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Abstract

Teams of robots are more fault tolerant than single
robots, and auctions appear to be promising means for
coordinating them. In a recent paper at “Robotics: Sci-
ence and Systems 2005,” we analyzed a coordination
system based on sequential single-item auctions. We

and have subsequently been discussed in the context of robot
tasks such as Robosoccer (Nairal. 2002), box pushing
(Gerkey & Matare 2002), security (Kalra, Stentz, & Fergu-
son 2004) and mapping (Simmoasal. 2000). They have
also been used on actual robots (Gerkey & M&t@002;

Zlot et al. 2002; Thayeret al. 2000). Research in ar-

showed that the coordination system is simple to im-
plement and computation and communication efficient,
and that the resulting sum of all travel distances in
known terrain is guaranteed to be only a constant fac-
tor away from optimum. In this paper, we put these re-
sults in perspective by comparing our coordination sys-
tem against those based on either parallel single-item
auctions or combinatorial auctions, demonstrating that

tificial intelligence on coordination systems based on auc-
tions has so far been of an experimental nature. Research in
economics has produced analytical results for the allooati

of goods with auctions, but has been primarily concerned
with issues such as strategic behavior, incentive comipatib
ity, privacy and information. Such issues do not arise in co-
ordination systems based on auctions because one controls

both the auction mechanism and the preference structures of
the robots. Our research program is intended to close the
existing gap by developing a firm theoretical foundation for
coordination systems based on auctions. In a recent (highly
Consider a team of mobile robots that has to visit a num- theoretical) paper at “Robotics: Science and Systems 2005”
ber of given targets (locations) in initially partially uméwn (Lagoudakiset al. 2005), we analyzed a coordination sys-
terrain. Such exploration tasks are important for environ- tem based on sequential (or multi-round) single-item auc-
mental clean-up missions, space-exploration missiors, an tions. We showed that the coordination system is simple to
search and rescue missions. It can be necessary or beneficialmplement and computation and communication efficient,
to re-allocate targets to robots as the robots discover more and that the resulting sum of all travel distances in known
about the terrain, for example, when a robot discovers that terrain is guaranteed to be only a constant factor away from
it is separated by a wall from its target. These exploration optimum. To our knowledge these are the first analytical re-
tasks are special cases of multi-robot task allocation-prob sults about the team performance resulting from using auc-
lems (Gerkey & Matad 2003) and similar to vehicle rout-  tions for agent coordination. In this paper, we make these
ing tasks in the presence of changing traffic jams (Fischer results easily accessible and put them in perspective by com
et al. 1995) but without any hard constraints. To allocate paring against coordination systems that are based on ei-
and re-allocate the targets among themselves, the rolots ca ther parallel single-item auctions or combinatorial aorsi,

use auctions where they sell and buy targets. The resulting demonstrating that their advantages can be combined, which
coordination systems are efficient in terms of the required should be of interest to researchers in multi-agent systems
amount of communication since the robots compress their auctions and robotics.

information into numeric bids, and in terms of the required
amount of computation since the robots compute their bids
in parallel. Auctions have been studied in artificial intel-
ligence starting with the contract net protocol (Smith 1980

it combines the advantages of both.

I ntroduction

Exploration Task and Approach

We study exploration tasks where a team of robots has to
visit a number of targets with known coordinates. Each tar-
get has to be visited by at least one robot but the robots
do not need to return to their initial locations. The robots

Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.



