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Abstract

Sequential single-item auctions can be used for the dis-
tributed allocation of tasks to cooperating agents. We study
how to improve the team performance of sequential single-
item auctions while still controlling the agents in real time.
Our idea is to assign that task to agents during the current
round whose regret is large, where the regret of a task is de-
fined as the difference of the second-smallest and smallest
team costs resulting from assigning the task to the second-
best and best agent, respectively. Our experimental results
show that sequential single-item auctions with regret clear-
ing indeed result in smaller team costs than standard sequen-
tial single-item auctions for three out of four combinations
of two different team objectives and two different capacity
constraints (including no capacity constraints).

Introduction
We study the distributed allocation of tasks to cooperating
agents in real time, where each task has to be assigned to
exactly one agent so that the team cost is small or, equiv-
alently, the team performance is high. We do this in the
context of multi-robot routing problems, where the agents
are robots and the tasks are to visit targets in the plane (Dias
et al. 2005). The terrain, the locations of all robots and the
locations of all targets are known.1 Auction-like algorithms
(short: auctions) promise to solve multi-robot routing prob-
lems with small communication and computation cost since
the robots compress information into a small number of bids,
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1One can solve multi-robot routing problems in unknown ter-
rain by making assumptions about the unknown terrain, such as the
assumption that it is traversable, making it in effect known and thus
solvable with auctions. One then runs another auction to re-assign
all unvisited targets to robots whenever this assumption turns out
to be wrong and thus needs to get revised.

which they compute in parallel and then exchange (Dias et
al. 2005). Auctions have been used on actual robots (Gerkey
and Mataríc 2002; Zlot et al. 2002) and, sometimes in simu-
lation, been applied to sensor networks (Howard and Viguria
2007), mine clearing (Sariel, Balch, and Stack 2006), box
pushing (Gerkey and Matarić 2002) and mapping (Simmons
et al. 2000). Robotics researchers have recently studied
the use of sequential single-item auctions (SSI auctions) for
multi-robot routing (Koenig et al. 2006). SSI auctions pro-
ceed in several rounds, until all targets have been assignedto
robots. During each round, all robots bid on all unassigned
targets and the auctioneer then assigns one additional (previ-
ously unassigned) target to robots. We study how to improve
the team performance of SSI auctions while still controlling
the robots in real time by building on algorithmic ideas in
the context of vehicle routing (Diana and Dessouky 2004).
Our SSI auctions with regret clearing modify the winner de-
termination rule of standard SSI auctions only slightly and
leave their bidding rule completely unchanged. Our idea is
to assign that target to some robot during the current round
whose regret is large, where the regret of a target is defined
as the difference of the second-smallest and smallest team
costs resulting from assigning the target to the second-best
and best robot, respectively.

Multi-Robot Routing
We follow (Koenig et al. 2007) to formalize multi-robot
routing problems. A multi-robot routing problem consists
of a set of robotsA = {a1 . . . am} and a set of targets
T = {t1 . . . tn}. Any tuple (Ta1

. . . Tam
) of pairwise dis-

joint bundlesTai
⊆ T for all i = 1 . . . m (that is, no target

is assigned to more than one robot) is a partial solution of the
multi-robot routing problem, with the meaning that robotai

visits the targetsTai
. Let ca(T ′) be the cost needed by robot

a ∈ A to visit the targetsT ′ ⊆ T , calledrobot cost, corre-
sponding to the minimal travel distance, fuel consumption or
travel time needed to visit the targets from its current loca-
tion. The travel distances are assumed to satisfy the triangle
inequality. The cost of the partial solution, calledteam cost,
depends on the team objective. In this paper, we consider
two different team objectives, namely the MiniSum team
objective and the MiniMax team objective. For theMin-
iSum team objective, the team cost of the partial solution
is

∑
a∈A ca(Ta) (that is, the sum of the robot costs), corre-



sponding for example to the fuel consumption of all robots if
the robot costs correspond to their individual fuel consump-
tions for visiting all targets assigned to them, as can for ex-
ample be important for taking rock probes on the moon. For
the MiniMax team objective, the team cost of the partial
solution ismaxa∈A ca(Ta) (that is, the largest robot cost),
corresponding for example to the task-completion time (that
is, makespan) if the robot costs correspond to their individ-
ual travel times for visiting all targets assigned to them, as
can for example be important for search-and-rescue. Any
partial solution(Ta1

. . . Tam
) with ∪a∈ATa = T (that is,

each target is assigned to exactly one robot) is a complete
solution of the multi-robot routing problem. We want to find
a complete solution of the multi-robot routing problem with
a small team cost.

