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Abstract

We study how to find plans that maximize the expected total
utility for a given MDP, a planning objective that is impanta

for decision making in high-stakes domains. The optimal ac-
tions can now depend on the total reward that has been accu-
mulated so far in addition to the current state. We extend our
previous work on functional value iteration from one-s\itc
utility functions to all utility functions that can be appie
mated with piecewise linear utility functions (with and it

out exponential tails) by using functional value iteration

find a plan that maximizes the expected total utility for the
approximate utility function. Functional value iteratidnes

not maintain a value for every state but a value function that
maps the total reward that has been accumulated so far into a
value. We describe how functional value iteration represen
these value functions in finite form, how it performs dynamic
programming by manipulating these representations ant wha
kinds of approximation guarantees it is able to make. We also
apply it to a probabilistic blocksworld problem, a standard
test domain for decision-theoretic planners.

I ntroduction

Decision-theoretic planning researchers believe thakblar
decision process models (MDPs) provide a good foundation
for decision-theoretic planning (Boutilier, Dean, & Hanks
1999; Blythe, 1999). Typically, they find plans for MDPs
that maximize the expected total reward. For this planning
objective, the optimal actions depend on the current state
only. However, decision-theoretic planning researchkse a
believe that it is sometimes important to maximize the ex-
pected utility of the total reward (= expected total utififgr

a given monotonically nondecreasing utility function. For
example, utility theory suggests that human decision nsaker
maximize the expected total utility in single-instancehiig
stake planning situations, where their utility functiotac
acterize their attitude toward risk (von Neumann & Mor-
genstern, 1944; Pratt, 1964). Examples of such situations
include environmental crisis situations (Cohetral., 1989;
Blythe, 1998), business decisions situations (Muethwl,,
1999; Goodwin, Akkiraju, & Wu, 2002), and planning sit-
uations in space (Pedlt al,, 1998; Zilbersteiret al,, 2002),

all of which are currently solved without taking risk atti-
tudes into consideration. The question then arises how to
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find plans for MDPs that maximize the expected total util-
ity. This is a challenge because the optimal actions can then
depend on the total reward that has been accumulated so far
(= the current wealth level) in addition to the current state
(Liu & Koenig, 2005b). We showed in previous publica-
tions that, in principle, a version of value iteration can be
used to find a plan that maximizes the expected total utility
for an arbitrary utility function if it maps every pair of séa

and wealth level into a value (Liu & Koenig, 2005b). We
then developed such a version of value iteration, functiona
value iteration, that maintains a value function for eveayes

that maps wealth levels into values. Functional value itera
tion is practical only if there exist finite representatiafs
these value functions. We applied functional value iterati

to one-switch utility functions, for which the value furmtis

are piecewise one-switch and thus can be represented in fi-
nite form (Liu & Koenig, 2005b). In this paper, we develop

a more general approach that approximates a large class of
utility functions with piecewise linear utility functior(svith

and without exponential tails). It then uses functionaleal
iteration to find a plan that maximizes the expected totél uti
ity for the approximate utility function. We describe how
functional value iteration can represent the value fumgio

in finite form, how it performs dynamic programming by
manipulating these representations and what kinds of ap-
proximation guarantees it is able to make. We then apply it
to a probabilistic blocksworld problem to demonstrate how
the plan that maximizes the expected total utility depemds o
the utility function.

Decision-Theoretic Planning

We perform decision-theoretic planning on MDPs with ac-
tion costs and want to find a plan that maximizes the ex-
pected total utility until plan execution stops, which only
happens when a goal state has been reached. We now define
our MDPs and this planning objective more formally.

Our MDPs consist of a finite nonempty set of statgs
a finite non-empty set of goal statés C S, and a finite
nonempty set of actiond for each nongoal state € S\
G. An agent is given a time horizoh < T < co. The
initial time step ist = 0. Assume that the agent is in state
sy € S attime stept. If t = T or s; is a goal state, then
the agent stops executing actions, which implies that it no
longer receives rewards in the future. Otherwise, it exexut



an actiona; € A of its choice, receives a strictly negative
finite rewardr(s;, at, s¢+1) < 0 in return, and transitions
with probability P(s;+1]s:, a;) to states; 1 € S, where the
process repeats at time step 1.