always know their current locations but might initially not
know where the obstacles are in the terrain. We study coor-
dination systems for these exploration tasks that fit the fol
lowing framework: Every robot always follows a minimum- Figure 1: Exploration Task 1
cost path that visits all of the unvisited targets that ale- al
cated to it. Whenever a robot gains more information about
the terrain, it shares this information with the other rabot | T1 | T2 | T3 | T4 | T5 | .. | Tn
If the remaining path of at least one robot is blocked, then

all robots put their unvisited targets up for auction. Each

robot then bids in light of the new terrain information. The
auction(s) close after a predetermined amount of time and x
the winning robots get allocated the corresponding targets

which they now own. Then, the cycle repeats. The same

auction scheme is used for the initial allocation of targets

robots. We focus on two design criteria for such coordina- LIRL|R2|R3| RA|R5| . | RN
tion systems: First, they have to be computation and com-
munication efficient because they need to coordinate robots . )
in real time. Second, they have to result in a good team per- Figure 2: Exploration Task 2

formance. We assume in this paper that the team objective

is to minimize the sum of the path costs all of robots (for ex- o .

ample, the total energy consumed by all robots), where the can visit the second target only with a much larger cost af-
path cost of a robot is the sum of the edge costs along its ter it has rea(_:hed the first one than from its original loca-
path, from its current location to the last target that iftgis ~ tion. In practice, however, there are three problems when
We have also studied other team objectives but they cannot implementing coordination systems based on combinatorial

guarantee that the team performance is guaranteed to be onlyauctions: First, robots cannot bid on all possible bundfes o
a constant factor away from optimum. targets because the number of possible bundles is exponen-

tial in the number of targets. Second, robots cannot cakeula
: : their bids for a given bundle quickly since this requirestthe

Example Coordination Systems to calculate the smallest path cost for visiting a set ofatmg
The robots reallocate the unvisited targets among themselv  which is NP-hard. Third, the winning robots cannot be de-
whenever they gain more information about the terrain, each termined quickly because the winner determination problem
time myopically assuming that their knowledge will not s either of exponential size or NP-hard. Researchers have
change in the future, that is, that they completely know the addressed these issues with approximation methods but the
terrain. In the remainder of this paper, we study one such cy- resulting coordination systems are complex and no longer
cle of reallocations and thus assume that the terrain is com- able to guarantee optimal team performance.
pletely known. In this context, we first discuss two common
coordination systems with very different properties. Parallel Single-Item Auctions

Tl R1 T2 | T3

. . . . A coordination system based on parallel single-item auc-
Single-Round Combinatorial Auction tions works as follows: Every robot bids on each target in
A coordination system based on one single-round combina- parallel. It bids the smallest path cost needed to visitdhe t
torial auction works as follows: Every robot bids on bundles get. The robot that that currently owns a target determines
(sets) of targets. It bids the smallest path cost neededito vi  and informs the winning robot for the target, which is the
all targets in the bundle (from its current location). A caht robot with the smallest bid on the target. Such a coordinatio
auctioneer determines and informs the winning robots. The system is simple to implement and computation and commu-
winners are determined so as to minimize the sum of the nication efficient. Unfortunately, the team performance of
bids of the winning bundles, with the constraint that each coordination system based on parallel single-item austion
robot wins at most one bundle and each target is contained can be highly suboptimal since it does not take any syner-
in exactly one bundle. The team performance of a coordi- gies between targets into account. In the example of Fig-
nation system based on combinatorial auctions is optimal ure 1, for example, R1 denotes the location of a robot, and
since it takes all positive and negative synergies between T1, T2 and T3 denote the locations of the targets. (The grid
targets into account. Two targets are said to exhibit posi- is shown only for the benefit of the reader since we assume
tive (negative) synergy for a robot if their combined cost fo  that the robots can move in arbitrary directions. However,
the robot is smaller (larger) than the sum of their individ- our observations continue to hold if the robots can move in
ual costs. For example, there is a strong positive synergy the 4 compass directions only.) Robot R1 bids 2 on target
between two nearby targets because a robot can visit the T1, 2 on target T2, and 3 on target T3 and thus neither mod-
second target with a much smaller cost after it has reached els the negative synergy between targets T1 and T2 nor the
the first one than from its original location. On the other positive synergy between targets T2 and T3. The following
hand, there is a strong negative synergy between two tar- proposition shows that the resulting team performance can
gets that are on opposite sides of the robot because the robotbe arbitrarily bad.



