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Abstract

We study how to find plans that maximize the expected total
utility for a given MDP, a planning objective that is important
for decision making in high-stakes domains. The optimal ac-
tions can now depend on the total reward that has been accu-
mulated so far in addition to the current state. We extend our
previous work on functional value iteration from one-switch
utility functions to all utility functions that can be approxi-
mated with piecewise linear utility functions (with and with-
out exponential tails) by using functional value iterationto
find a plan that maximizes the expected total utility for the
approximate utility function. Functional value iterationdoes
not maintain a value for every state but a value function that
maps the total reward that has been accumulated so far into a
value. We describe how functional value iteration represents
these value functions in finite form, how it performs dynamic
programming by manipulating these representations and what
kinds of approximation guarantees it is able to make. We also
apply it to a probabilistic blocksworld problem, a standard
test domain for decision-theoretic planners.

Introduction
Decision-theoretic planning researchers believe that Markov
decision process models (MDPs) provide a good foundation
for decision-theoretic planning (Boutilier, Dean, & Hanks,
1999; Blythe, 1999). Typically, they find plans for MDPs
that maximize the expected total reward. For this planning
objective, the optimal actions depend on the current state
only. However, decision-theoretic planning researchers also
believe that it is sometimes important to maximize the ex-
pected utility of the total reward (= expected total utility) for
a given monotonically nondecreasing utility function. For
example, utility theory suggests that human decision makers
maximize the expected total utility in single-instance high-
stake planning situations, where their utility functions char-
acterize their attitude toward risk (von Neumann & Mor-
genstern, 1944; Pratt, 1964). Examples of such situations
include environmental crisis situations (Cohenet al., 1989;
Blythe, 1998), business decisions situations (Murthyet al.,
1999; Goodwin, Akkiraju, & Wu, 2002), and planning sit-
uations in space (Pellet al., 1998; Zilbersteinet al., 2002),
all of which are currently solved without taking risk atti-
tudes into consideration. The question then arises how to
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find plans for MDPs that maximize the expected total util-
ity. This is a challenge because the optimal actions can then
depend on the total reward that has been accumulated so far
(= the current wealth level) in addition to the current state
(Liu & Koenig, 2005b). We showed in previous publica-
tions that, in principle, a version of value iteration can be
used to find a plan that maximizes the expected total utility
for an arbitrary utility function if it maps every pair of state
and wealth level into a value (Liu & Koenig, 2005b). We
then developed such a version of value iteration, functional
value iteration, that maintains a value function for every state
that maps wealth levels into values. Functional value itera-
tion is practical only if there exist finite representationsof
these value functions. We applied functional value iteration
to one-switch utility functions, for which the value functions
are piecewise one-switch and thus can be represented in fi-
nite form (Liu & Koenig, 2005b). In this paper, we develop
a more general approach that approximates a large class of
utility functions with piecewise linear utility functions(with
and without exponential tails). It then uses functional value
iteration to find a plan that maximizes the expected total util-
ity for the approximate utility function. We describe how
functional value iteration can represent the value functions
in finite form, how it performs dynamic programming by
manipulating these representations and what kinds of ap-
proximation guarantees it is able to make. We then apply it
to a probabilistic blocksworld problem to demonstrate how
the plan that maximizes the expected total utility depends on
the utility function.

Decision-Theoretic Planning
We perform decision-theoretic planning on MDPs with ac-
tion costs and want to find a plan that maximizes the ex-
pected total utility until plan execution stops, which only
happens when a goal state has been reached. We now define
our MDPs and this planning objective more formally.

Our MDPs consist of a finite nonempty set of statesS,
a finite non-empty set of goal statesG ⊆ S, and a finite
nonempty set of actionsA for each nongoal states ∈ S \
G. An agent is given a time horizon1 ≤ T ≤ ∞. The
initial time step ist = 0. Assume that the agent is in state
st ∈ S at time stept. If t = T or st is a goal state, then
the agent stops executing actions, which implies that it no
longer receives rewards in the future. Otherwise, it executes



an actionat ∈ A of its choice, receives a strictly negative
finite rewardr(st, at, st+1) < 0 in return, and transitions
with probabilityP (st+1|st, at) to statest+1 ∈ S, where the
process repeats at time stept + 1.