Sequential Single-Item Auctions
Sequential single-item (SSI) auctions solve multi-robot
routing problems as follows: Initially, all targets are unas-
signed. SSI auctions proceed in several rounds, until all
targets have been assigned to robots, which then visit the
targets assigned to them with minimal travel distance and
thus not necessarily in the order in which the targets were
assigned to them. During each round, all robots bid on all
unassigned targets and the auctioneer then assigns one addi-
tional (previously unassigned) target to robots. We now ex-
plain the bidding and winner determination rules of standard
SSI auctions. Consider any round of a standard SSI auction
and assume that robota ∈ A has been assigned the targets
Ta ⊆ T in previous rounds. Thus,U = T \ ∪a∈ATa is the
set of unassigned targets. We leave out the “unassigned” in
the following for readability since robots bid only on unas-
signed targets.

• The bidding rule is the following one: LetB be the set
of submitted bids. A bidb ∈ B is a triple (ba, bt, bc),
representing robotba, targetbt and bid cost (numerical
value of the bid)bc. For the MiniSum team objective, each
robot bids the increase in its robot cost from visiting the
target that it bids on in addition to all targets assigned to it
in previous rounds, which is similar to previous work on
marginal-cost bidding in ContractNet (Sandholm 1996).
Formally,bc = cba

(Tba
∪bt)−cba

(Tba
). For the MiniMax

team objective, each robot bids its robot cost of visiting
the target that it bids on and all targets assigned to it in
previous rounds. Formally,bc = cba

(Tba
∪ bt).

• Thewinner determination rule is the following one: For
both the MiniSum and MiniMax team objectives, the auc-
tioneer chooses one of the bidsb with minimal bid cost
bc as the winning bid and then assigns the targetbt to
robot ba. Formally, consider any round of a standard
SSI auction and let the bid with the smallest bid cost be
b = arg minb∈B bc. Then, the auctioneer assigns targetbt

to robotba. Ties can be broken in an arbitrary way.

The bidding and winner determination rules of standard
SSI auctions are such that the team cost of the resulting
partial solution is as small as possible. Thus, standard SSI
auctions make use of ahill-climbing principle to achieve

a small team cost. Formally, leta′ ∈ A and t′ ∈ U .
We defineT a′,t′

a′ = Ta′ ∪ t′ and T a′,t′

a = Ta for all
a ∈ A \ a′. For the MiniSum team objective, one can prove
that

∑
a∈A ca(T ba,bt

a ) = mina′∈A,t′∈U

∑
a∈A ca(T a′,t′

a ) for
the winning bidb ∈ B (Tovey et al. 2005). For the MiniMax
team objective, one can prove thatmaxa∈A ca(T ba,bt

a ) =

mina′∈A,t′∈U maxa∈A ca(T a′,t′

a ) for the winning bidb ∈ B
(Tovey et al. 2005).

Related Work
Standard SSI auctions control robots in real time which is
important since robots cannot stop each time they need to
assign targets among themselves. We do not expect standard
SSI auctions to minimize the team cost since minimizing the
team cost for both the MiniSum and MiniMax team objec-
tives is NP-hard (Lagoudakis et al. 2005). However, it is im-
portant to achieve a small team cost and thus to decrease the
team cost of standard SSI auctions while respecting the real-
time constraint. So far, researchers have decreased the team
cost of standard SSI auctions by making them more simi-
lar to combinatorial auctions (Berhault et al. 2003) while
keeping the hill-climbing principle. The idea is that the auc-
tioneer needs to evaluate more complete partial solutions to
be able to make good decisions when assigning additional
targets to robots:

• SSI auctions with bundle size k > 1 (Zheng, Koenig,
and Tovey 2006) proceed in several rounds, until all tar-
gets have been assigned to robots. During each round, all
robots now bid on sets (called bundles) of at mostk targets
and the auctioneer then assignsk additional targets to one
or more robots. For the MiniSum team objective, each
robot bids the increase in its robot cost from visiting the
targets in the bundle that it bids on in addition to all targets
assigned to it in previous rounds. For the MiniMax team
objective, each robot bids its robot cost of visiting the tar-
gets in the bundle that it bids on and all targets assigned
to it in previous rounds.

• SSI auctions with rollouts (Zheng, Koenig, and Tovey
2006) proceed in several rounds, until all targets have
been assigned to robots. During each round, all robots
bid on all targets and the auctioneer then assigns one addi-
tional target to robots. Each robot now bids the team cost
of the solution that results if it is assigned the target thatit
bids on in addition to all targets assigned to it in previous
rounds, all other robots are assigned the targets assigned
to them in previous rounds, and the resulting partial solu-
tion is then (greedily) completed to a solution with a small
team cost.

However, the runtimes of these improvements of standard
SSI auctions can be large. We therefore explore how to de-
crease the team cost of standard SSI auctions without in-
creasing their runtime substantially by giving up on the hill-
climbing principle.