1. foreachrobot € R

2. T(r):=0;

3. while (' # 0)

4 for each robot € R

5 foreachtargete T

6. bid(r, t) := PC(r,T'(r) U{t}) — PC(r,T(r));
7 submit ¢, ¢, bid(r, t));

8 (wr,wt) := arg minrer +er bid(r, t);

9 T:=T\ {wt};

0 T(wr) := T (wr) U {wt};

Figure 3: Sequential Single-ltem Auctions (1)

1. for eachrobot € R
2 T(r):=0;
3 foreachtargete T
4. bid(r, t) := PC(r,T'(r) U {t}) — PC(r, T'(r));
5. bid(r) := min:er bid(r, t);
6 target(r) := arg minser bid(r, t);
7 submit ¢, target(r), bid(r));
8. while (I # 0)
9. Wr := arg min,c r bid(r);
10. wt := target(wr);
11, T:=T\ {wt};
12. T(wr) :=T(r) U {wt};
13. for each targete T
bid(wr, t) := PC(wr, T'(wr) U {t}) — PC(wr, T'(wr));
15. for each robot € R with target(r) = wt

16. bid(r) := minser bid(r, t);
17. target(r) := arg min;cr bid(r, t);
18. submit ¢, target(r), bid(r));

Figure 4: Sequential Single-ltem Auctions (2)

Proposition 1 The sum of all path costs can be an arbitrar-

ily large factor away from optimum when using the coordi-
nation system based on parallel single-item auctions in-com
pletely known terrain.

Proof 1 Inthe example of Figure 2, the coordination system
based on parallel single-item auctions results in-RiTi
(that s, robot Ri visits target Ti) for all < i < nwithasum

of all path costs okn, whereas R1» T1— ... — Tn (that

is, robot R1 visits T1, T2,.., Tn in order) minimizes the sum
of all path costs with a sum of all path costsiof- 2 — 1.
lim,_, 2n/(n + « — 1) = n for constantr, andn can be
made arbitrarily large. m

Sequential Single-1tem Auctions
We now discuss the coordination system for which we will

T4 R1 T1

T3 R2 T2

Figure 5: Exploration Task 3

target that it bids on. The robot with the overall smallest bi

is allocated the corresponding target. Each robot simply de
termines the winning robot quickly for itself by listening t
the bids and identifying the smallest bid. Then, each robot
re-bids on each unallocated target, and the cycle repeats un
til all targets are owned by robots. Each robot then calcu-
lates the minimum-cost path for visiting all of its targets
and moves along this path. Similar ideas of using sequen-
tial single-item auctions or ways of calculating the bidgéha
been suggested before in the literature but never been for-
mally analyzed. To describe the coordination system more
formally, let R be the set of robots arilibe the set of unallo-
cated targets (initially the set of all targets). Z&t-) be the

set of targets owned by robotc R (initially the empty set).

Let PC(r,T") be the smallest path cost for visiting all tar-
gets inT” from the current location of robat Assume that
robotr wins targett. Let T'(r") be the set of targets owned
by robotr’ € R before robotr wins targett, andT”(r’)

be the set of targets owned by robdt € R afterwards.
Thus,T’(r) = T(r) U {t} andT’ (') = T'(+'") for all robots

r’ € Rwith r # r’. Then, the sum of all smallest path costs
increases by, PC(r,T'(r)) — 3.,z PC(r, T(r)) =
PC(r, T(r)u{t})—PC(r,T(r)) = bid(r, t). Consequently,

a coordination system based on sequential single-item auc-
tions performs hill-climbing since, during each round, 1a ta
getis allocated to a robot so that the sum of all smallest path
costs increases the least. Figure 3 shows a simple implemen-
tation where each robetbidsbid(r, ¢) on each unallocated
targett. Figure 4 shows a more complicated implementation
where each robat now bids on at most one of the unallo-
cated targets, namely a targefor which its bidbid(r, t) is
smallest. This target isarget(r), and robotr bids bid(r)

on it. This implementation reduces the number of bids but
results in the same allocation of targets to robots as the firs
implementation (modulo tie breaking) since only the small-
est bid of each robot per round can possibly win a target.

