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Abstract

Teams of robots are more fault tolerant than single
robots, and auctions appear to be promising means for
coordinating them. In a recent paper at “Robotics: Sci-
ence and Systems 2005,” we analyzed a coordination
system based on sequential single-item auctions. We
showed that the coordination system is simple to im-
plement and computation and communication efficient,
and that the resulting sum of all travel distances in
known terrain is guaranteed to be only a constant fac-
tor away from optimum. In this paper, we put these re-
sults in perspective by comparing our coordination sys-
tem against those based on either parallel single-item
auctions or combinatorial auctions, demonstrating that
it combines the advantages of both.

Introduction
Consider a team of mobile robots that has to visit a num-
ber of given targets (locations) in initially partially unknown
terrain. Such exploration tasks are important for environ-
mental clean-up missions, space-exploration missions, and
search and rescue missions. It can be necessary or beneficial
to re-allocate targets to robots as the robots discover more
about the terrain, for example, when a robot discovers that
it is separated by a wall from its target. These exploration
tasks are special cases of multi-robot task allocation prob-
lems (Gerkey & Mataríc 2003) and similar to vehicle rout-
ing tasks in the presence of changing traffic jams (Fischer
et al. 1995) but without any hard constraints. To allocate
and re-allocate the targets among themselves, the robots can
use auctions where they sell and buy targets. The resulting
coordination systems are efficient in terms of the required
amount of communication since the robots compress their
information into numeric bids, and in terms of the required
amount of computation since the robots compute their bids
in parallel. Auctions have been studied in artificial intel-
ligence starting with the contract net protocol (Smith 1980)
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and have subsequently been discussed in the context of robot
tasks such as Robosoccer (Nairet al. 2002), box pushing
(Gerkey & Mataríc 2002), security (Kalra, Stentz, & Fergu-
son 2004) and mapping (Simmonset al. 2000). They have
also been used on actual robots (Gerkey & Matarić 2002;
Zlot et al. 2002; Thayeret al. 2000). Research in ar-
tificial intelligence on coordination systems based on auc-
tions has so far been of an experimental nature. Research in
economics has produced analytical results for the allocation
of goods with auctions, but has been primarily concerned
with issues such as strategic behavior, incentive compatibil-
ity, privacy and information. Such issues do not arise in co-
ordination systems based on auctions because one controls
both the auction mechanism and the preference structures of
the robots. Our research program is intended to close the
existing gap by developing a firm theoretical foundation for
coordination systems based on auctions. In a recent (highly
theoretical) paper at “Robotics: Science and Systems 2005”
(Lagoudakiset al. 2005), we analyzed a coordination sys-
tem based on sequential (or multi-round) single-item auc-
tions. We showed that the coordination system is simple to
implement and computation and communication efficient,
and that the resulting sum of all travel distances in known
terrain is guaranteed to be only a constant factor away from
optimum. To our knowledge these are the first analytical re-
sults about the team performance resulting from using auc-
tions for agent coordination. In this paper, we make these
results easily accessible and put them in perspective by com-
paring against coordination systems that are based on ei-
ther parallel single-item auctions or combinatorial auctions,
demonstrating that their advantages can be combined, which
should be of interest to researchers in multi-agent systems,
auctions and robotics.

Exploration Task and Approach
We study exploration tasks where a team of robots has to
visit a number of targets with known coordinates. Each tar-
get has to be visited by at least one robot but the robots
do not need to return to their initial locations. The robots



always know their current locations but might initially not
know where the obstacles are in the terrain. We study coor-
dination systems for these exploration tasks that fit the fol-
lowing framework: Every robot always follows a minimum-
cost path that visits all of the unvisited targets that are allo-
cated to it. Whenever a robot gains more information about
the terrain, it shares this information with the other robots.
If the remaining path of at least one robot is blocked, then
all robots put their unvisited targets up for auction. Each
robot then bids in light of the new terrain information. The
auction(s) close after a predetermined amount of time and
the winning robots get allocated the corresponding targets,
which they now own. Then, the cycle repeats. The same
auction scheme is used for the initial allocation of targetsto
robots. We focus on two design criteria for such coordina-
tion systems: First, they have to be computation and com-
munication efficient because they need to coordinate robots
in real time. Second, they have to result in a good team per-
formance. We assume in this paper that the team objective
is to minimize the sum of the path costs all of robots (for ex-
ample, the total energy consumed by all robots), where the
path cost of a robot is the sum of the edge costs along its
path, from its current location to the last target that it visits.
We have also studied other team objectives but they cannot
guarantee that the team performance is guaranteed to be only
a constant factor away from optimum.

