉〉〉t(s′, w + r(s, a, s′))
]

, s /∈ G.

The values〈〈〈v|U 〉〉〉t(s, w) converge to the optimal risk-neutral
values 〈〈〈v|U 〉〉〉∗(s, w) as the number of time stepst ap-
proaches infinity. An optimal risk-neutral policy in〈〈〈Π〉〉〉SD

for the augmented GDMDP then is to execute action
arg maxa∈A

∑

s′∈S P (s′|s, a)[U(w+r(s, a, s′))−U(w)+
〈〈〈v|U 〉〉〉∗(s′, w+r(s, a, s′))] in non-goal state(s, w) ∈ 〈〈〈S〉〉〉\〈〈〈G〉〉〉.
Applying Φ0 to this policy results in an augmented SD-
optimal risk-sensitive policy for the original GDMDP.

Value iteration updates the values of augmented states
with the same original state and different wealth levels in
a similar way since they have the same transition probabil-
ities. We exploit this similarity by defining the functional
value functionsVU : S 7→ (W 7→ R) that map original
states to functions, namely functions from wealth levels to
values. We defineV t

U (s)(w) = 〈〈〈v|U 〉〉〉t(s, w) + U(w) and
V ∗

U (s)(w) = 〈〈〈v|U 〉〉〉∗(s, w)+U(w) for all statess ∈ S, wealth
levelsw ∈ W and time stepst ≥ 0. We then re-write the
above version of value iteration for the augmented GDMDP
so that it looks like value iteration for the original GDMDP
except that it uses functional value functions for the original
states instead of values. We refer to this version of value it-
eration as functional value iteration. Its update equations are
for all statess ∈ S, wealth levelsw ∈ W , and time steps
t ≥ 0:
V 0

U (s)(w) = 〈〈〈v|U 〉〉〉0(s, w) + U(w) = U(w), s ∈ S

V t+1
U (s)(w) = 〈〈〈v|U 〉〉〉t+1(s, w) + U(w)

w

U

(0, 0)

Figure 1: One-Switch Utility Function

= max
a∈A

∑

s′∈S

P (s′|s, a)
[

U(w + r(s, a, s′)) − U(w)

+ 〈〈〈v|U 〉〉〉t
(

s′, w + r(s, a, s′)
)]

+ U(w)

= max
a∈A

∑

s′∈S

P (s′|s, a)
[

U(w + r(s, a, s′))

+ 〈〈〈v|U 〉〉〉t
(

s′, w + r(s, a, s′)
)]

= max
a∈A

∑

s′∈S

P (s′|s, a) · V t
U (s′)(w + r(s, a, s′))

= max
a∈A

∑

s′∈S

P (s′|s, a) · V t
U≪r(s,a,s′)(s

′)(w), s /∈ G.

The valuesV t
U (s)(w) converge to the valuesV ∗

U (s)(w)
as the number of time stepst approaches infin-
ity. An optimal risk-neutral policy in 〈〈〈Π〉〉〉SD for
the augmented GDMDP then is to execute action
argmaxa∈A

∑

s′∈S P (s′|s, a)V ∗
U≪r(s,a,s′)(s

′)(w) in non-
goal state(s, w) ∈ 〈〈〈S〉〉〉 \ 〈〈〈G〉〉〉. Again, applyingΦ0 to this pol-
icy results in an augmented SD-optimal risk-sensitive policy
for the original GDMDP.

One needs to perform three operations on functional
value functions to carry out functional value iteration.
To calculate the expressionmaxa∈A

∑

s′∈S P (s′|s, a) ·

V t
U≪r(s,a,s′)(s

′)(·), one needs to shift a functional value
function to the left by rewardr(s, a, s′), calculate the prob-
abilistically weighted average of several functional value
functions and calculate the maximum of several functional
value functions. We need to restrict the class of utility func-
tions to be able to perform these operations efficiently.