We denote the set of all possible behaviors of the agent (=
plans; more precisely: randomized, history-dependerit pol
cies) byIl and now describe the objective of the agent when
choosing a plan. The agent is given a monotonically nonde-
creasing utility function/. Assume for now that the time

horizonT is finite. The wealth level of the agent at time

stept is wy = Zt;lor(sn ar,sr+1), the total reward that

it has accumulated before time steplts wealth level thus
starts at zero and then decreasesiasreases. If the agent
starts in statesy € S and follows planr € II, then the
expected utility of its final wealth (= expected total util-
ity) is vf; p(s0) = E*"[U(wr)], where the expectation

by the system of equations

Vi(s) (w) = U(w) ses
U(w) seG
Vo (s)(w) = { max > P(s'|s, a) cea

€S V(s (w+r(s,a,s))
for all w € Ry (the nonpositive real values) amde N.
The valuesV/; (s)(w) converge ag increases to the opti-
mal valuesV;;(s)(w), which are the largest expected total
utilities that the agent can obtain if it starts in statevith
wealth levelw, there foreV;;(s)(0) = v} (s). The agent
then maximizes its expected total utility for every state by
executing actioarg max,c 4 > g P(s]s,a)Vii(s")(w+
r(s,a, s")) if its current state is nongoal stateand its cur-
rent wealth level igv. (It stops if its current state is a goal
state.) Additional details and proofs are given in (Liu &

is taken over all sequences of states and actions from time Koenig, 2005b).

step O to time stefi’ that can result with positive probabil-
ity from executing plant in start states;. From now on,
we assume that the time horiz@his infinite. If the agent
starts in state, € S and follows planr € II, then the ex-
pected total utility isv];(so) = limp_.oo v 1 (50). If the
agent starts in statey € S and follows a plan that maxi-
mizes its expected total utility, then its expected totdityt

is vj;(s0) = sup,er vf(s0). The objective of the agent is
to find a plan that maximizes its expected total utility for
every start state (= optimal plan), that is, a plane I1 with

of (s0) = iy (so) for all statessy € S. In this paper, we
assume that the optimal valugs(s, ) are finite for all states
sg € S because otherwise the concept of an optimal plan is
not well-defined (Liu & Koenig, 2005a).

Functional Value lteration

In (Liu & Koenig, 2005b), we investigated one way of find-
ing plans that maximize the expected total utility for a give
MDP. We transformed the given MDP into an “augmented”
MDP whose states are pairs, w), wheres is a state of the
given MDP andv is a wealth level that can be attained when
executing actions in the given MDP. A plan that maximizes
the expected total reward for the augmented MDP also max-
imizes the expected total utility for the given MDP. It is suf
ficient to consider stationary deterministic policies toxina
mize the expected total reward for the augmented MDP, re-
sulting in a mapping from states and wealth levels to actions
In principle, one could use value iteration on the augmented
MDP to find a plan that maximizes the expected total reward
for the augmented MDP (Puterman, 1994) but this is not
practical since the augmented MDP has an infinite number
of states. Therefore, we developed a version of value itera-
tion, called functional value iteration, that maintainssdue
function for each state of the given MDP (Liu & Koenig,
2005b). The value functiorig; (s) map real-valued wealth
levelsw to real valued/; (s)(w). (Our MDPs have strictly
negative rewards, and all wealth levels are therefore non-
positive. We therefore use value functions that map non-
positive wealth levels to real values.) The value functions
Vi (s) at iterationt of functional value iteration are defined

Classes of Utility Functions

So far, functional value iteration has only been appliectto r
stricted classes of utility functions, namely one-swit¢it u
ity functions (Liu & Koenig, 2005b). We now develop a
more general approach that approximates a large class of
utility functions with piecewise linear utility functior(svith
and without exponential tails) and then uses functionaleval
iteration to find a plan that maximizes the expected tot#l uti
ity for the approximate utility function. Note that suchluti
ity functions do not include one-switch utility functiorale
assume for convenience of exposition that all utility func-
tions are continuous. Our discussion, however, applies als
to utility functions with a finite number of discontinuities
with straightforward extensions.