MiniSum Team Objective
We first study the MiniSum team objective.
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Figure 1: Example 1

Properties of Standard SSI Auctions To determine its
bid costs, each robot needs to determine its robot costs,
which involves solving an NP-hard traveling salesperson
problem (where it does not need to return to its initial lo-
cation). These calculations can be approximated to run
fast. The runtime of standard SSI auctions until all targets
are assigned to robots is polynomial if each robot uses the
cheapest-insertion heuristic (Lawler et al. 1985) to deter-
mine its robot costs approximately. Winner determination is
simple and can thus be implemented in a decentralized way
without an auctioneer by each robot running the winner de-
termination rule in parallel. The following theorem gives a
guarantee on the team cost of standard SSI auctions in form
of an upper bound.

Theorem 1 ((Lagoudakis et al. 2005)) For the MiniSum
team objective, the team cost of standard SSI auctions is
at most a factor of two larger than minimal, whether each
robot calculates its robot costs exactly or uses the cheapest-
insertion heuristic to determine it approximately.

There is no known instance of multi-robot routing that ac-
tually achieves this upper bound. However, the team cost of
standard SSI auctions forExample 1 from Figure 1 is a fac-
tor of 1.5 larger than minimal (Tovey et al. 2005). Edges are
labeled with their traversal costs, which could be Euclidean
planar distances. In the first round of Example 1, robotr1

bids1 + ǫ on targett1 and1 − ǫ on targett2 and robotr2

bids 3 on targett1 and1 on targett2. Thus, targett2 gets
assigned to robotr1. The team cost of the resulting partial
solution is indeed as small as possible since assigning target
t1 to robotr1 results in team cost1+ǫ, assigning targett2 to
robotr1 results in team cost1−ǫ, assigning targett1 to robot
r2 results in team cost3 and assigning targett2 to robotr2

results in team cost1. In the second round, robotr1 bids2
on targett1 and robotr2 bids 3 on targett1. Thus, target
t1 gets assigned to robotr1. The team cost of the resulting
partial solution is indeed as small as possible since assigning
targett1 to robotr1 results in team cost3 − ǫ and assigning
targett1 to robotr2 results in team cost4 − ǫ. To summa-
rize, both targets are assigned to robotr1, which results in
team cost3 − ǫ since robotr1 follows the pathr1, t2, and
t1. This solution does not minimize the team cost since the
team cost of assigning targett1 to robotr1 and targett2 to
robotr2 is only2 + ǫ. The ratio(3− ǫ)/(2 + ǫ) approaches
1.5 for smallǫ. Thus, the team cost of standard SSI auctions
can be at least a factor of 1.5 larger than minimal.

SSI Auctions with Regret Clearing In the first round of
Example 1, targett2 is assigned to robotr1. Yet, this par-
tial solution cannot be completed to a solution with minimal
team cost. We now try to understand why standard SSI auc-
tions make this mistake. In the first round, assigning target
t1 to the second-best and best robot, respectively, results in
very different team costs (namely,3 and1+ ǫ) but assigning

targett2 to the second-best and best robot, respectively, re-
sults in similar team costs (namely,1 and1 − ǫ). Therefore,
there is a good chance that targett2 is assigned to robotr2 in
later rounds if its assignment to robotr1 is postponed. For
example, suppose that targett1 had been assigned to robotr1

in the first round. In the second round, assigning targett2 to
robotr1 would result in team cost3− ǫ and assigning target
t2 to robotr2 would result in team cost2+ ǫ. Thus, targett2
would be assigned to robotr2. In general, later assignments
of targets to robots are typically more informed than earlier
ones since the partial solutions are more complete then. If
a target is assigned to a robot in the current round then one
wants to ensure that, if this assignment were postponed, the
same assignment would be made in a later round. This is
the case if the second-smallest and smallest team costs re-
sulting from assigning the target to the second-best and best
robot, respectively, are very different, that is, if their differ-
ence is large. We call this difference theregret of the target
and let the auctioneer assign the target with the largest re-
gret to the robot whose bid on it is lowest. The team cost
∑

a∈A ca(T a′,t′

a ) = ca′(Ta′ ∪ t′)−ca′(Ta′)+
∑

a∈A ca(Ta)
resulting from assigning targett′ ∈ U to robota′ ∈ A equals
the bidca′(Ta′ ∪ t′)− ca′(Ta′) of robota′ on targett′ plus a
constant, namely the team cost