One-Switch Utility Functions
Most research on decision-theoretic planning in artificialin-
telligence has used linear utility functions and, to a much
lesser degree, exponential utility functions (Koenig & Sim-
mons, 1994; Koenig & Liu, 1999). However, linear and
exponential utility functions have the property that the de-
cisions of a decision maker depend only on the increase
in wealth level but not the wealth level itself. This prop-
erty is unrealistic since decision makers are often risk-averse
but become risk-neutral in the limit as their wealth level in-
creases. One-switch utility functions are an important class
of nonlinear utility functions that can model such decision
makers. Their name is due to the property that a deci-
sion maker with a one-switch utility function who is con-
fronted with two courses of actions switches at most once
from one course of action to another course of action as their
wealth level increases. This property was proposed in (Bell,



1988) and studied in detail in (Bell, 1988; Nakamura, 1996;
Gelles & Mitchell, 1999; Bell & Fishburn, 2001). The only
one-switch utility functions that model decision makers who
are risk averse but become risk-neutral in the limit as their
wealth level increases have the formU(w) = Cw−Dγw for
C,D > 0 and0 < γ < 1 (Bell, 1988). In the following, we
assume that the utility functionU has this particular form,
which we refer to as a one-switch utility function. Figure 1
shows an example.

Probabilistic planning problems with one-switch utility
functions are not decomposable but can be solved with
functional value iteration. The functional value functions
V t

U (s)(w) of functional value iteration are then piecewise
one-switch value functions, that is, consist of segments of
one-switch utility functions of the formCw − dγw − e,
whereC > 0 and 0 < γ < 1 are parameters of the
one-switch utility functionU and d > 0 and e ≥ 0 are
parameters of the segment. We represent piecewise one-
switch value functions withℓ segments as lists of triples
(w1, d1, e1), (w2, d2, e2), . . . , (wℓ, dℓ, eℓ), where −∞ =
w0 < w1 < w2 < · · · < wℓ = 0. We refer to the values
wi as breakpoints of the piecewise one-switch value func-
tion. The value of the piecewise one-switch value function is
Cw−diγw − ei if wi−1 < w ≤ wi for some1 ≤ i ≤ ℓ. We
need to show how to shift a piecewise one-switch value func-
tion to the left, calculate the probabilistically weightedaver-
age of several piecewise one-switch value functions and cal-
culate the maximum of several piecewise one-switch value
functions. We show in the remainder of this section that
this can be done in a finite amount of time and with a finite
amount of memory despite the number of augmented states
being infinite.

If we have a piecewise one-switch value functionV that
is represented as(w1, d1, e1), (w2, d2, e2), . . . , (wℓ, dℓ, eℓ),
then shifting it to the left by rewardr results also in a piece-
wise one-switch value function, which can be calculated in
two steps: The first step is to calculate the new piecewise
one-switch value function. Note that

V (w + r) = C(w + r) − diγw+r − ei

= Cw − diγrγw − (ei − Cr)

for wi−1<w+r≤wi or, equivalently,wi−1−r<w≤wi−r.
The new piecewise one-switch value functionV≪r can
therefore be represented as(w1 − r, d1γr, e1−Cr), (w2 −
r, d2γr, e2−Cr), . . . , (wℓ −r, dℓγr, eℓ−Cr). The second
step is to simplify the new piecewise one-switch value func-
tion. The piecewise one-switch value function was actually
shifted to the right since the rewardr is negative. All wealth
levels are non-positive and we can thus speed up subsequent
operations on the new piecewise one-switch value function
by keeping only the part to the left ofw = 0.

If we have several piecewise one-switch value functions
then their probabilistically weighted average is also a piece-
wise one-switch value function, which can be calculated in
two steps: The first step is to introduce additional break-
points to the representations of each piecewise one-switch
value function (without changing the functions themselves),
if needed, to make all of them have the same breakpoints.
The second step is to calculate the parameters of each seg-

ment of the new piecewise one-switch value function from
the corresponding segments of the given piecewise one-
switch value functions. For example, if we have two piece-
wise one-switch value functionsV ′ andV ′′ that are rep-
resented as(w1, d1, e1), (w2, d2, e2), . . . , (wℓ, dℓ, eℓ) and
(w1, d̂1, ê1), (w2, d̂2, ê2), . . . , (wℓ, d̂ℓ, êℓ), then their proba-
bilistically weighted averagepV ′+qV ′′ for p+q = 1 can be
represented as(w1, pd1+qd̂1, pe1+qê1), (w2, pd2+qd̂2, pe2+

qê2), . . . , (wℓ, pdℓ+qd̂ℓ, peℓ+qêℓ).
If we have several piecewise one-switch value functions

