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Abstract

Sequential single-item auctions can be used for the dis-
tributed allocation of tasks to cooperating agents. We study
how to improve the team performance of sequential single-
item auctions while still controlling the agents in real time.
Our idea is to assign that task to agents during the current
round whose regret is large, where the regret of a task is de-
fined as the difference of the second-smallest and smallest
team costs resulting from assigning the task to the second-
best and best agent, respectively. Our experimental results
show that sequential single-item auctions with regret clear-
ing indeed result in smaller team costs than standard sequen-
tial single-item auctions for three out of four combinations
of two different team objectives and two different capacity
constraints (including no capacity constraints).

Introduction
We study the distributed allocation of tasks to cooperating
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which they compute in parallel and then exchange (Dias et
al. 2005). Auctions have been used on actual robots (Gerkey
and Matart 2002; Zlot et al. 2002) and, sometimes in simu-
lation, been applied to sensor networks (Howard and Viguria
2007), mine clearing (Sariel, Balch, and Stack 2006), box
pushing (Gerkey and Mat&rR002) and mapping (Simmons

et al. 2000). Robotics researchers have recently studied
the use of sequential single-item auctions (SSI auctians) f
multi-robot routing (Koenig et al. 2006). SSI auctions pro-
ceed in several rounds, until all targets have been asstgned
robots. During each round, all robots bid on all unassigned
targets and the auctioneer then assigns one additional{pre
ously unassigned) target to robots. We study how to improve
the team performance of SSI auctions while still contrgllin
the robots in real time by building on algorithmic ideas in
the context of vehicle routing (Diana and Dessouky 2004).
Our SSl auctions with regret clearing modify the winner de-
termination rule of standard SSI auctions only slightly and

agents in real time, where each task has to be assigned toleave their bidding rule completely unchanged. Our idea is

exactly one agent so that the team cost is small or, equiv-
alently, the team performance is high. We do this in the
context of multi-robot routing problems, where the agents
are robots and the tasks are to visit targets in the planes(Dia
et al. 2005). The terrain, the locations of all robots and the
locations of all targets are knownAuction-like algorithms
(short: auctions) promise to solve multi-robot routinglpro
lems with small communication and computation cost since
the robots compress information into a small number of bids,
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10One can solve multi-robot routing problems in unknown ter-
rain by making assumptions about the unknown terrain, such as the
assumption that it is traversable, making it in effect known and thus
solvable with auctions. One then runs another auction to re-assign
all unvisited targets to robots whenever this assumption turns out
to be wrong and thus needs to get revised.

to assign that target to some robot during the current round
whose regret is large, where the regret of a target is defined
as the difference of the second-smallest and smallest team
costs resulting from assigning the target to the secontl-bes
and best robot, respectively.

Multi-Robot Routing

We follow (Koenig et al. 2007) to formalize multi-robot
routing problems. A multi-robot routing problem consists
of a set of robotsA = {a;...a,,} and a set of targets
T = {t;...t,}. Any tuple(T,, ...T,,, ) of pairwise dis-
joint bundlesT,, C T foralli = 1...m (that is, no target
is assigned to more than one robot) is a partial solutioneof th
multi-robot routing problem, with the meaning that rolgt
visits the targetq,,. Letc,(7") be the cost needed by robot
a € Ato visit the targetg” C T, calledrobot cost, corre-
sponding to the minimal travel distance, fuel consumption o
travel time needed to visit the targets from its current {oca
tion. The travel distances are assumed to satisfy the téang
inequality. The cost of the partial solution, calliesam cost,
depends on the team objective. In this paper, we consider
two different team objectives, namely the MiniSum team
objective and the MiniMax team objective. For th&En-
iSum team objective, the team cost of the partial solution
i) ,ca ca(Tu) (thatis, the sum of the robot costs), corre-



sponding for example to the fuel consumption of all robots if a small team cost. Formally, let € A andt’ € U.
the robot costs correspond to their individual fuel consump e define 7% ' T, Ut and 7o T, for all

ample be important for taking rock probes on the moon. For b be) ot

the MiniMax team objective, the team cost of the partial :Hgtv%ﬁﬁégaégz c J%El'g\l/gl;gfqérez%(%geéoc:t(%Miglifl\(jl;x
solution ismax,c 4 ¢o(Ty,) (that is, the largest robot cost), team objective, one can prove .thahx ) Co(Tborbe) =
corresponding for example to the task-completion timet(tha . ' o 1 acd falta

is, makespan) if the robot costs correspond to their individ ila’ea,rev MaXaea ¢ (13" ) for the winning bids € B

ual travel times for visiting all targets assigned to theg), a  (10veY etal. 2005).
can for example be important for search-and-rescue. Any