A coordination system based on sequential single-item
auctions takes some synergies between targets into account
but not all of them. In the example of Figure 1, the robot
bids 2 on target T1 and 2 on target T2 and thus neither mod-
els the negative synergy between targets T1 and T2 nor the
positive synergy between targets T2 and T3. However, once

show that it combines the advantages of combinatorial auc- robot R1 has won a target, it takes into account the synergy

tions and parallel single-item auctions. A coordination

between this target and a target it bids on. For example, as-

system based on a series of single-item auctions, some-sume that robot R1 wins target T2. It then bids 4 on target

times called sequential (or multi-round) single-item auc-
tions, works as follows: All targets are initially unallded.

Every robot bids on each unallocated target. It bids the in-

crease in its smallest path cost that results from winnieg th

T1 but only 1 on target T3. Thus, it now models the negative
synergy between targets T1 and T2 and the positive synergy
between targets T2 and T3. In the example of Figure 5, the
coordination system based on combinatorial auctionstsesul



T4 R1 T1

T3 R2 T2

Figure 6: Exploration Task 4

R1 T1 R2 T2

Figure 7: Exploration Task 5

inR1— T1— T2 and R2— T3 — T4 or, if ties are broken
differently, R1— T4 — T3 and R2— T2 — T1. In both
cases, the sum of all path costs is 11. The coordination sys-
tem based on parallel single-item auctions results in-R1
T1l— T4 and R2— T2 — T3. The sum of all path costs is
20. The coordination system based on sequential singte-ite
auctions finds the same solution as the coordination system
based on combinatorial auctions and thus minimizes the sum
of all path costs. However, this is not guaranteed. The ex-
ploration task of Figure 6 is similar to the one of Figure 5
but the coordination system based on sequential singte-ite
auctions now finds the same solution as the coordination sys-
tems based on parallel single-item auctions and thus daes no
minimize the sum of all path costs.

Analytical Evaluation

We now evaluate the coordination system based on sequen-

tial single-item auctions analytically in completely know

terrain under the reasonable assumptions that the costs of

moving from location to location are identical for all robpt
are symmetrical between locations, and satisfy the treangl
inequality.

L ower Bound

— T1 — T2 with a sum of all path costs of 3, whereas R1
— T1 and R2— T2 minimizes the sum of all path costs
with a sum of all path costs of 2. Thus, the resulting sum of
all path costs is a factor of 3/2 = 1.5 away from optimum.
(Notice that we rely on a particular tie-breaking behavior
in this example but we can easily move the targets by small
amounts to guarantee that the robots follow the above paths
no matter how ties are broken.j

Upper Bound

It might appear that the coordination system based on se-
guential single-item auctions shares with the coordimatio
system based on combinatorial auctions that the robots can-
not calculate their bids quickly since this requires them to
calculate the smallest path cost for visiting a set of target
which is NP-hard. However, the cheapest insertion hearisti
can be used to calculate approximate bids quickly, as fol-
lows: The robot remembers the path for visiting all targets
that it owns already from its previous calculations. It then
calculates the path for visiting the target that it bids amspl

all targets that it owns already, as follows: It inserts tue t
get that it bids on into all positions on the path for visiting
all targets that it owns already, calculates the costs of the
resulting paths, and chooses the minimum-cost path. The
following theorem is the main analytical result. Bounds for
other team objectives can be obtained by similar arguments
(Lagoudakiset al. 2005).

Theorem 1 The sum of all path costs is at most a factor
of 2 away from optimum when using the coordination sys-
tem based on sequential single-item auctions in completely
known terrain. This result continues to hold if the robots
do not calculate the smallest path costs but use the cheap-
est insertion heuristic to approximate them, resulting in a
polynomial-time auction mechanism.