Functional value iteration needs calculate
maxaca Y cg P(s'|s, a)Vi(s) (w +7(s,a,s)). Thus,
it needs to shift a value functior’ (s’)(w) by r(s, a, s’) to
calculateVy (s')(w + r(s,a,s’)). It needs to calculate the
weighted averagé_ ¢ P(s'|s,a)V{i(s")(w + r(s,a,s")) of
several value function& (s')(w + r(s,a,s")). Finally, it
needs to calculate the maximum of several value functions
>ooes P(s']s,a)Vii(s") (w4 r(s,a,s")). We restrict the class
of utility functions to piecewise linear utility functior{svith
and without exponential tails) to allow functional value
iteration to perform these three operations efficiehti/e
then use these utility functions to approximate a largesclas
of utility functions. A piecewise linear functiofi without
an exponential tail (PWL function) can be represented as an
ordered list of triplegw?, k%, b*) fori = 1,...,n with the
following properties:—oo = v’ < w! < -+ < w" =0
and f(w) Kw + b for all w € (w1 w'] and
i=1,...,n. The valuesy’ are called breakpoints. A PWL
utility function results in PWL value functions, as we show
below. A piecewise linear functioli with an exponential
tail differs from a PWL function only for ally € (w°, w!]
where f(w) = —c'y* + b! for given constantg! > 0
and0 < v < 1. A piecewise linear utility function with an

to

We use operator and function overloading to implement these
three operations in C++. The code of functional value iterethen
is identical to the code of (regular) value iteration.



exponential tail results in so-called piecewise linex ealu

functions, as we show below. A piecewise linex function
(PWLinex function) f can be represented as an ordered
list of quadruplegw?, k¢, ct, b?) for i = 1,...,n with the

following properties:—oo = w® < w! < .-+ < w™ = 0

and f (w ) = k'w — cy* + b for all w € (w1 w'] and
1 =1,.
Shift  Functional value iteration needs to shift a value func-

tion V(w) by a given constant to calculate the value func-
tion V(w + r). Assume that a PWL value functidn(w) is
represented agw’, k*,b%) for i = 1,...,n. It holds that
Vw+r) = k'(w+r)+ b = kKw+ (K'r + bl) for
w+r € (w1 w'] or, equivalentlyw € (wi=! —r,w® —r].
The new value functiom’(w + r) is again PWL and can be
represented agv’ — r, ki, k'r + b%) fori = 1,...,n. Sim-
ilarly, assume that a PWLinex value functidf{w) is rep-
resented agw', k, ¢, b) fori = 1,...,n. Then, the value
functionV (w+r) is again PWLinex and can be represented
as(w' —r, kb, ciy", kir+b%) fori = 1,...,n. In both cases,
one simplifies the new value function (and speeds up future
operations on it) by keeping only the part for< 0.

Weighted Average Functional value iteration needs to cal-
culate the weighted average of several value functions. As-
sume without loss of generality that there are two PWL
value functionsV’ and V. One first introduces additional
breakpoints, if needed, without changing the value func-
tions to ensure that both value functions have the same
breakpoints. Assume that the two resulting PWL value
functions are represented @s', k‘, b*) and (w’, k¢, b’) for
i1 =1,...,n. Then, their weighted averagéUqu is agam
PWL and can be represented @<, pk’ + gk’ pb' + qbl)
fori=1,...,n. Slmllarly, assume that two PWLlnex value
functlonsV andV are represented gv’, k%, ¢*,b") and
(w i ket h ‘) fori = 1,...,n. Then, their weighted av-
eragepV + ¢V is again PWLinex and can be represented as
(w', pki + gk, pct + qét, pb + gb') fori =1, ...,n
Maximum Functional value iteration needs to calculate
the maximum of several value functions. Assume with-
out loss of generality that there are two PWL value func-
tionsV andV. One first introduces additional breakpoints,
if needed, without changing the value functions to ensure
that all value functions have the same breakpoints. As-
sume that the two resulting PWL value functions are rep-
resented agw?, k', b') and (w', ki, b%) for i = 1,...,n.
Then, their maximummax(V, V) is again PWL. Consider
anyi = 1,...,n and assume without loss of generality
that V(wi~') > V(w'~') andV(w) # V'(w) for some
w € (w1 w'). The two value functions can intersect at
zero or one intersection poiat with w*~! < w < w' and
V(w) = V(w)

ko + b = ko + b

We distinguish two cases:

¢ Value functionV dominates the other one for all <
(w1, w'], which is the case ifi/ (w’) > V(w'). Then,

value functionV is the maximum of both value functions
forall w € (w'~!, w']. The maximum can thus be repre-
sented agw’, k%, b*) for w € (w1, w?].

e The two value functions intersect at with w*~! <
w < w'. One then adds the intersection point =
(b" — b)/(k* — k') as a new breakpoint to the new value
function. Then, value functiol is the maximum of both
value functions for alw € (w'~!,w], and value func-

tion V is the maximum of both value functions for all
w € (w,w’]. The maximum can thus be represented as
(w, k%, b) for w € (w1, ] (this interval can be empty
if w=w'"')and(w’, k,b") forw € (w,w'.
Similarly, assume that two PWLinex value functidrisand
V are represented gw’, k', ¢’,b’) and (w', k', &, b') for
i = 1,...,n. Then, their maximum is agam PWLmex
Con5|der anyL = 1,...,n. The two value functions can
intersect at zero, one or two intersection poiatswith
wol <w<w'and
V(w) = V(w)
wa +bi — l%iﬂ) _ éi,yu’; + Bz
b b = (k)@ - (& =)y
In general, this equation can only be solved with numerical
methods such as the Newton-Raphson method. One then
adds the intersection points, if any, as new breakpoints to
the new value function and then proceeds as for PWL value
functions. In both cases, one can simplify the new value
function (and speeds up future operations on it) by merging

adjacent segments of it, if possible, to remove unnecessary
breakpoints.

ko —

Termination of Functional Value Iteration We now
show the convergence properties of the value functions for
nongoal states as the number of iterations of functionaiesal
iteration increases. (The value functions for goal states
are simply the utility function itself.) We calculate after
how many iterations of functional value iteration the error
V5 (s)(w) — Vii(s)(w)] of all valuesV (s)(w) is no larger
than a given constaat> 0.

We first consider PWL value functions, starting with<
wt. The values!(s) atiteratiort of (regular) value iteration
for maximizing the expected total reward of the given MDP
are defined by the system of equations

v’(s) =0 ses
- 0 seG

v(s) = / / to s
ma 3 Pl 406D

forall t € Ny (Puterman, 1994). We now show by induction
ont that Vi (s)(w) = k'w + k'o'(s) + b! for all w < w?,

s € S\ G andt € Ny. The property holds trivially for
iterationt = 0 sinceV: (s)(w) = k'w +b' = k'w + k'0+

bt = klw + klol(s) + bt. Assume that it holds for some
iterationt. Then,

Vi (s) (w)

— max

ax > P(s|s,a)Vi(s') (w +7(s,a,5))
s'esS



_ / 1 / 1ty 1
_IgleachP(s |s,a) (k' (w+7(s,a,s")) +k'v'(s") +b")

s’es

_ 1 1 / / te /1 1

=kw+k <Ia“ﬂ€8j( ,ZG:SP(S |s,a)(r(s,a,s") + v (s ))) +b
=k'w+ k0" (s) +b'

forallw < w! ands € S\ G, which proves the property.

The valuesv!(s) are monotonically nonincreasing trand
converge as increases to the optimal value$(s). Thus,
the valuesl/; (s)(w) are monotonically nonincreasing in
and converge to

Vi (s)(w) = tlim Vi (s)(w) = tlim (K'w + ko' (s) +b')
=k'w+ k'v*(s) + b
for all w < w' ands € S\ G. The error of valud//; (s)(w)
is therefore
Vi (s)(w) = Vi (s) (w)| = Vi (s) (w) — Vi (s)(w)
= k! (vt(s) — v*(s))

forallw < w! ands € S\G. This error is no larger than>
0 forall t > ¢* provided thak' max,cg (v (s) — v*(s)) <
e. If k' = 0, then we can simply usg = 0. Otherwise, one
can easily find a* with the desired property since the values
v¥(s) andv*(s) can be calculated with (regular) value iter-
ation and policy iteration, respectively, for maximizirget
expected total reward of the given MDP (Puterman, 1994).