partial solution(T},, ...T,, ) with U,c4T, = T (that is, Related Work

each target is assigned to exactly one robot) is a complete Standard SSI auctions control robots in real time which is
solution of the multi-robot routing problem. We wantto find  important since robots cannot stop each time they need to
a complete solution of the multi-robot routing problem with  assign targets among themselves. We do not expect standard
a small team cost. SSl auctions to minimize the team cost since minimizing the
team cost for both the MiniSum and MiniMax team objec-
tives is NP-hard (Lagoudakis et al. 2005). However, it is im-
portant to achieve a small team cost and thus to decrease the
team cost of standard SSI auctions while respecting the real
time constraint. So far, researchers have decreased the tea

Sequential Single-1tem Auctions

Sequential single-item (SSI) auctions solve multi-robot
routing problems as follows: Initially, all targets are sna

signed. SSI auctions proceed in several rounds, until all
targets have been assigned to robots, which then visit the
targets assigned to them with minimal travel distance and
thus not necessarily in the order in which the targets were
assigned to them. During each round, all robots bid on all

unassigned targets and the auctioneer then assigns ore addi

tional (previously unassigned) target to robots. We now ex-
plain the bidding and winner determination rules of staddar
SSl auctions. Consider any round of a standard SSI auction
and assume that robate A has been assigned the targets
T, C T in previous rounds. Thug] = T \ U,c T, is the

set of unassigned targets. We leave out the “unassigned” in
the following for readability since robots bid only on unas-
signed targets.

e Thebidding ruleis the following one: LetB be the set
of submitted bids. A bid € B is a triple (b,, b, be),
representing robok,, targetb; and bid cost (humerical
value of the bidp.. For the MiniSum team objective, each
robot bids the increase in its robot cost from visiting the
target that it bids on in addition to all targets assigned to i
in previous rounds, which is similar to previous work on
marginal-cost bidding in ContractNet (Sandholm 1996).
Formally,b. = cp, (Tp, Ub) —cp, (T, ). For the MiniMax
team objective, each robot bids its robot cost of visiting
the target that it bids on and all targets assigned to it in
previous rounds. Formally,. = ¢, (Ty, U by).

e Thewinner determination ruleis the following one: For
both the MiniSum and MiniMax team objectives, the auc-
tioneer chooses one of the bidswith minimal bid cost
b. as the winning bid and then assigns the targeto
robot b,. Formally, consider any round of a standard
SSI auction and let the bid with the smallest bid cost be
b = arg miny¢ g b.. Then, the auctioneer assigns targget
to robotb,. Ties can be broken in an arbitrary way.

The bidding and winner determination rules of standard
SSI auctions are such that the team cost of the resulting
partial solution is as small as possible. Thus, standard SSI
auctions make use of lll-climbing principle to achieve

cost of standard SSI auctions by making them more simi-
lar to combinatorial auctions (Berhault et al. 2003) while
keeping the hill-climbing principle. The idea is that theeau

tioneer needs to evaluate more complete partial solutimns t

be able to make good decisions when assigning additional

targets to robots:

e SS| auctions with bundle size £ > 1 (Zheng, Koenig,
and Tovey 2006) proceed in several rounds, until all tar-
gets have been assigned to robots. During each round, all
robots now bid on sets (called bundles) of at nmiostrgets
and the auctioneer then assignadditional targets to one
or more robots. For the MiniSum team objective, each
robot bids the increase in its robot cost from visiting the
targets in the bundle that it bids on in addition to all tasget
assigned to it in previous rounds. For the MiniMax team
objective, each robot bids its robot cost of visiting the tar
gets in the bundle that it bids on and all targets assigned
to it in previous rounds.

e SS| auctions with rollouts (Zheng, Koenig, and Tovey
2006) proceed in several rounds, until all targets have
been assigned to robots. During each round, all robots
bid on all targets and the auctioneer then assigns one addi-
tional target to robots. Each robot now bids the team cost
of the solution that results if it is assigned the target that
bids on in addition to all targets assigned to it in previous
rounds, all other robots are assigned the targets assigned
to them in previous rounds, and the resulting partial solu-
tion is then (greedily) completed to a solution with a small
team cost.

However, the runtimes of these improvements of standard
SSI auctions can be large. We therefore explore how to de-
crease the team cost of standard SSI auctions without in-
creasing their runtime substantially by giving up on thé hil
climbing principle.