We denote the set of all possible behaviors of the agent (=
plans; more precisely: randomized, history-dependent poli-
cies) byΠ and now describe the objective of the agent when
choosing a plan. The agent is given a monotonically nonde-
creasing utility functionU . Assume for now that the time
horizonT is finite. The wealth level of the agent at time
stept is wt =

∑t−1
τ=0 r(sτ , aτ , sτ+1), the total reward that

it has accumulated before time stept. Its wealth level thus
starts at zero and then decreases ast increases. If the agent
starts in states0 ∈ S and follows planπ ∈ Π, then the
expected utility of its final wealth (= expected total util-
ity) is vπ

U,T (s0) = Es0,π[U(wT )], where the expectation
is taken over all sequences of states and actions from time
step 0 to time stepT that can result with positive probabil-
ity from executing planπ in start states0. From now on,
we assume that the time horizonT is infinite. If the agent
starts in states0 ∈ S and follows planπ ∈ Π, then the ex-
pected total utility isvπ

U (s0) = limT→∞ vπ
U,T (s0). If the

agent starts in states0 ∈ S and follows a plan that maxi-
mizes its expected total utility, then its expected total utility
is v∗U (s0) = supπ∈Π vπ

U (s0). The objective of the agent is
to find a plan that maximizes its expected total utility for
every start state (= optimal plan), that is, a planπ∗ ∈ Π with
vπ∗

U (s0) = v∗U (s0) for all statess0 ∈ S. In this paper, we
assume that the optimal valuesv∗U (s0) are finite for all states
s0 ∈ S because otherwise the concept of an optimal plan is
not well-defined (Liu & Koenig, 2005a).

Functional Value Iteration

In (Liu & Koenig, 2005b), we investigated one way of find-
ing plans that maximize the expected total utility for a given
MDP. We transformed the given MDP into an “augmented”
MDP whose states are pairs(s, w), wheres is a state of the
given MDP andw is a wealth level that can be attained when
executing actions in the given MDP. A plan that maximizes
the expected total reward for the augmented MDP also max-
imizes the expected total utility for the given MDP. It is suf-
ficient to consider stationary deterministic policies to maxi-
mize the expected total reward for the augmented MDP, re-
sulting in a mapping from states and wealth levels to actions.
In principle, one could use value iteration on the augmented
MDP to find a plan that maximizes the expected total reward
for the augmented MDP (Puterman, 1994) but this is not
practical since the augmented MDP has an infinite number
of states. Therefore, we developed a version of value itera-
tion, called functional value iteration, that maintains a value
function for each state of the given MDP (Liu & Koenig,
2005b). The value functionsVU (s) map real-valued wealth
levelsw to real valuesVU (s)(w). (Our MDPs have strictly
negative rewards, and all wealth levels are therefore non-
positive. We therefore use value functions that map non-
positive wealth levels to real values.) The value functions
V t

U (s) at iterationt of functional value iteration are defined

by the system of equations
V 0

U (s)(w) = U(w) s ∈ S

V t+1
U (s)(w) =

8

>

<

>

:

U(w)

max
a∈A

X

s′∈S

P (s′|s, a)·

V t
U (s′)(w + r(s, a, s′))

s ∈ G

s /∈ G

for all w ∈ R
−
0 (the nonpositive real values) andt ∈ N0.

The valuesV t
U (s)(w) converge ast increases to the opti-

mal valuesV ∗
U (s)(w), which are the largest expected total

utilities that the agent can obtain if it starts in states with
wealth levelw, there foreV ∗

U (s)(0) = v∗U (s). The agent
then maximizes its expected total utility for every state by
executing actionarg maxa∈A

∑

s′∈S P (s′|s, a)V ∗
U (s′)(w+

r(s, a, s′)) if its current state is nongoal states and its cur-
rent wealth level isw. (It stops if its current state is a goal
state.) Additional details and proofs are given in (Liu &
Koenig, 2005b).

Classes of Utility Functions
So far, functional value iteration has only been applied to re-
stricted classes of utility functions, namely one-switch util-
ity functions (Liu & Koenig, 2005b). We now develop a
more general approach that approximates a large class of
utility functions with piecewise linear utility functions(with
and without exponential tails) and then uses functional value
iteration to find a plan that maximizes the expected total util-
ity for the approximate utility function. Note that such util-
ity functions do not include one-switch utility functions.We
assume for convenience of exposition that all utility func-
tions are continuous. Our discussion, however, applies also
to utility functions with a finite number of discontinuities
with straightforward extensions.