We now show by transfinite induction om that the
error of all valuesV}:(s)(w) is no larger thane for all

w e Ry ands € S\ Gif t > ¢4 |womax(ww))
wherer = max,cs\g,aca,ses 7(5,a,s"). We have already
shown that this property holds far € (—oo,w!] since
t >+ [w} impliest > t*. Assume that
it holds forw € (—_oo,w) with @ > w!. We now show that
it then also holds fow = . If t > t*+ [M} =

t + [L;ﬂ , then

Vi(s)() = max 37 P(s'|s, )V ()0 4 (s, a, )
s'eS

< max Z P(s'|s,a) (Vi (s') (@ +7(s,a,8")) +€)
s'esS
= max P(s'|s,a)Vi (s (@ +7(s,a,8)) + e

acA
s'es

= Vi (s)(@) + e,
where the preceeding inequality holds due to the induction
assumption since, firsty + r(s,a,s’) < w and thusw +
r(s,a,s") € (—oo,w) and, second,

T 1
b1z | Y ﬂ_bfqﬂ_&l
r r
-1 . /
Sty w (w—|—r(s,a,s))-‘
r
- [w! — max(d + (s, a,s),w")

r
This proves the property, which implies that the error of all
valuesV/,(s)(w) is no larger thare for all w € R; and

s e S\Gift >+ [“ﬂ Thus, we have derived a

termination condition of functional value iteration for RW
utility functions.

We now consider PWLinex value functions in a similar
fashion, starting withw < w?. The values(s) atiterationt
of (regular) value iteration for maximizing the expectetto
utility of the given MDP for the exponential utility functio

U(w) = —y™ are defined by the system of equations
ve(s) = —1 ses
() -1 seqG

v S) = / r(s,a,8") to 1
e max JESP(S |s, @)y ve(s) ¢ G

for all t € Ny (Patek, 2001). Then, one can show by
induction ont that V5 (s)(w) = c'vi(s)y¥ + b' for all

w < w', s € §\ Gandt € Ny. The valuesv(s)
are monotonically nonincreasing ihand converge ag
increases to the optimal valueg(s). Thus, the values
Vi (s)(w) are monotonically nonincreasing inand con-
verge toVi(s)(w) = ctog(s)y? + o' for all w < w!
ands € S\ G. The error of valueV},(s)(w) is there-
fore |Vt (s) (w) — Vi3 (s)(w)| = Vii(s)(w) — Vi (s)(w) =
ct (vi(s) —vi(s)) Y. Itis difficult to find a termination
condition for functional value iteration becaugéincreases
unbounded as decreases. We therefore simply run func-
tional value iteration until thev?, k%, ¢’ andb® parameters
of the representations of the PWLinex value functions con-
verge numerically, which implies that all valu&g (s)(w)
have converged numerically.

Approximating Value Functions

Consider two arbitrary monotonically nondecreasing tytili
functionsU andU’. We now show that the two optimal
value functiond/;;(s) andV/}, (s) are close to each other if
the two utility functions are close to each other. More for-
mally, we show thad < V(s)(w) — V5, (s)(w) < e for
all s € Sandw € Ry if 0 < U(w) — U'(w) < € for all
w € Ry. Thisimplies that one can approximate the optimal
value functionV;;(s) for a given utility functionU by us-
ing functional value iteration to calculate the optimalual
function V3, (s) for a utility functionU’ that approximates
utility function U.