Example Coordination Systems
The robots reallocate the unvisited targets among themselves
whenever they gain more information about the terrain, each
time myopically assuming that their knowledge will not
change in the future, that is, that they completely know the
terrain. In the remainder of this paper, we study one such cy-
cle of reallocations and thus assume that the terrain is com-
pletely known. In this context, we first discuss two common
coordination systems with very different properties.

Single-Round Combinatorial Auction

A coordination system based on one single-round combina-
torial auction works as follows: Every robot bids on bundles
(sets) of targets. It bids the smallest path cost needed to visit
all targets in the bundle (from its current location). A central
auctioneer determines and informs the winning robots. The
winners are determined so as to minimize the sum of the
bids of the winning bundles, with the constraint that each
robot wins at most one bundle and each target is contained
in exactly one bundle. The team performance of a coordi-
nation system based on combinatorial auctions is optimal
since it takes all positive and negative synergies between
targets into account. Two targets are said to exhibit posi-
tive (negative) synergy for a robot if their combined cost for
the robot is smaller (larger) than the sum of their individ-
ual costs. For example, there is a strong positive synergy
between two nearby targets because a robot can visit the
second target with a much smaller cost after it has reached
the first one than from its original location. On the other
hand, there is a strong negative synergy between two tar-
gets that are on opposite sides of the robot because the robot
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Figure 1: Exploration Task 1
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Figure 2: Exploration Task 2

can visit the second target only with a much larger cost af-
ter it has reached the first one than from its original loca-
tion. In practice, however, there are three problems when
implementing coordination systems based on combinatorial
auctions: First, robots cannot bid on all possible bundles of
targets because the number of possible bundles is exponen-
tial in the number of targets. Second, robots cannot calculate
their bids for a given bundle quickly since this requires them
to calculate the smallest path cost for visiting a set of targets,
which is NP-hard. Third, the winning robots cannot be de-
termined quickly because the winner determination problem
is either of exponential size or NP-hard. Researchers have
addressed these issues with approximation methods but the
resulting coordination systems are complex and no longer
able to guarantee optimal team performance.

Parallel Single-Item Auctions
A coordination system based on parallel single-item auc-
tions works as follows: Every robot bids on each target in
parallel. It bids the smallest path cost needed to visit the tar-
get. The robot that that currently owns a target determines
and informs the winning robot for the target, which is the
robot with the smallest bid on the target. Such a coordination
system is simple to implement and computation and commu-
nication efficient. Unfortunately, the team performance ofa
coordination system based on parallel single-item auctions
can be highly suboptimal since it does not take any syner-
gies between targets into account. In the example of Fig-
ure 1, for example, R1 denotes the location of a robot, and
T1, T2 and T3 denote the locations of the targets. (The grid
is shown only for the benefit of the reader since we assume
that the robots can move in arbitrary directions. However,
our observations continue to hold if the robots can move in
the 4 compass directions only.) Robot R1 bids 2 on target
T1, 2 on target T2, and 3 on target T3 and thus neither mod-
els the negative synergy between targets T1 and T2 nor the
positive synergy between targets T2 and T3. The following
proposition shows that the resulting team performance can
be arbitrarily bad.



1. for each robotr ∈ R

2. T (r) := ∅;
3. while (T 6= ∅)
4. for each robotr ∈ R

5. for each targett ∈ T

6. bid(r, t) := PC(r, T (r) ∪ {t}) − PC(r, T (r));
7. submit (r, t, bid(r, t));
8. (wr, wt) := arg minr∈R,t∈T bid(r, t);
9. T := T \ {wt};

10. T (wr) := T (wr) ∪ {wt};

Figure 3: Sequential Single-Item Auctions (1)

1. for each robotr ∈ R

2. T (r) := ∅;
3. for each targett ∈ T

4. bid(r, t) := PC(r, T (r) ∪ {t}) − PC(r, T (r));
5. bid(r) := mint∈T bid(r, t);
6. target(r) := arg mint∈T bid(r, t);
7. submit (r, target(r), bid(r));
8. while (T 6= ∅)
9. wr := arg minr∈R bid(r);

10. wt := target(wr);
11. T := T \ {wt};
12. T (wr) := T (r) ∪ {wt};
13. for each targett ∈ T

14. bid(wr, t) := PC(wr, T (wr) ∪ {t}) − PC(wr, T (wr));
15. for each robotr ∈ R with target(r) = wt
16. bid(r) := mint∈T bid(r, t);
17. target(r) := arg mint∈T bid(r, t);
18. submit (r, target(r), bid(r));

Figure 4: Sequential Single-Item Auctions (2)

Proposition 1 The sum of all path costs can be an arbitrar-
ily large factor away from optimum when using the coordi-
nation system based on parallel single-item auctions in com-
pletely known terrain.

