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Abstract

Grids with blocked and unblocked cells are often used to
represent terrain in computer games and robotics. However,
paths formed by grid edges can be sub-optimal and unreal-
istic looking, since the possible headings are artificially con-
strained. We present Theta*, a variant of A*, that propagates
information along grid edges without constraining the paths
to grid edges. Theta* is simple, fast and finds short and real-
istic looking paths. We compare Theta* against both Field
D*, the only other variant of A* that propagates informa-
tion along grid edges without constraining the paths to grid
edges, and A* with post-smoothed paths. Although neither
path planning method is guaranteed to find shortest paths, we
show experimentally that Theta* finds shorter and more real-
istic looking paths than either of these existing techniques.

Introduction

We are interested in path planning for computer games and
robotics, where a two-dimensional continuous terrain is dis-
cretized into square cells that are either blocked (grey) or un-
blocked (white). Our goal is to find a short and realistic look-
ing path from the start location to the goal location (both at
the corners of cells) that does not pass through blocked cells,
as shown in Figure 1. We assume for ease of description that
the path can pass through diagonally touching blocked cells.
Many methods for discretizing continuous terrain have been
investigated in computer science (Choset et al. 2005), all of
which attempt to balance the inherent tradeoff between two
conflicting criteria, namely the path planning runtime and
the length of the resulting path:

• Visibility Graphs: Visibility graphs contain the start ver-
tex, the goal vertex and the corners of all blocked cells
(Lozano-Pérez & Wesley 1979). A vertex is connected
via a straight line to another vertex if and only if it has
line-of-sight to the other vertex, that is, the straight line
from it to the other vertex does not pass through a blocked
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Figure 1: Visibility Graph (L) and Eight-Neighbor Grid (R)

cell. The shortest paths on visibility graphs are also short-
est paths in the continuous terrain, as shown in Figure 1
(left). However, path planning is slow on large visibility
graphs since the number of edges can be quadratic in the
number of cells. More sophisticated path planning meth-
ods can find shortest paths faster. Their runtime complex-
ity, however, remains super-linear in the number of cells
(Mitchell & Papadimitriou 1991).

• Grids: Path planning is faster on grids than visibility
graphs, since the number of edges is linear in the num-
ber of cells. However, paths formed by grid edges can
be sub-optimal and unrealistic looking since the possible
headings are artificially constrained (Yap 2002), as shown
in Figure 1 (right).

We present Theta*, a variant of A*, which compromises
between these two extremes. Theta* propagates information
along grid edges (to achieve a short runtime) without con-
straining the paths to grid edges (to find “any-angle” paths).
We show that Theta* is simple, fast and finds short and real-
istic looking paths.

Notation

We assume an eight-neighbor grid throughout this paper,
where S is the set of all grid vertices, sstart ∈ S is the start
vertex of the search, and sgoal ∈ S is the goal vertex of
the search. succ(s) ⊆ S is the set of neighbors of s ∈ S
that have line-of-sight to s. c(s, s′) is the straight-line dis-
tance between s and s′ (both not necessarily vertices), and
lineofsight(s, s′) is true if and only if they have line-of-sight.

A*

All path planning methods discussed in this paper build upon
A* (Hart, Nilsson, & Raphael 1968), shown in Algorithm
1.1 [Statements in square brackets are to be ignored for

1open.Insert(s, x) inserts vertex s with key x into open.
open.Remove(s) removes vertex s from open. open.Pop() removes
a vertex with the smallest key from open and returns it.