We prove by induction ort that 0 < V{(s)(w) —
Vhi(s)(w) < eforalls € S, w € Ry andt € Ny if
0 < U(w) —U'(w) < eforallw € R,. This prop-
erty holds trivially fort = 0 sinceV%(s)(w) = U(w) and
Vo (s)(w) = U'(w) foralls € Sandw € Ry. As-
sume that it holds for some iteratien It holds trivially for
s € G at iterationt + 1 sinceV,:"!(s)(w) = U(w) and
Vi (s)(w) = U'(w) forall s € G andw € Ry . Further-
more,

Vet (s) (w) = max 37 P(s'[s, a)ViE(s) (w4 (s, 0,5)
s'eS

> max P(s'|s,a) Vi (s") (w + r(s,a, "))

acA
s'eS
= Vi (s)(w)
and
Vit (s)(w) = max P(s']s,a)Vir(s) (w + r(s,a,5"))

s'eS



Figure 1: Sandwich method

! t / !
< max ZGISP(S Is,a) (Vo (s ) (w+r(s,a,s")) +€)
= max P(s'|s,a)Vi (8 (w +r(s,a,s)) + €

acA
s'eS

= V5! (s)(w) +e
forall s € S\ G andw € R;. Thus, it holds thad <
VI (s) (w) — VEFY (s)(w) < eforall s € S, w € Ry and
t € Ny. All values converge asincreases and it follows that
0 < Vi(s)(w) — Vi (s)(w) < eforalls € Sandw € Ry .

Approximating Utility Functions

We now show how to approximate given utility functiolis
from above with piecewise-linear utility functiord (with
and without exponential tails) so that the erttw) — U (w)

is no larger thar for all w € R . Utility functionsU can
be approximated closely by PWL utility functions if they are

asymptotically linear, that is, if there exist constaits> 0
andb_ such that

wEr{loo (U(w) — k—w) =b_.

We first find an upper PWL approximation of utility function
U for w < w' with a valuew! to be determined. There
exists a constant_ such that for allv < w_

b,—ggU(w)—k,wgb,+§
U(w)gkz,w+b,+% <Uw) +e

Forw < w_, the linear functio®/y (w) = k_w+b_+ § is
thus an upper PWL approximation of utility functiéhwith
an error that is no larger than We setw' = w_.

We now find an upper PWL approximation of utility func-
tion U for w > w_. We first assume that utility functioti
for w > w_ can be divided into a finite number of seg-

(a) Approximating the two parts (b) Removing discontinuity
Figure 2: Approximating asymptotically linear utility fations

per PWL approximation, for example, consists of the line
segmentsiD andD B, and the second lower PWL approxi-
mation consists of the line segment&’, ED, DF andF'B.
(The line segment& D and D F' can then be joined into one
line segmentEF.) The upper PWL approximation of the
segment of the utility function shares its end points with th
end points of the segment itself. Thus, for> w_, the up-
per PWL approximations of all segments of utility function
U form a continuous upper PWL approximation of util-
ity functionU of any desired error, including an error that is
no larger than.

We now put the upper PWL approximatiobis (for w <
w_) andU, (for w > w_) together to an upper PWL ap-

proximationU of utility function U for all w € R, . We
cannot use

T(w) = {El(w) w € (—oo, w_]
Uz(w) we (w-,0]
as an upper PWL approximation with an error that is no
larger thane (given that its two parts have at most this er-
ror) because this approximation can be discontinuous and
not monotonically nondecreasingiat= w_, as Figure 2(a)
shows. Thus, we use

T(w) = {U1(w)_ B w € (—oo,w_]
max(Ui(w-),Uz(w)) w € (w—,0]

as a PWL approximation that is continuous and monoton-
ically nondecreasing. The only difference between
this PWL approximation and the previous one is if
max(Uq(w-),Us(w)) = Uj(w-) for some w €
(w_,0]. It then holds thatd < Us(w) — U(w) <
max(Uy(w-),Uz(w)) — U(w) = Ui(w-) — U(w) <
U(w-) + ¢ — U(w) < e because the utility functiod/
is monotonically nondecreasing. Thus, the PWL approxi-
mationU is indeed an upper PWL approximation of utility
functionU with an error that is no larger than

ments so that each segment is either convex or concave. The Now assume that functional value iteration runs on the
sandwich method can then be used to find an upper PWL ypper PWL approximatio®y of utility function U for a suf-

approximation for each segment (Rote, 1992), as illugdrate
in Figure 1 for the segmem B of the utility function rep-
resented by the thick curve. The first upper PWL approx-
imation consists of the line segmeA3 that connects the
two endpoints of the segment. The first lower PWL approx-
imation consists of the line segmem¢’ andC B that are
part of the tangent lines at the two endpoints, respectively
with intersection pointC. If the error of the upper PWL
approximation is greater thanthe sandwich method is re-
cursively applied to the two segmentsD and DC of the
utility function, whereD is the point on the utility function
that has the same coordinate as point’. The second up-