Functional value iteration needs to calculate
maxa∈A

P

s′∈S
P (s′|s, a)V t

U(s′)(w + r(s, a, s′)). Thus,
it needs to shift a value functionV t

U (s′)(w) by r(s, a, s′) to
calculateVU (s′)(w + r(s, a, s′)). It needs to calculate the
weighted average

P

s′∈S
P (s′|s, a)V t

U (s′)(w + r(s, a, s′)) of
several value functionsV t

U (s′)(w + r(s, a, s′)). Finally, it
needs to calculate the maximum of several value functions
P

s′∈S
P (s′|s, a)V t

U(s′)(w + r(s, a, s′)). We restrict the class
of utility functions to piecewise linear utility functions(with
and without exponential tails) to allow functional value
iteration to perform these three operations efficiently.1 We
then use these utility functions to approximate a large class
of utility functions. A piecewise linear functionf without
an exponential tail (PWL function) can be represented as an
ordered list of triples(wi, ki, bi) for i = 1, . . . , n with the
following properties:−∞ = w0 < w1 < · · · < wn = 0
and f(w) = kiw + bi for all w ∈ (wi−1, wi] and
i = 1, . . . , n. The valueswi are called breakpoints. A PWL
utility function results in PWL value functions, as we show
below. A piecewise linear functionf with an exponential
tail differs from a PWL function only for allw ∈ (w0, w1]
wheref(w) = −c1γw + b1 for given constantsc1 > 0
and0 < γ < 1. A piecewise linear utility function with an

1We use operator and function overloading to implement these
three operations in C++. The code of functional value iteration then
is identical to the code of (regular) value iteration.



exponential tail results in so-called piecewise linex value
functions, as we show below. A piecewise linex function
(PWLinex function)f can be represented as an ordered
list of quadruples(wi, ki, ci, bi) for i = 1, . . . , n with the
following properties:−∞ = w0 < w1 < · · · < wn = 0
andf(w) = kiw − ciγw + bi for all w ∈ (wi−1, wi] and
i = 1, . . . , n.

Shift Functional value iteration needs to shift a value func-
tion V (w) by a given constantr to calculate the value func-
tion V (w + r). Assume that a PWL value functionV (w) is
represented as(wi, ki, bi) for i = 1, . . . , n. It holds that
V (w + r) = ki(w + r) + bi = kiw + (kir + bi) for
w+r ∈ (wi−1, wi] or, equivalently,w ∈ (wi−1−r, wi−r].
The new value functionV (w + r) is again PWL and can be
represented as(wi − r, ki, kir + bi) for i = 1, . . . , n. Sim-
ilarly, assume that a PWLinex value functionV (w) is rep-
resented as(wi, ki, ci, bi) for i = 1, . . . , n. Then, the value
functionV (w+r) is again PWLinex and can be represented
as(wi−r, ki, ciγr, kir+bi) for i = 1, . . . , n. In both cases,
one simplifies the new value function (and speeds up future
operations on it) by keeping only the part forw ≤ 0.

Weighted Average Functional value iteration needs to cal-
culate the weighted average of several value functions. As-
sume without loss of generality that there are two PWL
value functionsV and V̂ . One first introduces additional
breakpoints, if needed, without changing the value func-
tions to ensure that both value functions have the same
breakpoints. Assume that the two resulting PWL value
functions are represented as(wi, ki, bi) and(wi, k̂i, b̂i) for
i = 1, . . . , n. Then, their weighted averagepV +qV̂ is again
PWL and can be represented as(wi, pki + qk̂i, pbi + qb̂i)
for i = 1, . . . , n. Similarly, assume that two PWLinex value
functionsV and V̂ are represented as(wi, ki, ci, bi) and
(wi, k̂i, ĉi, b̂i) for i = 1, . . . , n. Then, their weighted av-
eragepV + qV̂ is again PWLinex and can be represented as
(wi, pki + qk̂i, pci + qĉi, pbi + qb̂i) for i = 1, . . . , n.

Maximum Functional value iteration needs to calculate
the maximum of several value functions. Assume with-
out loss of generality that there are two PWL value func-
tionsV andV̂ . One first introduces additional breakpoints,
if needed, without changing the value functions to ensure
that all value functions have the same breakpoints. As-
sume that the two resulting PWL value functions are rep-
resented as(wi, ki, bi) and (wi, k̂i, b̂i) for i = 1, . . . , n.
Then, their maximummax(V, V̂ ) is again PWL. Consider
any i = 1, . . . , n and assume without loss of generality
that V (wi−1) ≥ V̂ (wi−1) andV (w) 6= V ′(w) for some
w ∈ (wi−1, wi). The two value functions can intersect at
zero or one intersection point̄w with wi−1 ≤ w̄ < wi and

V (w̄) = V̂ (w̄)

kiw̄ + bi = k̂iw̄ + b̂i.
We distinguish two cases:

• Value functionV dominates the other one for allw ∈
(wi−1, wi], which is the case iffV (wi) ≥ V̂ (wi). Then,

value functionV is the maximum of both value functions
for all w ∈ (wi−1, wi]. The maximum can thus be repre-
sented as(wi, ki, bi) for w ∈ (wi−1, wi].