Main()1

g(sstart) := 0;2

parent(sstart) := sstart;3

open := ∅;4

open.Insert(sstart, g(sstart) + h(sstart));5

closed := ∅;6

while open 6= ∅ do7

s := open.Pop();8

if s = sgoal then9

return “path found”;10

closed := closed ∪ {s};11

[UpdateBounds(s)];12

foreach s′ ∈ succ(s) do13

if s′ 6∈ closed then14

if s′ 6∈ open then15

g(s′) := ∞;16

parent(s′) := NULL;17

UpdateVertex(s, s′);18

return “no path found”;19

end20

UpdateVertex(s,s’)21

if g(s) + c(s, s′) < g(s′) then22

g(s′) := g(s) + c(s, s′);23

parent(s′) := s;24

if s′ ∈ open then25

open.Remove(s′);26

open.Insert(s′, g(s′) + h(s′));27

end28

Algorithm 1: A*

now.] To focus its search, A* uses h-values h(s) that ap-
proximate the goal distances of the vertices s ∈ S. We use
the consistent octile distances in the experiments, that is, the
shortest distance on an eight-neighbor grid without blocked
cells. A* maintains two values for every vertex s: (1) The
g-value g(s), which is the length of the shortest path from
the start vertex to s found so far. (2) The parent parent(s),
which is used to extract the path after the search halts. Path
extraction is done by repeatedly following the parent point-
ers from the goal vertex to the start vertex. A* also main-
tains two global data structures: (1) The open list, a priority
queue that contains vertices to be considered for expansion.
(2) The closed list, which contains vertices that have already
been expanded and ensures that each vertex is expanded only
once. A* updates the g-value and parent of an unexpanded
successor s′ of vertex s (procedure UpdateVertex) by con-
sidering the path from the start vertex to s [= g(s)] and from
s to s′ in a straight line [= c(s, s′)], resulting in a length of
g(s) + c(s, s′). It updates the g-value and parent of s′ if
this new path is shorter than the shortest path from the start
vertex to s′ found so far [= g(s′)].

A* with Post-Smoothing

Paths formed by grid edges can be sub-optimal and unreal-
istic looking. A simple approach to improving the paths is
to smooth the path found by A* in a post-processing step.
A* with Post-Smoothing (A* PS) first runs A* to find a path
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Figure 2: Sub-Optimality of A* with Post-Smoothing

s0, s1, . . . , sn formed by grid edges, and then smoothes the
path as follows (Botea, Müller, & Schaeffer 2004): A* PS
uses the first vertex on the path (s0) as the current vertex.
A* PS checks whether the current vertex (s0) has line-of-
sight to the parent of its parent on the path (s2). If so, A*
PS removes the parent (s1) of the current vertex from the
path and repeats the procedure by checking again whether
the current vertex (s0) has line-of-sight to the parent of its
parent on the path (s3), and so on. If not, A* PS uses the
parent (s1) of the current vertex as the current vertex and re-
peats the procedure by checking whether the current vertex
(s1) has line-of-sight to the parent of its parent on the path
(s3), and so on. To focus its search, we use the consistent
straight-line distances h(s) = c(s, sgoal) in the experiments
since the octile distances find paths that are less effectively
shortened by this post smoothing technique. A* PS finds
significantly shorter paths than A* but is not guaranteed to
find shortest paths, as shown in Figure 2. A* finds the path
shown in the figure (since it is a shortest path formed by grid
edges), and the smoothing method cannot shorten this path.
However, the shortest path is A7, C3 and D1. We there-
fore develop smarter path planning methods, called Basic
and Angle-Propagation Theta*, that consider paths that are
not constrained to grid edges during the search and can thus
make more informed decisions during the search.

Basic Theta*

The key difference between Theta* and A* is that Theta*
allows the parent of a vertex to be any vertex, unlike A*
where the parent must be a successor. We first introduce a
basic variant of Theta* (Basic Theta*), shown in Algorithm
2. Procedure Main is identical to that of Algorithm 1 and
thus is not shown. [Statements in square brackets are still
to be ignored.] To focus its search, we use the consistent
straight-line distances h(s) = c(s, sgoal) in the experiments
since the octile distances can overestimate the goal distances
when paths are not constrained to grid edges. Figure 3 shows
a trace of Basic Theta*. The vertices are labeled with their g-
values and their parents. The hollow circle indicates which
vertex is currently being expanded, and the solid circles in-
dicate vertices that have already been expanded. The start
vertex A4 is expanded first (left) and B3 is expanded next
(right).