then their maximum is also a piecewise one-switch value
function, which can be calculated in three steps: The first
step is identical to the step given above for calculating
the probabilistically weighted average. The second step
is more complicated since we might have to introduce ad-
ditional breakpoints. For example, assume that we have
two piecewise one-switch value functionsV ′ andV ′′ that
are represented as(w1, d1, e1), (w2, d2, e2), . . . , (wℓ, dℓ, eℓ)

and(w1, d̂1, ê1), (w2, d̂2, ê2), . . . , (wℓ, d̂ℓ, êℓ). Consider the
segment of the new piecewise one-switch value function
over the intervalwi−1 < w ≤ wi. There are three
cases: In the first case, the first piecewise one-switch value
function dominates the other one over the whole segment
(V ′(wi−1) ≥ V ′′(wi−1) andV ′(wi) ≥ V ′′(wi)) and the
maximum of the two piecewise one-switch value functions
over the segment is thus the first one. In the second case, the
second piecewise one-switch value function dominates the
other one over the whole segment and the maximum of the
two piecewise one-switch value functions over the segment
is thus the second one. In the third case, neither piecewise
one-switch value function dominates the other one over the
whole segment and their two segments thus intersect. There
is only one intersection, and the intersection pointw satisfies

V ′(w) = V ′′(w)

Cw − diγw − ei = Cw − d̂iγw − êi

γw =
êi − ei

di − d̂i

and thus

w = logγ

êi − ei

di − d̂i

with wi−1 < w < wi. We add the intersection pointw
as a breakpoint. The maximum of the two piecewise one-
switch value functions is just the first one on one side of
the breakpoint and the second one on the other side of the
breakpoint. The third step is to merge adjacent segments of
the new piecewise one-switch value function, if possible, to
remove unnecessary breakpoints and speed up subsequent
operations on it.

Finiteness Property
We mentioned earlier that it is important that all optimal val-
ues be finite. The following theorem states a condition when
this is the case for one-switch utility functions.

Theorem 4. Consider any one-switch utility function
U(w) = Cw − Dγw with C,D > 0 and 0 < γ < 1.



Figure 2: Probabilistic Blocks-World Example

{WBBW,B}

−1/0.5

{WBB,BW}

−
1
/
0
.5

{WBB,B,W}

{BBB,B,W}

−
1
/
0
.5

−1/0.5

−2≤w≤−1

−
3
/
1
.0

w ≤ −3

−1/0.5

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−3/1.0

{BWB,B,W}

−
1
/
0
.5

−1/0.5

Figure 3: Optimal Policy for One-Switch Utility Function

The optimal valuesv∗U (s) for the one-switch utility function
are finite for all statess ∈ S if there exists a policy whose
valuesvπ

U ′ (s) for the concave exponential utility function
U ′(w) = −γw are finite for all statess ∈ S.

Proof. There existc′, d′ > 0 such that, for all wealth levels
w ≤ 0,

U(w) ≥ −c′ − d′γw = −c′ + d′U ′(w)

since the termd′γw dominatesU(w). Therefore, it holds for
the given policyπ and all statess ∈ S and horizonsT that

vπ
U,T (s) = Es,π[U(wT )]

≥ Es,π [−c′ − d′γwT ] = −c′ + d′vπ
U ′,T (s)

and thus also
vπ

U (s) = lim
T→∞

vπ
U,T (s)

≥ lim
T→∞

(

−c′ + d′vπ
U ′,T (s)

)

= −c′ + d′vπ
U ′(s).

It therefore holds that
v∗U (s) = sup

π′∈ΠHR
vπ′

U (s) ≥ vπ
U (s)

≥ −c′ + d′vπ
U ′(s) > −∞.