Proof Sketch 1 If the sequential single-item auction allo-
cates target to some robot, then the winning bid is at most
twice the cost of the cheapest edgbetween the set of all
previously allocated targets and the set of all yet unalteda
targets. This inequality follows from the triangle inegtal

and cheapest insertion assumption. Consider a hypothetica
run of Prim’s greedy algorithm, starting with the locations
of all robots, that is forced to allocate targets in the same o
der as the auction by reducing the cost of the cheapest edge

One cannot expect coordination systems based on sequentiabetween the set of of all previously allocated targets and ta

single-item auctions to find optimal solutions of explovati
tasks since minimizing the sum of the path costs all of robots
is NP-hard for exploration tasks (Lagoudaktsal. 2004). In

the example of Figure 6, the resulting sum of all path costs is
a factor of 20/15 = 1.33 away from optimum. The following
proposition proves a factor that is an even stronger lower
bound.

Proposition 2 The sum of all path costs can be a factor of
1.5 away from optimum when using the coordination sys-
tem based on sequential single-item auctions in completely
known terrain.

Proof 2 In the example of Figure 7, the coordination system
based on sequential single-item auctions can result in R2

gett to the cost of edgé. Combine the optimality property
of Prim’s algorithm, the inequality above, and monotonic-
ity and triangle inequality properties, including the balm
from the minimum spanning tree to the traveling salesper-
son problem, to obtain the result. (Lagouda&tsal. 2005)
contains a formal and complete prool

The coordination system based on sequential single-item
auctions (SSA) combines the advantages of coordination
systems based on either combinatorial auctions (CA) or par-
allel single-item auctions (PSA), as summarized in Figure 8
The implementation of the coordination system based on se-
guential single-item auctions in Figure 4 runs in polyndmia
time if the cheapest insertion heuristic is used to caleulat



Sum of Path Costs

System | Runtime Number of Bids i AT sim of Path Costs Proceedings of the International Conference on Robotics:

CA exponential  exponential 1 Science and Systen8343—350.

E:ﬁ Sg:i:gzg: };Hg} unii;zded Nair, R.; Ito, T.; Tambe, M.; and Marsella, S. 2002. Task
allocation in the rescue simulation domain: A short note. In
Soccer World Cup M_ecture Notes in Computer Science.
Springer.

the bids and results in no more (and likely fewer) bidsthana Simmons, R.; Apfelbaum, D.; Burgard, W.; Fox, D.;
coordination system based on parallel single-item austion  Moors, M.; Thrun, S.; and Younes, H. 2000. Coordina-
namely at mositT’| x | R| bids. Itis much easier to implement tion for multi-robot exploration and mapping. Rroceed-
than the coordination system based on combinatorial auc- ings of the National Conference on Atrtificial Intelligence
tions since the central auctioneer receives exponentesly 852-858.

information and does not need to solve an NP-hard problem;  smijth, R. 1980. The contract net protocol: high level
and it provides much better performance guarantees than the communication and control in a distributed problem solver.
coordination system based on parallel single-item austion  |EEE Transactions on Compute@29:1104-1113.

We have also performed experiments that show that the team Thayer, S.; Digney, B.: Dias, M.: Stentz, A.; Nabbe, B.;
performance of the coordination system based on sequen- and Hebert, M. 2000. Distributed robotic mapping of
tial single-item auctions is empirically close to optimand extreme en\,/iro.nments.. IRroceedings of SPIE: Mobile

thus almost as good as what a coordination system based ;
) X . ; . Robots XV and Telemanipulator and Telepresence Tech-
on combinatorial auctions should ideally achieve) and much nologies V| volume 4195, 84-95.

better than that of the coordination system based on phralle ] ] )
single-item auctions (Tovest al. 2005). Tovey, C.; Lagoudakis, M.; Jain, S.; and Koenig., S. 2005.

The generation of bidding rules for auction-based robot co-
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