Basic Theta* is identical to A* except that Basic Theta*
updates the g-value and parent of an unexpanded successor
s′ of vertex s (procedure UpdateVertex) by considering the
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Figure 3: Example Trace of Basic Theta*

UpdateVertex(s,s’)29

if lineofsight(parent(s), s′) then30

/* Path 2 */31

if g(parent(s)) + c(parent(s), s′) < g(s′) then32

g(s′) := g(parent(s)) + c(parent(s), s′);33

parent(s′) := parent(s);34

if s′ ∈ open then35

open.Remove(s′);36

open.Insert(s′, g(s′) + h(s′));37

else38

/* Path 1 */39

if g(s) + c(s, s′) < g(s′) then40

g(s′) := g(s) + c(s, s′);41

parent(s′) := s;42

if s′ ∈ open then43

open.Remove(s′);44

open.Insert(s′, g(s′) + h(s′));45

end46

Algorithm 2: Basic Theta*

following two paths:

• Path 1: As done by A*, Basic Theta* considers the path
from the start vertex to s [= g(s)] and from s to s′ in a
straight line [= c(s, s′)], resulting in a length of g(s) +
c(s, s′) (line 40).

• Path 2: To allow any-angle paths, Basic Theta* also
considers the path from the start vertex to parent(s) [=
g(parent(s))] and from parent(s) to s′ in a straight line [=
c(parent(s), s′)], resulting in a length of g(parent(s)) +
c(parent(s), s′) if s′ has line-of-sight to parent(s) (line
32). The idea behind considering Path 2 is that Path 2 is
no longer than Path 1 due to the triangle inequality if s′

has line-of-sight to parent(s).

Basic Theta* updates the g-value and parent of s′ if either
path is shorter than the shortest path from the start vertex
to s′ found so far [= g(s′)]. For example, consider Figure
3 (right) where B3 (with parent A4) gets expanded. B2 is
an unexpanded successor of B3 which does not have line-of-
sight to A4 and thus is updated according to Path 1. C3 is an
unexpanded successor of B3 which does have line-of-sight
to A4 and thus is updated according to Path 2.

Basic Theta* (without a closed list) can re-expand vertices
even if the h-values are consistent because the f -values of
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Figure 4: Mistakes of Basic Theta*

the expanded vertices are not guaranteed to be monotoni-
cally non-decreasing over time. The closed list prevents Ba-
sic Theta* from re-expanding vertices, which makes it faster
but the path slightly longer.

Basic Theta* is simple, fast and finds short and realistic
looking paths, but is not guaranteed to find shortest paths
(even if it re-expands vertices), as shown in Figure 4. Basic
Theta* does not find shortest paths from the start vertex E1
to the two vertices marked with an X (but even these paths
are less than 0.2 percent longer than minimal). The reason
for this is that a vertex p can only become the parent of an-
other vertex s if either p is a successor of s (Path 1) or p is
the parent of a successor of s (Path 2). D8 should be the
parent of C10 since this results in a shortest path from the
start vertex E1 to C10. However, none of the successors of
C10 have D8 as a parent since the shortest paths from the
start vertex E1 to them move around the blocked cell in dif-
ferent ways. For example, C7 is correctly the parent of C9,
and E1 is correctly the parent of D9. Similarly, E1 should
be the parent of B9 but none of the successors of B9 have
it as a parent because none of them have line-of-sight to E1
through the small gap formed by the two blocked cells.

Angle-Propagation Theta*

Basic Theta* needs to perform many line-of-sight checks,
whose runtime per vertex expansion can be linear in the
number of cells, which can potentially degrade its runtime.
Angle-Propagation Theta* (AP Theta*) performs the line-
of-sight checks in constant time per vertex expansion by cal-
culating and maintaining angle ranges incrementally prior
to expanding vertices, as shown in Algorithm 3. Proce-
dure Main is identical to that of Algorithm 1 and thus is
not shown. [Statements in square brackets are now to be ex-
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Figure 5: Example Trace of Angle-Propagation Theta* (AP Theta*)

ecuted.] Figure 5 shows a trace of AP Theta*, where the
vertices are now also labeled with the angle ranges.

Angle Ranges

AP Theta* maintains two additional values for each vertex s:
a lower angle bound lb(s) and an upper angle bound ub(s)
that together form the angle range [lb(s), ub(s)]. To explain
their meaning, we need to define Θ(s, p, s′), which gives
Theta* its name. Θ(s, p, s′) denotes the angle ∠(s, p, s′)
in the range [−180◦, 180◦). This angle is positive if the
ray from p through s′ is strictly counterclockwise of the
ray from p through s. Now consider a vertex s with suc-
cessor s′. By constraining the angle range of s appro-
priately, AP Theta* maintains the following invariant: If
lb(s) ≤ Θ(s, parent(s), s′) ≤ ub(s) then s′ is guaranteed
to have line-of-sight to parent(s) (line 48).