• The two value functions intersect at̄w with wi−1 ≤
w̄ < wi. One then adds the intersection pointw̄ =

(b̂i − bi)/(ki − k̂i) as a new breakpoint to the new value
function. Then, value functionV is the maximum of both
value functions for allw ∈ (wi−1, w̄], and value func-
tion V̂ is the maximum of both value functions for all
w ∈ (w̄, wi]. The maximum can thus be represented as
(w̄, ki, bi) for w ∈ (wi−1, w̄] (this interval can be empty
if w̄ = wi−1) and(wi, k̂i, b̂i) for w ∈ (w̄, wi].

Similarly, assume that two PWLinex value functionsV and
V̂ are represented as(wi, ki, ci, bi) and (wi, k̂i, ĉi, b̂i) for
i = 1, . . . , n. Then, their maximum is again PWLinex.
Consider anyi = 1, . . . , n. The two value functions can
intersect at zero, one or two intersection pointsw̄ with
wi−1 ≤ w̄ < wi and

V (w̄) = V̂ (w̄)

kiw̄ − ciγw̄ + bi = k̂iw̄ − ĉiγw̄ + b̂i

bi − b̂i =
(

k̂i − ki
)

w̄ −
(

ĉi − ci
)

γw̄.

In general, this equation can only be solved with numerical
methods such as the Newton-Raphson method. One then
adds the intersection points, if any, as new breakpoints to
the new value function and then proceeds as for PWL value
functions. In both cases, one can simplify the new value
function (and speeds up future operations on it) by merging
adjacent segments of it, if possible, to remove unnecessary
breakpoints.

Termination of Functional Value Iteration We now
show the convergence properties of the value functions for
nongoal states as the number of iterations of functional value
iteration increases. (The value functions for goal states
are simply the utility function itself.) We calculate after
how many iterationst of functional value iteration the error
|V t

U (s)(w) − V ∗
U (s)(w)| of all valuesV t

U (s)(w) is no larger
than a given constantǫ > 0.

We first consider PWL value functions, starting withw ≤
w1. The valuesvt(s) at iterationt of (regular) value iteration
for maximizing the expected total reward of the given MDP
are defined by the system of equations

v0(s) = 0 s ∈ S

vt+1(s) =

8

<

:

0

max
a∈A

X

s′∈S

P (s′|s, a)(r(s, a, s′) + vt(s′))

s ∈ G

s /∈ G

for all t ∈ N0 (Puterman, 1994). We now show by induction
on t thatV t

U (s)(w) = k1w + k1vt(s) + b1 for all w ≤ w1,
s ∈ S \ G and t ∈ N0. The property holds trivially for
iterationt = 0 sinceV t

U (s)(w) = k1w + b1 = k1w + k10+
b1 = k1w + k1vt(s) + b1. Assume that it holds for some
iterationt. Then,
V t+1

U (s)(w)

= max
a∈A

X

s′∈S

P (s′|s, a)V t
U (s′)(w + r(s, a, s′))



= max
a∈A

X

s′∈S

P (s′|s, a)
`

k1(w + r(s, a, s′)) + k1vt(s′) + b1´

= k1w + k1

 

max
a∈A

X

s′∈S

P (s′|s, a)(r(s, a, s′) + vt(s′))

!

+ b1

= k1w + k1vt+1(s) + b1

for all w ≤ w1 ands ∈ S \ G, which proves the property.
The valuesvt(s) are monotonically nonincreasing int and
converge ast increases to the optimal valuesv∗(s). Thus,
the valuesV t

U (s)(w) are monotonically nonincreasing int
and converge to

V ∗
U (s)(w) = lim

t→∞
V t

U (s)(w) = lim
t→∞

`

k1w + k1vt(s) + b1
´

= k1w + k1v∗(s) + b1

for all w ≤ w1 ands ∈ S \ G. The error of valueV t
U (s)(w)

is therefore
|V t

U (s)(w) − V ∗
U (s)(w)| = V t

U (s)(w) − V ∗
U (s)(w)

= k1 `vt(s) − v∗(s)
´

for all w ≤ w1 ands ∈ S\G. This error is no larger thanǫ >

0 for all t ≥ t∗ provided thatk1 maxs∈S(vt∗(s)− v∗(s)) ≤
ǫ. If k1 = 0, then we can simply uset∗ = 0. Otherwise, one
can easily find at∗ with the desired property since the values
vt(s) andv∗(s) can be calculated with (regular) value iter-
ation and policy iteration, respectively, for maximizing the
expected total reward of the given MDP (Puterman, 1994).