ficient number of iterations (as determined earlier) so that
the error is at most. Then,
0<U(w) =U(w) <
0 < Vg(s)(w) = Vo
0 < Vi(s)(w) = Vi
and thus
0 < ViE(s)(w) — Vi (s)(w) < 2e.
forallw € Ry ands € S. Therefore, the resulting value

functions for the upper PWL approximatidi of utility
function U are upper approximations of the optimal value
functions for the utility function itself, with an error thés



Table 1: Optimal values for hard deadlinés

-

Figure 3: Probabilistic blocksworld

[0,—2)|[—2,—3)[—3,—4)[-4,—5)[—5,—6)|[-6,—7)|[[=7,—0)
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is § = {V\BBW B}. We use functional value iteration to find
a plan that maximizes its expected total utility for evegrst
state for utility functions that model a preference for com-
pleting the task by a given deadline (Haddawy & Hanks,
1992). Deadlines can be either hard or soft:

¢ If the deadline is hard, then the utility of completing the

no larger thar2e. This is the main result of this paper.

One can also derive a lower PWL approximatignof
utility function U of errore in an analogous way (Liu, 2005)
and then run functional value iteration on the lower PWL
approximatiorUU for a sufficient number of iterations so that
the error is at most. Then,

—e<U(w)—U(w) <0 task after the deadline sharply drops to zero. Consider a
x x hard deadline of: time units. The corresponding utility
—e < — <
= V%(s)(w) Vi(s)(w) =0 function has a step at = —z, as shown in Figure 4(a).
0 < Vy(s)(w) = Vy(s)(w) < e Table 1 shows the optimal valusg; () = V;#(8)(0) of
—e < Vi (s)(w) — Vi (s)(w) < e the start configuration of blocks with wealth level zero for

forallw € Ry ands € S. Thus, there is a trade-off. The
resulting value functions for the lower PWL approximation
of the utility function are not necessarily lower approxima
tions of the optimal value functions for the utility funatio
itself but have an error that is no larger tharather thare.

Finally, utility functionsU can be approximated closely
by piecewise linear utility functions with exponentiallgai
if they are asymptotically exponential, that is, if therésex
constant$ < v < 1, k_ < 0 andb_ such that

limOQ (U(w) = k—~y")=b_.

We can find upper and lower PWL approximatidisand

the probabilistic blocksworld as determined by functional
value iteration. These values correspond to the probabil-
ities of being able to complete the task by the deadline.
For example, the optimal value is one fér< —7 be-
cause painting the two bottom blocks of the four-block
stack and then removing its top block achieves the goal
for sure with a total reward of 7. Similarly, the optimal
value is zero fof) < d < —2 because there is no way of
achieving the goal with a total reward e or larger.

If the deadline is soft, then the utility decreases graguall
after the deadline. Soft deadlines can be modeled with a

variety of utility functions, depending on how the utility
decreases after the deadline. We consider the three utility
functions shown in Figure 4, namely (b) the linear case,
where the utility decreases linearly after the deadline

(c) the exponential case, where the utility decreases ex-
ponentially after the deadliné and (d) the mixed case,
where the utility decreases linearly after the earlier dead
line d and exponentially after the later deadlifié

Figure 7 shows the optimal plans for various utility func-
tions. The optimal plans include only configurations of
blocks that are reachable from the start configuration of
blocks. We chose the parameters of the utility functions
planners (Koenig & Simmons, 1994). Our probabilis- S° that diffe_rent plans result: _(a) is a hard_deadline with
tic blocksworld is identical to the standard deterministic ¢ = —5. (b) Is a soft deadline (linear case) with= —6.75
blocksworld except that one can execute two kinds of ac- andd” = —7.75, () is a soft deadline (exponential case)
tions in each configuration of blocks and their effects can with v = 0.60, d = —6.90 and_d = —7.90, and (d) is

be nondeterministic. In particular, the move action sudsee & Soft deadline (mixed case) with = 0.60, d = —6.50,