Proof 1 In the example of Figure 2, the coordination system
based on parallel single-item auctions results in Ri→ Ti
(that is, robot Ri visits target Ti) for all1 ≤ i ≤ n with a sum
of all path costs ofxn, whereas R1→ T1→ . . . → Tn (that
is, robot R1 visits T1, T2,. . ., Tn in order) minimizes the sum
of all path costs with a sum of all path costs ofn + x − 1.
limx→∞ xn/(n + x − 1) = n for constantn, andn can be
made arbitrarily large.

Sequential Single-Item Auctions
We now discuss the coordination system for which we will
show that it combines the advantages of combinatorial auc-
tions and parallel single-item auctions. A coordination
system based on a series of single-item auctions, some-
times called sequential (or multi-round) single-item auc-
tions, works as follows: All targets are initially unallocated.
Every robot bids on each unallocated target. It bids the in-
crease in its smallest path cost that results from winning the
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Figure 5: Exploration Task 3

target that it bids on. The robot with the overall smallest bid
is allocated the corresponding target. Each robot simply de-
termines the winning robot quickly for itself by listening to
the bids and identifying the smallest bid. Then, each robot
re-bids on each unallocated target, and the cycle repeats un-
til all targets are owned by robots. Each robot then calcu-
lates the minimum-cost path for visiting all of its targets
and moves along this path. Similar ideas of using sequen-
tial single-item auctions or ways of calculating the bids have
been suggested before in the literature but never been for-
mally analyzed. To describe the coordination system more
formally, letR be the set of robots andT be the set of unallo-
cated targets (initially the set of all targets). LetT (r) be the
set of targets owned by robotr ∈ R (initially the empty set).
Let PC(r, T ′) be the smallest path cost for visiting all tar-
gets inT ′ from the current location of robotr. Assume that
robotr wins targett. Let T (r′) be the set of targets owned
by robot r′ ∈ R before robotr wins targett, andT ′(r′)
be the set of targets owned by robotr′ ∈ R afterwards.
Thus,T ′(r) = T (r)∪ {t} andT ′(r′) = T (r′) for all robots
r′ ∈ R with r 6= r′. Then, the sum of all smallest path costs
increases by

∑
r∈R

PC(r, T ′(r)) −
∑

r∈R
PC(r, T (r)) =

PC(r, T (r)∪{t})−PC(r, T (r)) = bid(r, t). Consequently,
a coordination system based on sequential single-item auc-
tions performs hill-climbing since, during each round, a tar-
get is allocated to a robot so that the sum of all smallest path
costs increases the least. Figure 3 shows a simple implemen-
tation where each robotr bidsbid(r, t) on each unallocated
targett. Figure 4 shows a more complicated implementation
where each robotr now bids on at most one of the unallo-
cated targets, namely a targett for which its bidbid(r, t) is
smallest. This target istarget(r), and robotr bids bid(r)
on it. This implementation reduces the number of bids but
results in the same allocation of targets to robots as the first
implementation (modulo tie breaking) since only the small-
est bid of each robot per round can possibly win a target.

A coordination system based on sequential single-item
auctions takes some synergies between targets into account
but not all of them. In the example of Figure 1, the robot
bids 2 on target T1 and 2 on target T2 and thus neither mod-
els the negative synergy between targets T1 and T2 nor the
positive synergy between targets T2 and T3. However, once
robot R1 has won a target, it takes into account the synergy
between this target and a target it bids on. For example, as-
sume that robot R1 wins target T2. It then bids 4 on target
T1 but only 1 on target T3. Thus, it now models the negative
synergy between targets T1 and T2 and the positive synergy
between targets T2 and T3. In the example of Figure 5, the
coordination system based on combinatorial auctions results



T1

T2T3

T4 R1

R2

Figure 6: Exploration Task 4
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Figure 7: Exploration Task 5

in R1→ T1→ T2 and R2→ T3→ T4 or, if ties are broken
differently, R1→ T4 → T3 and R2→ T2 → T1. In both
cases, the sum of all path costs is 11. The coordination sys-
tem based on parallel single-item auctions results in R1→
T1 → T4 and R2→ T2 → T3. The sum of all path costs is
20. The coordination system based on sequential single-item
auctions finds the same solution as the coordination system
based on combinatorial auctions and thus minimizes the sum
of all path costs. However, this is not guaranteed. The ex-
ploration task of Figure 6 is similar to the one of Figure 5
but the coordination system based on sequential single-item
auctions now finds the same solution as the coordination sys-
tems based on parallel single-item auctions and thus does not
minimize the sum of all path costs.