We now show by transfinite induction onw that the
error of all valuesV t

U (s)(w) is no larger thanǫ for all

w ∈ R
−
0 and s ∈ S \ G if t ≥ t∗ +

⌈

w1−max(w,w1)
r

⌉

,

wherer = maxs∈S\G,a∈A,s′∈S r(s, a, s′). We have already
shown that this property holds forw ∈ (−∞, w1] since

t ≥ t∗ +
⌈

w1−max(w,w1)
r

⌉

implies t ≥ t∗. Assume that

it holds forw ∈ (−∞, ŵ) with ŵ ≥ w1. We now show that

it then also holds forw = ŵ. If t ≥ t∗+
⌈

w1−max(ŵ,w1)
r

⌉

=

t∗ +
⌈

w1−ŵ
r

⌉

, then

V t
U (s)(ŵ) = max

a∈A

X

s′∈S

P (s′|s, a)V t−1
U (s′)(ŵ + r(s, a, s′))

≤ max
a∈A

X

s′∈S

P (s′|s, a)
`

V ∗
U (s′)(ŵ + r(s, a, s′)) + ǫ

´

= max
a∈A

X

s′∈S

P (s′|s, a)V ∗
U (s′)(ŵ + r(s, a, s′)) + ǫ

= V ∗
U (s)(ŵ) + ǫ,

where the preceeding inequality holds due to the induction
assumption since, first,̂w + r(s, a, s′) < ŵ and thusŵ +
r(s, a, s′) ∈ (−∞, ŵ) and, second,

t − 1 ≥ t∗ +

‰

w1 − ŵ

r

ı

− 1 = t∗ +

‰

w1 − ŵ − r

r

ı

≥ t∗ +

‰

w1 − (ŵ + r(s, a, s′))

r

ı

≥ t∗ +

‰

w1 − max(ŵ + r(s, a, s′), w1)

r

ı

.

This proves the property, which implies that the error of all
valuesV t

U (s)(w) is no larger thanǫ for all w ∈ R
−
0 and

s ∈ S \ G if t ≥ t∗ +
⌈

w1

r

⌉

. Thus, we have derived a

termination condition of functional value iteration for PWL
utility functions.

We now consider PWLinex value functions in a similar
fashion, starting withw ≤ w1. The valuesvt

e(s) at iterationt
of (regular) value iteration for maximizing the expected total
utility of the given MDP for the exponential utility function
U(w) = −γw are defined by the system of equations

v0
e (s) = −1 s ∈ S

vt+1
e (s) =

8

<

:

−1

max
a∈A

X

s′∈S

P (s′|s, a)γr(s,a,s′)vt
e(s

′)

s ∈ G

s /∈ G

for all t ∈ N0 (Patek, 2001). Then, one can show by
induction ont that V t

U (s)(w) = c1vt
e(s)γ

w + b1 for all
w ≤ w1, s ∈ S \ G and t ∈ N0. The valuesvt

e(s)
are monotonically nonincreasing int and converge ast
increases to the optimal valuesv∗e(s). Thus, the values
V t

U (s)(w) are monotonically nonincreasing int and con-
verge toV ∗

U (s)(w) = c1v∗e(s)γw + b1 for all w ≤ w1

and s ∈ S \ G. The error of valueV t
U (s)(w) is there-

fore |V t
U (s)(w) − V ∗

U (s)(w)| = V t
U (s)(w) − V ∗

U (s)(w) =
c1 (vt

e(s) − v∗e(s)) γw. It is difficult to find a termination
condition for functional value iteration becauseγw increases
unbounded asw decreases. We therefore simply run func-
tional value iteration until thewi, ki, ci andbi parameters
of the representations of the PWLinex value functions con-
verge numerically, which implies that all valuesV t

U (s)(w)
have converged numerically.

Approximating Value Functions
Consider two arbitrary monotonically nondecreasing utility
functionsU and U ′. We now show that the two optimal
value functionsV ∗

U (s) andV ∗
U ′(s) are close to each other if

the two utility functions are close to each other. More for-
mally, we show that0 ≤ V ∗

U (s)(w) − V ∗
U ′(s)(w) ≤ ǫ for

all s ∈ S andw ∈ R
−
0 if 0 ≤ U(w) − U ′(w) ≤ ǫ for all

w ∈ R
−
0 . This implies that one can approximate the optimal

value functionV ∗
U (s) for a given utility functionU by us-

ing functional value iteration to calculate the optimal value
functionV ∗

U ′(s) for a utility functionU ′ that approximates
utility function U .