MiniSum Team Objective
We first study the MiniSum team objective.
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Figure 1: Example 1

Properties of Standard SSI Auctions To determine its

bid costs, each robot needs to determine its robot costs,
which involves solving an NP-hard traveling salesperson
problem (where it does not need to return to its initial lo-
cation). These calculations can be approximated to run
fast. The runtime of standard SSI auctions until all targets
are assigned to robots is polynomial if each robot uses the
cheapest-insertion heuristic (Lawler et al. 1985) to deter
mine its robot costs approximately. Winner determinat®n i

targett, to the second-best and best robot, respectively, re-
sults in similar team costs (namelyand1 — ¢). Therefore,
there is a good chance that targets assigned to robot, in

later rounds if its assignment to robat is postponed. For
example, suppose that targehad been assigned to robagt

in the first round. In the second round, assigning tatgét
robotr; would result in team cost— € and assigning target

to to robotr, would result in team cot+ e. Thus, target,
would be assigned to robes. In general, later assignments
of targets to robots are typically more informed than earlie
ones since the partial solutions are more complete then. If
a target is assigned to a robot in the current round then one
wants to ensure that, if this assignment were postponed, the
same assignment would be made in a later round. This is

simple and can thus be implemented in a decentralized way the case if the second-smallest and smallest team costs re-

without an auctioneer by each robot running the winner de-
termination rule in parallel. The following theorem gives a

sulting from assigning the target to the second-best and bes
robot, respectively, are very different, that is, if theiffef-

guarantee on the team cost of standard SSI auctions in form ence is large. We call this difference tregret of the target

of an upper bound.

Theorem 1 ((Lagoudakiset al. 2005)) For the MiniSum
team objective, the team cost of standard SSI auctions is
at most a factor of two larger than minimal, whether each
robot calculates its robot costs exactly or uses the chdapes
insertion heuristic to determine it approximately.

There is no known instance of multi-robot routing that ac-
tually achieves this upper bound. However, the team cost of
standard SSI auctions f&xample 1 from Figure 1 is a fac-
tor of 1.5 larger than minimal (Tovey et al. 2005). Edges are
labeled with their traversal costs, which could be Euclidea
planar distances. In the first round of Example 1, rahot
bids1 + € on targett; and1 — ¢ on targett, and robotrs
bids 3 on targett; and1 on targett;. Thus, targets gets
assigned to robat;. The team cost of the resulting partial
solution is indeed as small as possible since assigningttarg
t; to robotr; results in team codt+ ¢, assigning targeb to
robotr, results in team codt—e, assigning target; to robot
ro results in team cost and assigning targeét to robotr,
results in team cost. In the second round, robet bids2
on targett; and robotr, bids 3 on targett;. Thus, target
t; gets assigned to robet. The team cost of the resulting
partial solution is indeed as small as possible since aisgjgn
targett; to robotr, results in team cost — e and assigning
targett, to robotr;y results in team cost — e. To summa-
rize, both targets are assigned to robgtwhich results in
team cosB — e since robotr; follows the pathry, t5, and
t1. This solution does not minimize the team cost since the
team cost of assigning targgtto robotr; and target to
robotr, is only 2 + €. The ratio(3 — ¢)/(2 + ¢) approaches
1.5 for smalle. Thus, the team cost of standard SSI auctions
can be at least a factor of 1.5 larger than minimal.

SSI Auctions with Regret Clearing In the first round of
Example 1, target, is assigned to robat;. Yet, this par-

tial solution cannot be completed to a solution with minimal
team cost. We now try to understand why standard SSI auc-
tions make this mistake. In the first round, assigning target

and let the auctioneer assign the target with the largest re-
gret to the robot whose bid on it is lowest. The team cost
>aca Ca(T9 ) = ¢ (T Ut') — cor (T ) + > aca Ca(Ta)
resulting from assigning targéte U to robota’ € A equals

the bide,/ (T, Ut") — cqor (T,+) of robota’ on target’ plus a
constant, namely the team c9s}, _ , c.(T5) before the as-
signment. Therefore, the difference of the second-smalles
and smallest team costs resulting from assigning a target to
the second-best and best robot, respectively, and thusthe r
gret of the target equals the difference of the second-sstall
and smallest bid on the targeSSl auctions with regret
clearing thus modify (only) the winner determination rule
of standard SSI auctions. They proceed in several rounds,
until all targets have been assigned to robots. During each
round, the robots bid the increase in their robot cost from
visiting the targets that they bid on in addition to all tasge
assigned to them in previous rounds (as before for the Min-
iSum team objective) and the auctioneer then assigns one
additional target to robots. However, the auctioneer now as
signs the target that maximizes the difference of its second
lowest and lowest bids to the robot whose bid on it is lowest.
Formally, consider any round of an SSI auction with regret
clearing and let the bid with the smallest bid cost on target
t € U beb’ = arg minycp |b,—t be. Then, the auctioneer as-
signs target = arg max;cy ((minye p\pt [y, =t be) — bL) 10
robotb’ . Ties can be broken in an arbitrary way, but we sug-
gest for the auctioneer to consider all targets that maximiz
the difference of its second-lowest and lowest bids, choose
the target from this set with the lowest bid, and assign it to
the robot whose bid on it is lowest. SSI auctions with re-
gret clearing then behave like standard SSI auctions in case
the regrets of all targets are identical. Winner deternimmat
remains simple and can thus again be implemented in a de-
centralized way without an auctioneer by each robot running
the winner determination rule in parallel.