Analytical Evaluation
We now evaluate the coordination system based on sequen-
tial single-item auctions analytically in completely known
terrain under the reasonable assumptions that the costs of
moving from location to location are identical for all robots,
are symmetrical between locations, and satisfy the triangle
inequality.

Lower Bound
One cannot expect coordination systems based on sequential
single-item auctions to find optimal solutions of exploration
tasks since minimizing the sum of the path costs all of robots
is NP-hard for exploration tasks (Lagoudakiset al. 2004). In
the example of Figure 6, the resulting sum of all path costs is
a factor of 20/15 = 1.33 away from optimum. The following
proposition proves a factor that is an even stronger lower
bound.

Proposition 2 The sum of all path costs can be a factor of
1.5 away from optimum when using the coordination sys-
tem based on sequential single-item auctions in completely
known terrain.

Proof 2 In the example of Figure 7, the coordination system
based on sequential single-item auctions can result in R2

→ T1 → T2 with a sum of all path costs of 3, whereas R1
→ T1 and R2→ T2 minimizes the sum of all path costs
with a sum of all path costs of 2. Thus, the resulting sum of
all path costs is a factor of 3/2 = 1.5 away from optimum.
(Notice that we rely on a particular tie-breaking behavior
in this example but we can easily move the targets by small
amounts to guarantee that the robots follow the above paths
no matter how ties are broken.)

Upper Bound
It might appear that the coordination system based on se-
quential single-item auctions shares with the coordination
system based on combinatorial auctions that the robots can-
not calculate their bids quickly since this requires them to
calculate the smallest path cost for visiting a set of targets,
which is NP-hard. However, the cheapest insertion heuristic
can be used to calculate approximate bids quickly, as fol-
lows: The robot remembers the path for visiting all targets
that it owns already from its previous calculations. It then
calculates the path for visiting the target that it bids on plus
all targets that it owns already, as follows: It inserts the tar-
get that it bids on into all positions on the path for visiting
all targets that it owns already, calculates the costs of the
resulting paths, and chooses the minimum-cost path. The
following theorem is the main analytical result. Bounds for
other team objectives can be obtained by similar arguments
(Lagoudakiset al. 2005).

Theorem 1 The sum of all path costs is at most a factor
of 2 away from optimum when using the coordination sys-
tem based on sequential single-item auctions in completely
known terrain. This result continues to hold if the robots
do not calculate the smallest path costs but use the cheap-
est insertion heuristic to approximate them, resulting in a
polynomial-time auction mechanism.

Proof Sketch 1 If the sequential single-item auction allo-
cates targett to some robot, then the winning bid is at most
twice the cost of the cheapest edgeê between the set of all
previously allocated targets and the set of all yet unallocated
targets. This inequality follows from the triangle inequality
and cheapest insertion assumption. Consider a hypothetical
run of Prim’s greedy algorithm, starting with the locations
of all robots, that is forced to allocate targets in the same or-
der as the auction by reducing the cost of the cheapest edge
between the set of of all previously allocated targets and tar-
gett to the cost of edgêe. Combine the optimality property
of Prim’s algorithm, the inequality above, and monotonic-
ity and triangle inequality properties, including the bounds
from the minimum spanning tree to the traveling salesper-
son problem, to obtain the result. (Lagoudakiset al. 2005)
contains a formal and complete proof.

The coordination system based on sequential single-item
auctions (SSA) combines the advantages of coordination
systems based on either combinatorial auctions (CA) or par-
allel single-item auctions (PSA), as summarized in Figure 8:
The implementation of the coordination system based on se-
quential single-item auctions in Figure 4 runs in polynomial
time if the cheapest insertion heuristic is used to calculate



System Runtime Number of Bids Sum of Path Costs
Minimal Sum of Path Costs

CA exponential exponential 1

SSA polynomial |T ||R| 1.5–2

PSA polynomial |T ||R| unbounded

Figure 8: Analytical Worst-Case Results

the bids and results in no more (and likely fewer) bids than a
coordination system based on parallel single-item auctions,
namely at most|T |×|R| bids. It is much easier to implement
than the coordination system based on combinatorial auc-
tions since the central auctioneer receives exponentiallyless
information and does not need to solve an NP-hard problem;
and it provides much better performance guarantees than the
coordination system based on parallel single-item auctions.
We have also performed experiments that show that the team
performance of the coordination system based on sequen-
tial single-item auctions is empirically close to optimal (and
thus almost as good as what a coordination system based
on combinatorial auctions should ideally achieve) and much
better than that of the coordination system based on parallel
single-item auctions (Toveyet al. 2005).
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