We prove by induction ont that 0 ≤ V t
U (s)(w) −

V t
U ′(s)(w) ≤ ǫ for all s ∈ S, w ∈ R

−
0 and t ∈ N0 if

0 ≤ U(w) − U ′(w) ≤ ǫ for all w ∈ R
−
0 . This prop-

erty holds trivially fort = 0 sinceV 0
U (s)(w) = U(w) and

V 0
U ′(s)(w) = U ′(w) for all s ∈ S and w ∈ R

−
0 . As-

sume that it holds for some iterationt. It holds trivially for
s ∈ G at iterationt + 1 sinceV t+1

U (s)(w) = U(w) and
V t+1

U ′ (s)(w) = U ′(w) for all s ∈ G andw ∈ R
−
0 . Further-

more,
V t+1

U (s)(w) = max
a∈A

X

s′∈S

P (s′|s, a)V t
U (s′)(w + r(s, a, s′))

≥ max
a∈A

X

s′∈S

P (s′|s, a)V t
U′(s′)(w + r(s, a, s′))

= V t+1
U′ (s)(w)

and
V t+1

U (s)(w) = max
a∈A

X

s′∈S

P (s′|s, a)V t
U(s′)(w + r(s, a, s′))
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Figure 1: Sandwich method

≤ max
a∈A

X

s′∈S

P (s′|s, a)
`

V t
U′(s′)(w + r(s, a, s′)) + ǫ

´

= max
a∈A

X

s′∈S

P (s′|s, a)V t
U′(s′)(w + r(s, a, s′)) + ǫ

= V t+1
U′ (s)(w) + ǫ

for all s ∈ S \ G andw ∈ R
−
0 . Thus, it holds that0 ≤

V t+1
U (s)(w) − V t+1

U ′ (s)(w) ≤ ǫ for all s ∈ S, w ∈ R
−
0 and

t ∈ N0. All values converge ast increases and it follows that
0 ≤ V ∗

U (s)(w) − V ∗
U ′(s)(w) ≤ ǫ for all s ∈ S andw ∈ R

−
0 .

Approximating Utility Functions
We now show how to approximate given utility functionsU
from above with piecewise-linear utility functionsU (with
and without exponential tails) so that the errorU(w)−U(w)
is no larger thanǫ for all w ∈ R

−
0 . Utility functionsU can

be approximated closely by PWL utility functions if they are
asymptotically linear, that is, if there exist constantsk− ≥ 0
andb− such that

lim
w→−∞

(U(w) − k−w) = b−.

We first find an upper PWL approximation of utility function
U for w ≤ w1 with a valuew1 to be determined. There
exists a constantw− such that for allw ≤ w−

b− −
ǫ

2
≤ U(w) − k−w ≤ b− +

ǫ

2

U(w) ≤ k−w + b− +
ǫ

2
≤ U(w) + ǫ.

Forw ≤ w−, the linear functionU1(w) = k−w + b− + ǫ
2 is

thus an upper PWL approximation of utility functionU with
an error that is no larger thanǫ. We setw1 = w−.

We now find an upper PWL approximation of utility func-
tion U for w > w−. We first assume that utility functionU
for w > w− can be divided into a finite number of seg-
ments so that each segment is either convex or concave. The
sandwich method can then be used to find an upper PWL
approximation for each segment (Rote, 1992), as illustrated
in Figure 1 for the segmentAB of the utility function rep-
resented by the thick curve. The first upper PWL approx-
imation consists of the line segmentAB that connects the
two endpoints of the segment. The first lower PWL approx-
imation consists of the line segmentsAC andCB that are
part of the tangent lines at the two endpoints, respectively,
with intersection pointC. If the error of the upper PWL
approximation is greater thanǫ, the sandwich method is re-
cursively applied to the two segmentsAD andDC of the
utility function, whereD is the point on the utility function
that has the samew coordinate as pointC. The second up-

w

U

(0, 0)w
−

{ǫ

w

U

(0, 0)w
−

{ǫ

(a) Approximating the two parts (b) Removing discontinuity
Figure 2: Approximating asymptotically linear utility functions

per PWL approximation, for example, consists of the line
segmentsAD andDB, and the second lower PWL approxi-
mation consists of the line segmentsAE, ED, DF andFB.
(The line segmentsED andDF can then be joined into one
line segmentEF .) The upper PWL approximation of the
segment of the utility function shares its end points with the
end points of the segment itself. Thus, forw ≥ w−, the up-
per PWL approximations of all segments of utility function
U form a continuous upper PWL approximationU2 of util-
ity functionU of any desired error, including an error that is
no larger thanǫ.

We now put the upper PWL approximationsU1 (for w ≤
w−) andU2 (for w ≥ w−) together to an upper PWL ap-
proximationU of utility function U for all w ∈ R

−
0 . We

cannot use

U(w) =

(

U1(w) w ∈ (−∞, w−]

U2(w) w ∈ (w−, 0]

as an upper PWL approximation with an error that is no
larger thanǫ (given that its two parts have at most this er-
ror) because this approximation can be discontinuous and
not monotonically nondecreasing atw = w−, as Figure 2(a)
shows. Thus, we use

U(w) =

(

U1(w) w ∈ (−∞, w−]

max(U1(w−), U2(w)) w ∈ (w−, 0]

as a PWL approximation that is continuous and monoton-
ically nondecreasing. The only difference between
this PWL approximation and the previous one is if
max(U1(w−), U2(w)) = U1(w−) for some w ∈
(w−, 0]. It then holds that0 ≤ U2(w) − U(w) ≤
max(U1(w−), U2(w)) − U(w) = U1(w−) − U(w) ≤
U(w−) + ǫ − U(w) ≤ ǫ because the utility functionU
is monotonically nondecreasing. Thus, the PWL approxi-
mationU is indeed an upper PWL approximation of utility
functionU with an error that is no larger thanǫ.