For example, in Figure 5 (left), lb(B3) = 0◦ and
ub(B3) = 45◦. Θ(B3, A4, C3) = 18◦ and thus C3 is
guaranteed to have line-of-sight to A4. On the other hand,
Θ(B3, A4, B2) = −18◦ and thus B2 is not guaranteed to
have line-of-sight to A4. AP Theta* thus assumes that B2
does not have line-of-sight to A4.

Maintaining Angle Ranges

AP Theta* constrains the angle range of a vertex s before it
expands the vertex, based on its adjacent cells and successor
vertices if s 6= sstart.

First, AP Theta* uses any blocked cells c adjacent to ver-
tex s to constrain the angle range of the vertex s being ex-
panded (line 68). If each corner s′ of c satisfies the fol-
lowing condition (Condition 1): (1) parent(s) = s′ or (2)
Θ(s, parent(s), s′) < 0◦ or (3) Θ(s, parent(s), s′) = 0◦

AND c(parent(s), s′) ≤ c(parent(s), s), then AP Theta* as-
sumes that vertices do not have line-of-sight to parent(s)
if the rays from parent(s) through them are clockwise
of the ray from parent(s) through s. It therefore sets
lb(s) = 0◦. Likewise, if each corner s′ of c satis-
fies the following condition: (1) parent(s) = s′ or (2)
Θ(s, parent(s), s′) > 0◦ or (3) Θ(s, parent(s), s′) = 0◦

AND c(parent(s), s′) ≤ c(parent(s), s), then AP Theta*
assumes that vertices do not have line-of-sight to parent(s)
if the rays from parent(s) through them are counterclock-
wise of the ray from parent(s) through s. It therefore sets
ub(s) = 0◦.

For example, in Figure 5 (left), AP Theta* constrains the
lower angle bound of B3 using this property. All corners of
the blocked cell that B3 is adjacent to satisfy Condition 1.

AP Theta* thus assumes that vertices do not have line-of-
sight to A4 if the rays from A4 through them are clockwise
of the ray from A4 through B3. It therefore sets lb(B3) =
0◦.

Second, AP Theta* uses any successor s′ of vertex s to
constrain the angle range of the vertex s being expanded,
if s′ satisfies the following condition (Condition 2): (1) s′

is unexpanded or has a parent other than parent(s) and (2)
s′ is closer to parent(s) than s itself and (3) s′ is not equal
to parent(s) (line 73). Such vertices have no line-of-sight
information regarding parent(s), yet it would be important
to propagate such information from them to s. AP Theta*
therefore assumes conservatively that s′ barely has line-of-
sight to parent(s). This assumption might over constrain the
angle range, but avoids paths that pass through blocked cells.

For example, in Figure 5 (left), AP Theta* constrains the
upper angle bound of B3 using this property. B4 is a succes-
sor of B3, that is unexpanded, closer to A4 than B3 and not
equal to A4. Thus it satisfies Condition 2. AP Theta* there-
fore assumes that B4 barely has line-of-sight to A4, and sets
ub(B3) = Θ(B3, A4, B4) = 45◦.

Third, AP Theta* uses any successor s′ of vertex s to con-
strain the angle range of the vertex s being expanded, if s′

satisfies the following condition (Condition 3): (1) s′ is ex-
panded and (2) s′ has parent parent(s) and (3) s 6= sstart

(line 79). Such vertices have line-of-sight information re-
garding parent(s), and it is important to propagate such in-
formation from them to s. AP Theta* therefore tightens the
angle range of s by intersecting it with the angle range of s′.

For example, in Figure 5 (right), AP Theta* constrains
the lower angle bound of C2 using this property. B3 is a
successor of C2, that is expanded, has the same parent as
C2 and is not equal to A4. Thus it satisfies Condition 3.
AP Theta* therefore intersects their angle ranges and sets
lb(C2) = 0◦.