only with probability 0.5. When it fails, the block drops ¢ = —7.50@ndd” = —10.50. The optimal plan for case (d)
directly onto the table. (Thus, moving a block to the table SNOWs that different actions can be optimal in the same con-
always succeeds.) There is also a paint action that changesfiguration of blocks depending on the current wealth level (=
the color of any one block and always succeeds. The move {iMme units spent). Itincludes only conditions that are heac
action takes one time unit to execute and thus has a reward of 20!€ from the start configuration of blocks with zero wealth
—1,and the paint action takes three time units to execute and |€vel underthe optimal plan. Figure 5 shows the correspond-
thus has a reward of3. Figure 3 shows the start configura- "9 Optimal value function§7; (s) for case (), and Figure 6
tion of blocks. The goal is to build a stack of three blocks: SNOWS the corresponding optimal value functidfigs) for
black (at the bottom), white, and black (on top). The remain- €@se (b).
ing two blocks can be anywhere and can have any color. The
probabilistic blocksworld example has 162 states, which we Related Work

describe as a set of stacks by listing the blocks in each stack Most research is on decision-theoretic planners that maxi-
from bottom to top, usingVfor a white block and for a mize the expected total reward, which is equivalent to max-
black block. The start configuration of blocks, for example, imizing the expected total utility for linear utility funicins.

U with exponential tails for a given asymptotically expo-
nential utility functionU so that the error§/ (w) — U(w)
andU(w) — U(w) are no larger thar for all w € R; by
proceeding in an analogous way as above. We can then run
functional value iteration on the upper or lower PWL ap-
proximations with exponential tails to approximate the-opt
mal value functions for the utility function itself, as be¢o

The details can be found in (Liu, 2005, Chapter 4).

Probabilistic Blocksworld with Deadlines

We now apply functional value iteration to a probabilistic
blocksworld, a standard test domain for decision-theoreti
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However, some decision-theoretic planners maximize the
expected total utility: First, Loui (1983) discussed metho
for maximizing the expected total utility but only for MDPs

with deterministic action
Murthy & Sarkar (1996,
efficient methods for spe

s (whose rewards are stochastic)
1997, 1998) discussed even more
cial cases of this scenario. Second

Koenig & Simmons (1994), Koenig & Liu (1999), Denardo
& Rothblum (1979) and Patek (2001) discussed methods for
maximizing the expected total utility but only for exponen-

tial utility functions. Third,

methods for maximizing

Yu, Lin, & Yan (1998) discussl
the expected total utility but only

for utility functions that are step functions. They alsasa

formed a given MDP into

an augmented MDP but their aug-
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Figure 7: Optimal plans

mented MDP is different from ours. Fourth, White (1987)
and Kerr (1999) discussed methods for maximizing the ex-
pected total utility for arbitrary utility functions but &nfor
finite time horizons. Finally, Dolgov & Durfee (2004) dis-
cussed approximation methods for evaluating (rather than
maximizing) the expected total utility of a given statiopar



policy using Legendre polynomials.

Some decision-theoretic planners use piecewise approxi-
mations of the value functions but so far only for maximiz-
ing the expected total reward: First, Li & Littman (2005)

discussed methods that use piecewise constant functions to

approximate the value functions of finite horizon continsiou
state MDPs. Second, both Poupertal. (2002) and Pyna-
dath & Marsella (2004) discussed methods that use piece-
wise linear functions to approximate the value functions of
factored MDPs but their piecewise linear functions are-deci
sion trees with linear functions at the leaves.

Conclusions and Future Work

Functional value iteration is a powerful tool for finding pta
that maximize the expected total utility for MDPs. A variety
of decision-theoretic planners use (regular) value iienat

in combination with other techniques to maximize the ex-
pected total reward for MDPs efficiently. Examples include
LAO* (Hansen & Zilberstein, 2001) and SPUDD (Hoey

al., 1999). Functional value iteration, together with the ap-
proximation techniques presented in this paper, can replac
(regular) value iteration in these decision-theoretiopkrs

to create versions of them that efficiently maximize the ex-
pected total utility for a large class of utility functiong/e

are currently in the process of implementing such decision-
theoretic planners.
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