Now assume that functional value iteration runs on the
upper PWL approximationU of utility functionU for a suf-
ficient number of iterations (as determined earlier) so that
the error is at mostǫ. Then,

0 ≤ U(w) − U(w) ≤ ǫ

0 ≤ V ∗
U

(s)(w) − V ∗
U (s)(w) ≤ ǫ

0 ≤ V t

U
(s)(w) − V ∗

U
(s)(w) ≤ ǫ

and thus
0 ≤ V t

U (s)(w) − V ∗
U (s)(w) ≤ 2ǫ.

for all w ∈ R
−
0 ands ∈ S. Therefore, the resulting value

functions for the upper PWL approximationU of utility
function U are upper approximations of the optimal value
functions for the utility function itself, with an error that is



Figure 3: Probabilistic blocksworld

no larger than2ǫ. This is the main result of this paper.
One can also derive a lower PWL approximationU of

utility function U of errorǫ in an analogous way (Liu, 2005)
and then run functional value iteration on the lower PWL
approximationU for a sufficient number of iterations so that
the error is at mostǫ. Then,

−ǫ ≤ U(w) − U(w) ≤ 0

−ǫ ≤ V ∗
U (s)(w) − V ∗

U (s)(w) ≤ 0

0 ≤ V t
U (s)(w) − V ∗

U (s)(w) ≤ ǫ

−ǫ ≤ V t
U (s)(w) − V ∗

U (s)(w) ≤ ǫ

for all w ∈ R
−
0 ands ∈ S. Thus, there is a trade-off. The

resulting value functions for the lower PWL approximation
of the utility function are not necessarily lower approxima-
tions of the optimal value functions for the utility function
itself but have an error that is no larger thanǫ rather than2ǫ.

Finally, utility functionsU can be approximated closely
by piecewise linear utility functions with exponential tails
if they are asymptotically exponential, that is, if there exist
constants0 < γ < 1, k− < 0 andb− such that

lim
w→−∞

(U(w) − k−γw) = b−.

We can find upper and lower PWL approximationsU and
U with exponential tails for a given asymptotically expo-
nential utility functionU so that the errorsU(w) − U(w)
andU(w) − U(w) are no larger thanǫ for all w ∈ R

−
0 by

proceeding in an analogous way as above. We can then run
functional value iteration on the upper or lower PWL ap-
proximations with exponential tails to approximate the opti-
mal value functions for the utility function itself, as before.
The details can be found in (Liu, 2005, Chapter 4).

Probabilistic Blocksworld with Deadlines
We now apply functional value iteration to a probabilistic
blocksworld, a standard test domain for decision-theoretic
planners (Koenig & Simmons, 1994). Our probabilis-
tic blocksworld is identical to the standard deterministic
blocksworld except that one can execute two kinds of ac-
tions in each configuration of blocks and their effects can
be nondeterministic. In particular, the move action succeeds
only with probability 0.5. When it fails, the block drops
directly onto the table. (Thus, moving a block to the table
always succeeds.) There is also a paint action that changes
the color of any one block and always succeeds. The move
action takes one time unit to execute and thus has a reward of
−1, and the paint action takes three time units to execute and
thus has a reward of−3. Figure 3 shows the start configura-
tion of blocks. The goal is to build a stack of three blocks:
black (at the bottom), white, and black (on top). The remain-
ing two blocks can be anywhere and can have any color. The
probabilistic blocksworld example has 162 states, which we
describe as a set of stacks by listing the blocks in each stack
from bottom to top, usingW for a white block andB for a
black block. The start configuration of blocks, for example,

Table 1: Optimal values for hard deadlinesd

d [0,−2)[−2,−3)[−3,−4)[−4,−5)[−5,−6) [−6,−7) [−7,−∞)

v∗

U
(ŝ) 0 0.25 0.5 0.6875 0.8125 0.890625 1.0

is ŝ = {WBBW,B}. We use functional value iteration to find
a plan that maximizes its expected total utility for every start
state for utility functions that model a preference for com-
pleting the task by a given deadline (Haddawy & Hanks,
1992). Deadlines can be either hard or soft:

• If the deadline is hard, then the utility of completing the
task after the deadline sharply drops to zero. Consider a
hard deadline ofx time units. The corresponding utility
function has a step atd = −x, as shown in Figure 4(a).
Table 1 shows the optimal valuev∗U (ŝ) = V ∗

U (ŝ)(0) of
the start configuration of blocks with wealth level zero for
the probabilistic blocksworld as determined by functional
value iteration. These values correspond to the probabil-
ities of being able to complete the task by the deadline.
For example, the optimal value is one ford ≤ −7 be-
cause painting the two bottom blocks of the four-block
stack and then removing its top block achieves the goal
for sure with a total reward of−7. Similarly, the optimal
value is zero for0 < d < −2 because there is no way of
achieving the goal with a total reward of−2 or larger.

• If the deadline is soft, then the utility decreases gradually
after the deadline. Soft deadlines can be modeled with a
variety of utility functions, depending on how the utility
decreases after the deadline. We consider the three utility
functions shown in Figure 4, namely (b) the linear case,
where the utility decreases linearly after the deadlined,
(c) the exponential case, where the utility decreases ex-
ponentially after the deadlined, and (d) the mixed case,
where the utility decreases linearly after the earlier dead-
line d and exponentially after the later deadlined′′.

Figure 7 shows the optimal plans for various utility func-
tions. The optimal plans include only configurations of
blocks that are reachable from the start configuration of
blocks. We chose the parameters of the utility functions
so that different plans result: (a) is a hard deadline with
d = −5, (b) is a soft deadline (linear case) withd = −6.75
andd′ = −7.75, (c) is a soft deadline (exponential case)
with γ = 0.60, d = −6.90 andd′ = −7.90, and (d) is
a soft deadline (mixed case) withγ = 0.60, d = −6.50,
d′ = −7.50 andd′′ = −10.50. The optimal plan for case (d)
shows that different actions can be optimal in the same con-
figuration of blocks depending on the current wealth level (=
time units spent). It includes only conditions that are reach-
able from the start configuration of blocks with zero wealth
level under the optimal plan. Figure 5 shows the correspond-
ing optimal value functionsV ∗

U (s) for case (a), and Figure 6
shows the corresponding optimal value functionsV ∗

U (s) for
case (b).

Related Work
Most research is on decision-theoretic planners that maxi-
mize the expected total reward, which is equivalent to max-
imizing the expected total utility for linear utility functions.
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Figure 4: Different deadline utility functions
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Figure 5: Optimal value functions for hard deadline (d = −5)

However, some decision-theoretic planners maximize the
expected total utility: First, Loui (1983) discussed methods
for maximizing the expected total utility but only for MDPs
with deterministic actions (whose rewards are stochastic).
Murthy & Sarkar (1996, 1997, 1998) discussed even more
efficient methods for special cases of this scenario. Second,
Koenig & Simmons (1994), Koenig & Liu (1999), Denardo
& Rothblum (1979) and Patek (2001) discussed methods for
maximizing the expected total utility but only for exponen-
tial utility functions. Third, Yu, Lin, & Yan (1998) discussed
methods for maximizing the expected total utility but only
for utility functions that are step functions. They also trans-
formed a given MDP into an augmented MDP but their aug-
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mented MDP is different from ours. Fourth, White (1987)
and Kerr (1999) discussed methods for maximizing the ex-
pected total utility for arbitrary utility functions but only for
finite time horizons. Finally, Dolgov & Durfee (2004) dis-
cussed approximation methods for evaluating (rather than
maximizing) the expected total utility of a given stationary



policy using Legendre polynomials.
Some decision-theoretic planners use piecewise approxi-

mations of the value functions but so far only for maximiz-
ing the expected total reward: First, Li & Littman (2005)
discussed methods that use piecewise constant functions to
approximate the value functions of finite horizon continuous
state MDPs. Second, both Poupartet al. (2002) and Pyna-
dath & Marsella (2004) discussed methods that use piece-
wise linear functions to approximate the value functions of
factored MDPs but their piecewise linear functions are deci-
sion trees with linear functions at the leaves.

Conclusions and Future Work
Functional value iteration is a powerful tool for finding plans
that maximize the expected total utility for MDPs. A variety
of decision-theoretic planners use (regular) value iteration
in combination with other techniques to maximize the ex-
pected total reward for MDPs efficiently. Examples include
LAO* (Hansen & Zilberstein, 2001) and SPUDD (Hoeyet
al., 1999). Functional value iteration, together with the ap-
proximation techniques presented in this paper, can replace
(regular) value iteration in these decision-theoretic planners
to create versions of them that efficiently maximize the ex-
pected total utility for a large class of utility functions.We
are currently in the process of implementing such decision-
theoretic planners.
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