Updating g-values and Parents

AP Theta* updates the g-value and parent of an unexpanded
successor s′ of vertex s by considering the following two
cases:

• Path 2: First, AP Theta* considers Path 2 (line 50) as de-
fined for Basic Theta* and updates the g-value and parent
of s′ in the same way. In Figure 5 (left), C3 is updated
this way.

• Path 1: Otherwise, AP Theta* considers Path 1 (line 58)
as defined for Basic Theta* and A* and updates the g-



UpdateVertex(s,s’)47

if s 6= sstart AND lb(s) ≤ θ(s, parent(s), s′) ≤ ub(s) then48

/* Path 2 */49

if g(parent(s)) + c(parent(s), s′) < g(s′) then50

g(s′) := g(parent(s)) + c(parent(s), s′);51

parent(s′) := parent(s);52

if s′ ∈ open then53

open.Remove(s′);54

open.Insert(s′, g(s′) + h(s′));55

else56

/* Path 1 */57

if g(s) + c(s, s′) < g(s′) then58

g(s′) := g(s) + c(s, s′);59

parent(s′) := s;60

if s′ ∈ open then61

open.Remove(s′);62

open.Insert(s′, g(s′) + h(s′));63

end64

UpdateBounds(s)65

lb(s) := −∞; ub(s) := ∞;66

if s 6= sstart then67

foreach blocked cell b adjacent to s do68

/* Condition 1 */69

update lb(s) and ub(s) (see main text);70

foreach s′ ∈ succ(s) do71

/* Condition 2 */72

if (s′ 6∈ closed OR parent(s) 6= parent(s′)) AND73

c(parent(s), s′) < c(parent(s), s) AND parent(s) 6= s′

then

if θ(s, parent(s), s′) < 0 then74

lb(s) := max(lb(s), θ(s, parent(s), s′));75

if θ(s, parent(s), s′) > 0 then76

ub(s) := min(ub(s), θ(s, parent(s), s′));77

/* Condition 3 */78

if s′ ∈ closed AND parent(s) = parent(s′) AND79

s′ 6= sstart then

if lb(s′) + θ(s, parent(s), s′) ≤ 0 then80

lb(s) :=81

max(lb(s), lb(s′) + θ(s, parent(s), s′));

if 0 ≤ ub(s′) + θ(s, parent(s), s′) then82

ub(s) :=83

min(ub(s), ub(s′) + θ(s, parent(s), s′));

end84

Algorithm 3: Angle-Propagation Theta* (AP Theta*)

value and parent of vertex s′ in the same way. In Figure 5
(left), B2 is updated this way.

Properties

We can prove that AP Theta* finds a path from the start ver-
tex to the goal vertex if such a path exists, simply because it
considers all grid edges. Furthermore, this path indeed does
not pass through blocked cells. (We omit the proof due to
space limitations.) AP Theta* tends to find slightly longer
paths than Basic Theta* because it can over constrain the
angle ranges, which incorrectly rules out some paths.
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Field D*

Field D* (Ferguson & Stentz 2006) (FD*) is the only other
variant of A* that propagates information along grid edges
without constraining the paths to grid edges, as far as we
know. We implemented a non-incremental variant of FD*
that uses A* to search from the start vertex to the goal vertex
instead of D* Lite which searches from the goal vertex to the
start vertex. However, both of these variants find the same
paths. To focus its search, we use the consistent straight-line
distances h(s) = c(s, sgoal) in the experiments.

FD* updates the g-value and parent of an unexpanded
successor s′ of vertex s by considering the paths from the
start vertex to any point X on the perimeter of s′ [= g(X)]
and from X to s′ in a straight line [= c(X, s′)], resulting
in a length of g(X) + c(X, s′). It updates the g-value and
parent of s′ if this new path is shorter than the shortest path
from the start vertex to s′ found so far [= g(s′)]. For ex-
ample, the perimeter of s′ = B4 is formed by connecting
all of the neighbors of B4 and shown in bold in Figure 6.
Consider point X on the perimeter, whose neighbors are B3
and C3. Since g-values are only stored for vertices, the g-
value of X is linearly interpolated using g(B3) = 2.41 and
g(C3) = 2.00 to get g(X) = 0.55 × 2.41 + 0.45 × 2.00 =
2.23. This value is too small, for a simple reason: There
are short paths from the start vertex C1 to B3 (around the
blocked cell in the clockwise direction) and from the start
vertex C1 to C3 (around the blocked cell in the counter-
clockwise direction). Thus, linear interpolation concludes
that there must also be an equally short path from the start
vertex C1 to X, which is not the case. It turns out that X
minimizes g(X ′) + c(X ′, B4) among all points X ′ on the
perimeter of B4 and thus becomes the parent of B4. The
path found by FD* in Figure 6 demonstrates that path extrac-
tion for FD* must be done with care and that the paths found
by FD* are susceptible to unnecessary heading changes. The
authors of FD* recognize this problem and suggest to use a
one-step lookahead method during path extraction (Fergu-
son & Stentz 2006). This smoothing method allows FD* to
avoid some of the unnecessary heading changes, like the one
in Figure 6, but does not eliminate all of them. We used it
when generating our experimental results for FD*.