Example
We use a probabilistic blocks-world example to illustrate
risk-sensitive planning with one-switch utility functions
(Koenig & Simmons, 1994). The domain is a standard
block-world domain with five blocks that are either white
(W) or black (B). However, the move action succeeds only
with probability 0.5. When it fails, the block drops directly
onto the table. (Thus, moving a block to the table always
succeeds.) There is also a paint action that changes the
color of any one block and always succeeds. The move
action has a reward of−1, and the paint action has a re-
ward of−3. Figure 2 shows the initial configuration of the
blocks. The goal is to build a stack of three blocks: black
(at the bottom), white, and black (on top). The remaining
two blocks can be anywhere and can have any color. The
probabilistic blocks-world example has 162 states, which
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Figure 4: Optimal Policy for Linear Utility Function
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Figure 5: Optimal Policy for Exponential Utility Function

we describe as a set of stacks by listing the blocks in each
stack from bottom to top. For example, the initial configura-
tion is{WBBW,B}. We use functional value iteration to find
the augmented SD-optimal policy for the one-switch utility
functionU(w) = w − 0.5 × 0.6w. Functional value itera-
tion terminates quickly. Figure 3 depicts the augmented SD-
optimal policy and Figure 6 shows the optimal functional
value functions for the five non-goal states that are reach-
able from the initial configuration under the augmented SD-
optimal policy. Table 1 shows the breakpoints of the func-
tional value function and the values of the piecewise one-
switch value function at the breakpoints in parentheses fol-
lowed by thed ande values of the segments to their imme-
diate left.

We compare the augmented SD-optimal policy for the
one-switch utility functionU(w) = w − 0.5 × 0.6w against
two other policies that are easier to calculate. Figure 5
shows the optimal policy for the concave exponential util-
ity function U(w) = −0.6w, and Figure 4 shows the op-
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Figure 6: Optimal Functional Value Function



Table 1: Segments of the Value Functions from Figure 6
{WBB,BW} and{BW,WB,B}

( w
i , u

i) d
i

e
i

(0.00,−4.50) 2.50 2.00

{BBB,B,W}
( w

i , u
i) d

i
e

i

(0.00,−5.31) 2.32 3.00

{WBBW,B}
( w

i , u
i) d

i
e

i

( 0.00,−15.72) 11.47 4.25

(−0.38,−18.52) 11.26 4.50

(−1.38,−28.61) 11.02 5.00

{WBB,B,W}
( w

i , u
i) d

i
e

i

( 0.00,−15.72) 11.47 4.25

(−0.38,−18.52) 11.26 4.50

(−1.38,−28.61) 11.02 5.00

(−2.38,−44.43) 10.72 6.00

timal policy for the linear utility functionU(w) = w, that
is, the optimal risk-neutral policy. Both of these policies
can be calculated with standard versions of value iteration
since the optimal policies for linear and exponential utility
functions are known to be inΠSD (Bertsekas & Tsitsiklis,
1991; Patek, 2001). The three policies differ in the actions
that they execute in state{WBB,B,W}. The optimal pol-
icy for the concave exponential utility function always exe-
cutes a move action in state{WBB,B,W}, and the optimal
policy for the linear utility function always executes a paint
action in state{WBB,B,W}. The optimal policy for the one-
switch utility function, on the other hand, executes an ac-
tion in state{WBB,B,W} that depends on the wealth level.
It is a move action for wealth level−1 or −2 and a paint
action for wealth level−3 or smaller. The augmented SD-
optimal policy executes the same move action in the initial
configuration until it succeeds or has tried it three times. If it
succeeds, it then solves the problem by repeatedly executing
another move action until it succeeds, otherwise it solves the
problem by executing two different paint actions. The opti-
mal policies for the concave exponential and linear utility
functions are not optimal for decision makers with the given
one-switch utility function. If we evaluate the policies with
the one-switch utility function, then the expected utilityof
the initial configuration is−16.01 for the concave exponen-
tial utility function and−16.50 for the linear utility function,
whereas the maximal expected utility is−15.72 for the one-
switch utility function.

Conclusions
In this paper, we studied how to maximize the expected util-
ity of a Markov decision problem for a given one-switch
utility function. We first studied an approach that augments
the states of the Markov decision problem with the wealth
level. The properties of the resulting infinite Markov deci-
sion problem then allowed us to generalize the standard risk-
neutral version of value iteration from manipulating values
to manipulating functions that map wealth levels to values.
Large parts of this paper applied to arbitrary utility func-
tions, only the part about how to represent the functional
value functions used by the new version of value iteration
was specific to one-switch utility functions. We therefore
expect our ideas to apply to additional nonlinear utility func-
tions as well. In the meantime, we have been able to use
properties of one-switch utility functions to derive an exact
algorithm for them, similar to backward induction, but this
algorithm is specific to one-switch utility functions (Liu &
Koenig, 2005).
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