∑
a∈A ca(Ta) before the as-

signment. Therefore, the difference of the second-smallest
and smallest team costs resulting from assigning a target to
the second-best and best robot, respectively, and thus the re-
gret of the target equals the difference of the second-smallest
and smallest bid on the target.SSI auctions with regret
clearing thus modify (only) the winner determination rule
of standard SSI auctions. They proceed in several rounds,
until all targets have been assigned to robots. During each
round, the robots bid the increase in their robot cost from
visiting the targets that they bid on in addition to all targets
assigned to them in previous rounds (as before for the Min-
iSum team objective) and the auctioneer then assigns one
additional target to robots. However, the auctioneer now as-
signs the target that maximizes the difference of its second-
lowest and lowest bids to the robot whose bid on it is lowest.
Formally, consider any round of an SSI auction with regret
clearing and let the bid with the smallest bid cost on target
t ∈ U bebt = arg minb∈B | bt=t bc. Then, the auctioneer as-
signs targett = arg maxt∈U ((minb∈B\bt | bt=t bc) − bt

c) to
robotbt

a. Ties can be broken in an arbitrary way, but we sug-
gest for the auctioneer to consider all targets that maximize
the difference of its second-lowest and lowest bids, choose
the target from this set with the lowest bid, and assign it to
the robot whose bid on it is lowest. SSI auctions with re-
gret clearing then behave like standard SSI auctions in case
the regrets of all targets are identical. Winner determination
remains simple and can thus again be implemented in a de-
centralized way without an auctioneer by each robot running
the winner determination rule in parallel.

Example of Regret Clearing In the first round of Exam-
ple 1, robotr1 bids 1 + ǫ on targett1 and1 − ǫ on target
t2 and robotr2 bids3 on targett1 and1 on targett2. The
difference of the second-lowest and lowest bids is2 − ǫ for
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Figure 2: Example 2

targett1 andǫ for targett2. Thus, targett1 gets assigned to
robot r1. In the second round, robotr1 bids2 − 2ǫ on tar-
get t2 and robotr2 bids1 on targett2. Thus, targett2 gets
assigned to robotr2. The resulting team cost is minimal.

Properties of Regret Clearing As already discussed, the
runtime of standard SSI auctions until all targets are as-
signed to robots is polynomial if each robot uses the
cheapest-insertion heuristic to determine its robot costsap-
proximately. The runtime of SSI auctions with regret clear-
ing is also polynomial under the same condition since only
the winner determination rule is different and the new win-
ner determination rule still runs in polynomial time, even
though one optimization for standard SSI auctions does not
apply to SSI auctions with regret clearing: Each robot needs
to submit only its lowest bid during each round for standard
SSI auctions since its other bids have no chance of winning.
The total number of bids thus equals the number of robots
(m) times the number of targets (n). On the other hand, each
robot needs to submit a bid on each target for SSI auctions
with regret clearing. The total number of bids thus equals
m(n + 1)n/2. This increase in communication cost is un-
problematic since each bid can be communicated in a small
number of bits.

As already discussed, the team cost of standard SSI auc-
tions is at most a factor of two larger than minimal and a
factor of 1.5 larger than minimal for Example 1. We showed
that the team cost of SSI auctions with regret clearing is min-
imal for Example 1. Unfortunately, the team cost of SSI auc-
tions with regret clearing can be larger than the team cost of
standard SSI auctions as shown byExample 2 from Fig-
ure 2. The thick lines are walls. Edges are labeled with
their traversal costs, which could be Euclidean planar dis-
tances. There are2k + 1 robots calledr0, ri,1 andri,2 for
i = 1, . . . , k. There are2k2 + k + 1 targets calledt0 and
ti,j for i = 1, . . . , k andj = 0, . . . , 2k. The auctioneer first
assigns targett0 to robotr0 and then, one by one, also all
other targets to robotr0 if ties are broken correctly. (The

traversal costs could be changed slightly to achieve this so-
lution no matter how ties are broken, similar to what we did
in Figure 1.) The robot pairsri,1 andri,2 for i = 1, . . . , k
remain unused because they are connected in the same way
to the targets. To summarize, all targets are assigned to robot
r0, which results in team cost6k2 since robotr0 follows the
pathr0, {t0, ti,2k, . . . , ti,0, . . . , ti,2k}

k−1

i=1
, t0, tk,2k, . . . , tk,0.

This team cost is not minimal since the team cost of assign-
ing targetsti,0, . . . , ti,2k to robotri,1 for i = 1, . . . , k and
targett0 to any robot other than robotr0 is only 2k2 + 3k
since robotri,1 follows the pathri,1, ti,0, . . . , ti,2k for i =
1, . . . , k and one of these robots then visits targett0. The ra-
tio 6k2/(2k2 +3k) approaches3 for largek. Thus, Example
2 shows that the team cost of SSI auctions with regret clear-
ing can be at least a factor of three larger than minimal. The
team cost of standard SSI auctions is minimal for Example
2. Thus, SSI auctions with regret clearing do not provide the
same good guarantee on the team cost as standard SSI auc-
tions. The following theorem gives a guarantee on the team
cost of SSI auctions with regret clearing in form of an upper
bound, which might be very weak.