Experimental Results

We now compare the average path lengths and runtimes of
Field D* (FD*), Angle-Propagation Theta* (AP Theta*),



FD* Basic Theta* AP Theta* Shortest Paths A* A* PS
1
0
0
×

1
0
0

Game Maps 41.98 (0.0126) 41.92 (0.0063) 42.01 (0.0070) 41.89 (0.6490) 43.80 (0.0029) 42.00 (0.0060)
Random 0% 51.88 (0.0109) 51.80 (0.0026) 51.80 (0.0034) 51.80 (0.0020) 54.63 (0.0015) 51.80 (0.0057)
Random 5% 48.83 (0.0097) 48.74 (0.0022) 48.74 (0.0038) 48.69 (0.0311) 51.24 (0.0013) 48.99 (0.0048)
Random 10% 50.64 (0.0120) 50.53 (0.0028) 50.54 (0.0051) 50.45 (0.1173) 53.11 (0.0014) 50.91 (0.0054)
Random 20% 48.65 (0.0135) 48.54 (0.0034) 48.55 (0.0065) 48.43 (0.4594) 50.86 (0.0019) 49.04 (0.0054)
Random 30% 50.19 (0.0153) 50.10 (0.0045) 50.11 (0.0081) 49.98 (1.0769) 52.25 (0.0028) 50.61 (0.0058)

5
0
0
×

5
0
0

Game Maps 205.60 (0.1916) 205.28 (0.0988) 206.20 (0.1624) N/A 214.80 (0.0661) 205.64 (0.1040)
Random 0% 259.65 (0.1231) 259.24 (0.0288) 259.24 (0.0113) N/A 273.11 (0.0045) 259.24 (0.1688)
Random 5% 257.19 (0.1538) 256.58 (0.0390) 256.60 (0.0523) N/A 270.40 (0.0053) 259.14 (0.1747)
Random 10% 259.37 (0.1795) 258.62 (0.0577) 258.65 (0.0870) N/A 271.77 (0.0108) 261.62 (0.1783)
Random 20% 258.71 (0.2219) 257.88 (0.0882) 257.93 (0.1384) N/A 270.60 (0.0273) 261.36 (0.1871)
Random 30% 266.49 (0.3207) 265.84 (0.1244) 265.90 (0.2000) N/A 277.57 (0.0628) 269.60 (0.1951)

Table 1: Experimental Results: Path Lengths (in Parenthesis: Run Times)
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Figure 7: Path Length and Run Time (Random Grids 500 ×
500)
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Figure 8: Vertex Expansions (Random Grids 500 × 500)

Basic Theta*, Shortest Paths (computed with A* on visi-
bility graphs), A* (on an eight-neighbor grid), and A* with
Post-Smoothing (on an eight-neighbor grid, A* PS) run on
the same path planning problems. The path planning prob-
lems are characterized by two different grid sizes and six dif-
ferent kinds of grids, namely grids with a given percentage
of randomly blocked cells (random grids) and scaled maps
from the real-time strategy game Baldur’s Gate II (game
maps) (Bulitko, Sturtevant, & Kazakevich 2005). Table 1
summarizes our results, averaged over either 500 path plan-
ning problems for random grids of size 100× 100, 500 path
planning problems for random grids of size 500 × 500 or
118 path planning problems on game maps, with randomly
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Figure 9: Heading Changes (Random Grids 500 × 500)