Theorem 2 For the MiniSum team objective, the team cost
of SSI auctions with regret clearing is at most a factor of2n
(twice the number of targets) larger than minimal, whether
each robot calculates its robot costs exactly or uses the
cheapest-insertion heuristic to determine it approximately.

Proof: We prove the following more general theorem: For the
MiniSum team objective, consider an SSI auction where the auc-
tioneer chooses a target according to an arbitrary rule and then as-
signs it to the robot whose bid on it is lowest. Ties can be broken
in an arbitrary way. The team cost of the SSI auction is at most
a factor of2n (twice the number of targets) larger than minimal,
whether each robot calculates its robot costs exactly or uses the
cheapest-insertion heuristic to determine it approximately. For the
proof, let G = (A ∪ T, c) be the complete graph on the robots
and targets, where the weightsc correspond to the travel costs. The
robot costca(T ) then corresponds to the weight of a shortest path
that starts ata and visits all vertices inT . The SSI auction pro-
ceeds inn rounds. For each roundk = 1, . . . , n, let bk be the
winning bid. Then,x =

P

n

k=1
bk

c for the team costx of the SSI
auction. We first boundbk

c . Let V k be the set of robots and as-
signed targets at the beginning of roundk, and letV̄ k be the set
of unassigned targets at the beginning of roundk. V k andV̄ k de-
fine a cut overG with bk

t ∈ V̄ k. Consider the cheapest edge that
connectsbk

t and any vertex inV k and call this vertexv. By the
triangle inequality,bk

t can be inserted into the robot path that con-
tainsv with an increase in robot cost of at most2c(bk

t , v). Since
the auctioneer assignsbk

t to the robot whose bid on it is lowest and
the bid costs correspond to these increases in robot cost, it holds
that bk

c ≤ 2c(bk

t , v). We now boundc(bk

t , v). Let F be a min-
imum spanning forest ofG with rootsA and assume thatbk

t be-
longs to the treeTa of F with root a. Sincec(bk

t , v) is the weight
of the cheapest edge that connectsbk

t and any vertex inV k and
a ∈ V k, it holds thatc(bk

t , v) ≤ c(bk

t , a). By the triangle inequal-
ity, c(bk

t , a) is no larger than the weight of the path that connects
bk

t anda in Ta, which is no larger than the weighty of the whole
minimum spanning forest. Thus,c(bk

t , a) ≤ y. The robot paths
that minimize the team cost form a spanning forest, but not neces-



sarily a minimum spanning forest. Thus,y ≤ z for the minimum
team costz. To summarize,x =

P

n

k=1
bk

c ≤
P

n

k=1
2c(bk

t , v) ≤
P

n

k=1
2c(bk

t , a) ≤
P

n

k=1
2y = 2ny ≤ 2nz.

MiniMax Team Objective
We now study the MiniMax team objective. For the Min-
iMax team objective, the team cost of standard SSI auc-
tions is no longer guaranteed to be at most a constant factor
larger than minimal, even if each robot calculates its robot
costs exactly (Lagoudakis et al. 2005). Furthermore, the
experimentally determined average team costs of standard
SSI auctions tend to be farther away from minimal for the
MiniMax team objective than the MiniSum team objective
(Tovey et al. 2005). Therefore, it is even more important to
decrease the team cost of standard SSI auctions for the Mini-
Max team objective than the MiniSum team objective while
respecting the real-time constraint. We again let the auc-
tioneer assign the target with the largest regret to the robot
whose bid on it is lowest, for the same reason that we gave in
the context of the MiniSum team objective. The team cost
maxa∈A ca(T a′,t′

a ) = max(ca′(Ta′ ∪ t′),maxa∈A ca(Ta))
resulting from assigning targett′ ∈ U to robota′ ∈ A equals
the maximum of the bidca′(Ta′ ∪ t′) of robota′ on targett′

and a constant, namely the team costmaxa∈A ca(Ta) before
the assignment (which the auctioneer knows from the previ-
ous round). Therefore, the difference of the second-smallest
and smallest team costs resulting from assigning a target to
the second-best and best robot, respectively, and thus the re-
gret of the target equals the difference of the second-smallest
and smallest bid on the target after all bid costs have been in-
creased to the team cost before the assignment in case they
were smaller. We refer to such bids asincreased bids to dis-
tinguish them from the original (unincreased) bids. SSI auc-
tions with regret clearing thus modify again (only) the win-
ner determination rule of standard SSI auctions. They pro-
ceed in several rounds, until all targets have been assignedto
robots. During each round, the robots bid their robot costs of
visiting the targets that they bid on and all targets assigned
to them in previous rounds (as before for the MiniMax team
objective) and the auctioneer then assigns one additional tar-
get to robots. The auctioneer now assigns the target that
maximizes the difference of its second-lowest and lowest in-
creased bids to the robot whose original bid on it is lowest.
Formally, consider any round of an SSI auction with regret
clearing, let the team cost before the assignment bec, and let
the increased bid with the smallest bid cost on targett ∈ U
bebt = arg minb∈B | bt=t max(bc, c), wherebc denotes the
original bid costs. Then, the auctioneer assigns targett =
arg maxt∈U ((minb∈B\bt | bt=t max(bc, c))−max(bt

c, c)) to
robotba with b = arg minb∈B | bt=t bc. Ties can be broken in
an arbitrary way, but we suggest that the auctioneer consider
all targets that maximize the difference of its second-lowest
and lowest increased bids, choose the target from this set
with the lowest original bid, and assign it to the robot whose
original bid on it is lowest. SSI auctions with regret clearing
then behave like standard SSI auctions in case the regrets of
all targets are identical. The auctioneer then remembers the
team costmax(bc, c) and uses it (instead ofc) in the next

round as team cost before the assignment.

Experimental Results
SSI auctions with regret clearing solve multi-robot routing
problems greedily, just like standard SSI auctions and their
variants discussed in the section on related work. We there-
fore perform experiments to evaluate SSI auctions with re-
gret clearing for multi-robot routing without capacity con-
straints (where each robot can visit an arbitrary number of
targets, as assumed so far) (Dias et al. 2005) and with
capacity constraints (where each robot can visit at most a
given number of targets, called its capacity, and stops bid-
ding once the number of targets assigned to it equals its ca-
pacity) (Koenig et al. 2007). We set all capacities in the
latter case to the ratio of the number of targets and robots.
We use multi-robot routing on a known eight-neighbor pla-
nar grid of size51 × 51 with square cells that are either
blocked or unblocked. The grid resembles an office environ-
ment with walls and doors (Koenig et al. 2007). We average
over 25 instances with randomly closed doors for each num-
ber of robots and targets. Each robot uses a combination
of the two-opt and cheapest-insertion heuristics (Lawler et
al. 1985) to determine its robot costs approximately and
fast (which usually results in shorter travel distances than
the cheapest-insertion heuristic). Space constraints allow us
to show only a small number of our results. Table 1 tabu-
lates the team costs (called cost in the table and measured
in distance units) and runtimes (called time in the table and
measured in seconds). N/A means that the runtime exceeded
500 seconds. The table shows that the runtimes of SSI auc-
tions with rollouts can be so large that they do not respect the
real-time constraint, which is why we exclude them from the
comparison. SSI auctions with regret clearing tend to run
about as fast as standard SSI auctions and faster than SSI
auctions with bundle size 3, yet their team costs tend to be
smaller for multi-robot routing with capacity constraints(no
matter what the team objective is) and multi-robot routing
for the MiniMax team objective (no matter whether there
are capacity constraints). For the remaining case, namely
multi-robot routing without capacity constraints for the Min-
iSum team objective, standard SSI auctions result in smaller
team costs than SSI auctions with regret clearing and also
tend to result in smaller team costs than SSI auctions with
bundle size 3. To test support for these statements, we per-
form a statistical analysis of the data. There is no clear way
to compare either absolute or relative differences in team
costs among scenarios with different parameter settings. We
therefore perform a non-parametric analysis, which does not
depend on distributional assumptions. A one-sided cumula-
tive binomial test finds the following support for the stated
hypotheses:

• For the MiniMax team objective with capacity con-
straints, SSI auctions with regret clearing are not slower
than standard SSI auctions with confidence 0.995, result
in smaller team costs than standard SSI auctions with con-
fidence 0.995, are faster than SSI auctions with bundle
size 3 with confidence 0.995 and result in smaller team
costs than SSI auctions with bundle size 3 with confidence



C R T SSI w. Regret Clearing Standard SSI Comparison of Cost SSI w. Bundle Size 2 SSI w. Bundle Size 3 SSI w. Rollouts Ideal Hybrid SSI
Cost Time Cost Time Difference Dominance Cost Time Cost Time Cost Time Cost Time

MiniMax Team Objective with Capacity Constraints
3 8 24 94.54 0.03 111.45 0.03 12.29% 20/25 106.83 0.03 100.92 0.14 69.03 0.29 87.99 0.04
3 12 36 92.94 0.05 109.24 0.05 10.04% 16/25 102.75 0.06 102.48 0.66 66.19 1.94 86.93 0.07
3 16 48 79.13 0.07 109.81 0.07 26.03% 22/25 107.79 0.09 99.91 2.08 65.66 7.99 77.72 0.09
3 20 60 94.40 0.10 118.63 0.10 17.39% 21/25 115.52 0.13 105.97 5.06 69.59 24.20 91.35 0.11
4 6 24 100.00 0.03 121.65 0.03 14.81% 17/25 118.28 0.04 109.38 0.27 76.50 0.47 97.50 0.04
4 9 36 99.71 0.05 125.27 0.05 18.16% 19/25 124.63 0.07 112.45 1.36 72.54 3.29 96.44 0.06
4 12 48 102.54 0.08 125.82 0.08 16.73% 18/25 123.38 0.12 118.26 4.33 71.75 13.45 100.04 0.09
4 15 60 101.83 0.11 123.14 0.11 15.17% 18/25 130.36 0.19 117.30 10.69 68.82 40.25 101.03 0.11