chosen start and goal vertices in all cases. The path lengths
are given outside of the parentheses, and the runtimes (mea-
sured in seconds) are given inside of the parentheses. All
path planning methods were implemented in C# and exe-
cuted on a 3.7 GHz Core 2 Duo with 2 GByte of RAM. Our
implementations are not optimized for performance and can
possibly be improved. We break ties among vertices with
the same f -values for all path planning methods in favor
of larger g-values (as usual), but in the opposite direction
for AP Theta* and Basic Theta* because this tie-breaking
scheme found shorter paths. It took too long to find the
shortest paths on grids of size 500×500, which is why these
results are omitted from the table. We graphically depict
some relationships for random grids of size 500 × 500 with
different percentages of randomly blocked cells. Figure 7
shows the path lengths and runtimes (from the table), Fig-
ure 8 shows the number of vertex expansions, and Figure 9
shows the number of heading changes on the paths.

We found that Basic Theta* and AP Theta* find much
shorter paths than A* and shorter paths than both FD* and
A* PS on random grids, as expected, and Basic Theta* finds
slightly shorter paths than AP Theta*. For example, on
random grids of size 500 × 500 with 20 percent randomly
blocked cells, Basic Theta* finds shorter paths than A* PS
95 percent of the time, shorter paths than FD* 93 percent
of the time, and shorter paths than AP Theta* 57 percent
of the time (and paths with the same length as AP Theta*
17 percent of the time). Overall, Basic Theta* has the best



Figure 10: Shortest Paths Found by AP Theta*
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Figure 11: Weighted h-Values (Random Grids 100 × 100)

trade-off between path length and runtime among all path
planning methods. In particular, it finds paths of close-to-
minimal lengths faster than any other path planning method.

Both Basic Theta* and AP Theta* find paths of close-
to-minimal lengths. Their paths contain far fewer heading
changes than the paths of FD*, which explains why the FD*
paths are longer and less realistic looking. Because AP
Theta* finds paths of close-to-minimal lengths, it does not
seem to over constrain the angle ranges very often, or the re-
sulting effect on the path lengths is negligible. Figure 10 il-
lustrates how often AP Theta* finds shortest paths. Blocked
cells are represented by black boxes, and the start vertex is
represented by the concentric circles in the lower left corner.
AP Theta* finds shortest paths from the start vertex to all
vertices represented by shaded circles.

It is possible to make both Basic Theta* and AP Theta*
find even shorter paths at the expense of larger runtimes.
Remember that they both use a closed list to prevent the re-
expansion of vertices, which makes them faster at a cost of
slightly longer paths. One can control this effect by using
the h-values h(s) = w × c(s, sgoal) for a constant 0 < w <
1, which is similar to Weighted A* (Pohl 1973) except that
Weighted A* typically uses a constant larger than one. Even
with w = 0 neither version of Theta* finds shortest paths as
we showed earlier in Figure 4. Figure 11 shows the effect
of different values for w on path length, for the same 500
random grids of size 100 × 100 with 20 percent randomly
blocked cells.

Conclusions

In this paper, we introduced Theta*, a path planning method
that propagates information along grid edges without con-

straining the paths to grid edges. Theta* is simple, fast
and finds short and realistic looking paths. A* with Post-
Smoothing and Field D* are more general than Theta*. For
example, they can be applied to grids whose cells have dif-
ferent sizes and traversal costs. However, Basic Theta*
found shorter paths for our path planning problems faster
than both A* with Post-Smoothing and Field D*, without
complicated path extraction or smoothing methods. As op-
posed to A* and A* with Post-Smoothing, Theta* consid-
ers paths that are not constrained to grid edges during the
search and can thus make more informed decisions during
the search. As opposed to Field D*, Theta* exploits the
fact that shortest paths for our path planning problems have
heading changes only at the corners of blocked cells, which
allows it to eliminate long and unrealistic looking paths from
consideration.

Future research will be directed towards reducing the
length of the paths Theta* finds, by exploiting our under-
standing of the causes for its sub-optimality. In addition,
future research will also be directed towards introducing an
incremental variant of Theta* to support re-planning and ex-
tending Theta* to grids whose cells have non-uniform sizes
and traversal costs.
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