MiniMax Team Objective without Capacity Constraints
∞ 8 24 50.21 0.03 59.44 0.03 14.80% 24/25 60.48 0.04 58.90 0.69 48.65 1.07 50.21 0.04
∞ 12 36 42.15 0.05 51.60 0.05 17.35% 22/25 50.53 0.10 50.93 3.73 40.10 9.96 42.03 0.06
∞ 16 48 36.97 0.09 45.71 0.09 19.23% 23/25 46.48 0.21 44.99 11.72 36.15 43.63 36.82 0.09
∞ 20 60 35.02 0.11 45.11 0.11 22.28% 25/25 44.65 0.39 44.69 30.46 N/A N/A 35.02 0.12
∞ 6 24 61.64 0.03 71.05 0.03 12.62% 21/25 71.95 0.05 68.18 0.86 58.46 1.57 61.47 0.04
∞ 9 36 50.59 0.05 64.44 0.05 18.69% 23/25 62.26 0.14 60.86 4.72 48.57 13.42 49.61 0.07
∞ 12 48 45.07 0.09 54.32 0.09 16.24% 24/25 53.66 0.32 53.37 16.06 44.37 69.57 45.07 0.10
∞ 15 60 41.45 0.11 51.79 0.11 18.20% 23/25 50.87 0.54 50.78 37.91 N/A N/A 41.39 0.12

MiniSum Team Objective with Capacity Constraints
3 8 24 360.73 0.03 375.59 0.03 3.24% 15/25 350.03 0.03 356.94 0.14 292.31 0.29 349.18 0.04
3 12 36 461.36 0.06 468.70 0.05 1.97% 11/25 459.41 0.06 453.19 0.67 352.86 2.02 443.38 0.07
3 16 48 550.11 0.08 572.52 0.07 3.18% 17/25 560.09 0.09 555.44 2.07 420.58 8.38 536.59 0.09
3 20 60 642.30 0.11 658.75 0.10 1.33% 14/25 657.68 0.13 644.70 5.07 478.30 26.17 613.57 0.11
4 6 24 342.74 0.03 360.77 0.03 3.57% 14/25 349.76 0.04 351.49 0.24 289.44 0.52 328.06 0.04
4 9 36 431.19 0.05 462.35 0.05 5.89% 19/25 454.74 0.07 447.11 1.48 351.36 3.64 424.66 0.06
4 12 48 537.94 0.08 572.38 0.08 5.14% 11/25 559.41 0.12 549.04 3.81 436.31 14.89 522.92 0.09
4 15 60 572.13 0.10 596.13 0.10 3.89% 17/25 603.25 0.19 581.41 9.24 443.58 45.94 554.79 0.11

MiniSum Team Objective without Capacity Constraints
∞ 8 24 220.29 0.03 215.52 0.03 -2.16% 6/25 217.71 0.07 217.51 1.38 213.00 6.96 214.29 0.04
∞ 12 36 244.95 0.07 240.56 0.07 -1.84% 7/25 241.55 0.27 242.57 10.04 235.82 89.22 239.28 0.08
∞ 16 48 266.45 0.10 262.68 0.12 -1.48% 5/25 264.43 0.70 261.55 33.54 258.22 497.57 261.51 0.13
∞ 20 60 290.07 0.13 284.96 0.20 -2.36% 7/25 286.61 1.31 284.58 86.36 N/A N/A 283.45 0.23
∞ 6 24 239.41 0.03 232.24 0.03 -2.99% 4/25 233.34 0.11 233.24 1.93 228.11 9.40 231.66 0.05
∞ 9 36 268.04 0.06 263.61 0.06 -1.68% 7/25 264.53 0.41 264.34 15.14 257.43 116.01 262.01 0.10
∞ 12 48 294.95 0.13 288.68 0.24 -2.19% 3/25 290.51 1.42 290.85 74.72 284.11 801.90 288.27 0.28
∞ 15 60 309.05 0.15 305.93 0.23 -1.11% 9/25 308.59 2.29 307.31 115.68 N/A N/A 303.51 0.29

[bold = minimal cost among SSI auctions with regret clearing, standard SSI auctions and SSI auctions with bundle sizes 2 and 3]

Table 1: Experimental Results (C=Capacities, R=Robots, T=Targets)

0.995.

• For the MiniMax team objective without capacity con-
straints, SSI auctions with regret clearing are not slower
than standard SSI auctions with confidence 0.95, result in
smaller team costs than standard SSI auctions with con-
fidence 0.995, are faster than SSI auctions with bundle
size 3 with confidence 0.995 and result in smaller team
costs than SSI auctions with bundle size 3 with confidence
0.995.

• For the MiniSum team objective with capacity con-
straints, SSI auctions with regret clearing are not slower
than standard SSI auctions with confidence 0.95, result in
smaller team costs than standard SSI auctions with confi-
dence 0.995, are faster than SSI auctions with bundle size
3 with confidence 0.995 and result in smaller team costs
than SSI auctions with bundle size 3 with confidence 0.85
(which is not significant).

• For the MiniSum team objective without capacity con-
straints, SSI auctions with regret clearing are not faster
than standard SSI auctions with confidence 0.995, result
in larger team costs than standard SSI auctions with con-
fidence 0.995, are faster than SSI auctions with bundle
size 3 with confidence 0.995 and result in larger team
costs than SSI auctions with bundle size 3 with confidence
0.995.

We also captured finer-scale data about the team costs of
standard SSI auctions and the team costs of SSI auctions
with regret clearing. Table 1 tabulates their percent differ-
ence (called difference in the table) and the frequency with

which the team cost of SSI auctions with regret clearing is
smaller than the team cost of standard SSI auctions (called
dominance in the table). A one-sided binomial test with nor-
mal approximation(n = 200; p = 0.5;σ = 7.07) finds the
following support for the stated hypotheses:

• For the MiniMax team objective with capacity con-
straints, SSI auctions with regret clearing result in smaller
team costs than standard SSI auctions with confidence
1 − 10−12 and a median average difference of 16.3 per-
cent.

• For the MiniMax team objective without capacity con-
straints, SSI auctions with regret clearing result in smaller
team costs than standard SSI auctions with confidence
1 − 10−25 and a median average difference of 17.4 per-
cent.

• For the MiniSum team objective with capacity con-
straints, SSI auctions with regret clearing result in smaller
team costs than standard SSI auctions with confidence
0.995 and a median average difference of 3.5 percent.

• For the MiniSum team objective without capacity con-
straints, SSI auctions with regret clearing result in larger
team costs than standard SSI auctions with confidence
1−10−12 and a median average difference of 2.0 percent.

The table also contains a column for running both a stan-
dard SSI auction and an SSI auction with regret clearing and
then using the solution with the smallest team cost, which
we call ideal hybrid SSI auctions. (In practice, one would
use a classifier to determine whether one expects standard



SSI auctions or SSI auctions with regret clearing to result in
smaller team costs and then use the auction recommended
by the classifier.) We have argued for Example 1 (and Ex-
ample 2) under the MiniSum team objective that the team
cost of standard SSI auctions is large (and minimal, respec-
tively) but the team cost of SSI auctions with regret clearing
is minimal (and large, respectively). Thus, it could be the
case that both versions of SSI auctions have complementary
strengths. The table shows that ideal hybrid SSI auctions
indeed result in smaller team costs than both standard SSI
auctions and SSI auctions with regret clearing, although the
difference can be small.

Interpretation
To understand the results better, consider a task-allocation
problem without synergies among the tasks. The MiniMax
team objective with or without capacity constraints then re-
quires one to assign the tasks to robots so that the resulting
robot costs are balanced. Standard SSI auctions iteratively
assign the task with the smallest cost to a robot. However, it
would be more effective to assign the tasks whose costs are
large for all robots first and then balance the robot costs us-
ing the other tasks. SSI auctions with regret clearing do not
necessarily assign the tasks in order of their costs and thus
have an advantage over standard SSI auctions. For the Min-
iSum team objective without capacity constraints, regret is
an irrelevant criterion since any task not assigned to a robot
in the current round can still be assigned to it in later rounds.
Standard SSI auctions use hillclimbing to minimize the team
cost directly and thus have an advantage over SSI auctions
with regret clearing. For the MiniSum team objective with
capacity constraints, regret is a relevant criterion. For exam-
ple, if the cost of taskt1 is small for robotsr1 andr2 and
the cost of taskt2 is small for robotr1 but large for robotr2,
then SSI auctions with regret clearing correctly assign task
t2 to robotr1 and thus have an advantage over standard SSI
auctions.

Conclusions
We studied how to improve the team performance of stan-
dard sequential single-item (SSI) auctions while still con-
trolling the robots in real time. Our idea was to assign
that target to robots during the current round whose regret
is large. Our experimental results show that SSI auctions
with regret clearing indeed tend to run about as fast as stan-
dard SSI auctions, yet their team costs are smaller for three
out of four combinations of two different team objectives
and two different capacity constraints (including no capac-
ity constraints). It is future work to combine the various im-
provements, for example, to study SSI auctions with regret
clearing and bundle sizek > 1.
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