Example of Regret Clearing In the first round of Exam-
ple 1, robotr; bids1 + € on targett; and1 — € on target

t; to the second-best and best robot, respectively, results in ¢, and robotrs bids 3 on targett; and1 on targett;. The

very different team costs (namelyand1 + ¢) but assigning

difference of the second-lowest and lowest bid3 is € for



traversal costs could be changed slightly to achieve this so
lution no matter how ties are broken, similar to what we did
in Figure 1.) The robot pairs; ; andr; o fori = 1,...,k
remain unused because they are connected in the same way
to the targets. To summarize, all targets are assigned ¢ rob
0, Which results in team cost? since robot-, follows the
pathro, {to, ti 2k, - -, ti0,- - - 7ti,2k}f;11,to,tk,2k, ooy b0
This team cost is not minimal since the team cost of assign-
o ing targetst; o, . .., t; 2 to robotr; ; for: = 1,...,k and
targett, to any robot other than robet, is only 2k2 + 3k
since robotr; ; follows the pathr; 1,¢;0, ..., 2, fOr i =
1,..., k and one of these robots then visits targetThe ra-
tio 6k2/(2k?+ 3k) approaches for largek. Thus, Example
2 shows that the team cost of SSI auctions with regret clear-

3k

G?’jw ing can be at least a factor of three larger than minimal. The
< team cost of standard SSI auctions is minimal for Example
2. Thus, SSl auctions with regret clearing do not provide the

Figure 2: Example 2 same good guarantee on the team cost as standard SSI auc-

tions. The following theorem gives a guarantee on the team
cost of SSI auctions with regret clearing in form of an upper

targett; ande for targett,. Thus, target, gets assigned to ~ bound, which might be very weak.

robotr, . In the second round, robet bids2 — 2¢ on tar- Theorem 2 For the MiniSum team objective, the team cost

gett, and robotr, bids1 on targett;. Thus, target; gets of SSI auctions with regret clearing is at most a factoof

assigned to robot;. The resulting team cost is minimal. (twice the number of targets) larger than minimal, whether
each robot calculates its robot costs exactly or uses the

Properties of Regret Clearing As already discussed, the cheapest-insertion heuristic to determine it approxirhate

runtime of standard SSI auctions until all targets are as-  proof: We prove the following more general theorem: For the
signed to robots is polynomial if each robot uses the MiniSum team objective, consider an SSI auction where the auc-
cheapest-insertion heuristic to determine its robot cagts tioneer chooses a target according to an arbitrary rule and then as-
proximately. The runtime of SSI auctions with regret clear-  sjgns it to the robot whose bid on it is lowest. Ties can be broken
ing is also polynomial under the same condition since only in an arbitrary way. The team cost of the SSI auction is at most
the winner determination rule is different and the new win- 4 factor of2n (twice the number of targets) larger than minimal,

ner determination rule still runs in polynomial time, even whether each robot calculates its robot costs exactly or uses the
though one optimization for standard SSI auctions does not cheapest-insertion heuristic to determine it approximately. For the
apply to SSI auctions with regret clearlng: Each robot needs proof, letG = (A U T, c) be the complete graph on the robots

to submit only its lowest bid during each round for standard  and targets, where the weightsorrespond to the travel costs. The
SSl auctions since its other bids have no chance of winning. robot costc, (T') then corresponds to the weight of a shortest path

The total number of bids thus equals the number of robots that starts at: and visits all vertices if”. The SSI auction pro-
(m) times the number of targets). On the other hand, each  ceeds inn rounds. For each round = 1,...,n, letb* be the
robot needs to submit a bid on each target for SSI auctions winning bid. Thenz = S7_, b% for the team cost of the SSI
with regret clearing. The total number of bids thus equals auction. We first bound®. Let V* be the set of robots and as-
m(n + 1)n/2. This increase in communication cost is un-  signed targets at the beginning of roubdand letV* be the set
problematic since each bid can be communicated in a small of unassigned targets at the beginning of roénd* andV* de-
number of bits. fine a cut oveiG with b¥ € V*. Consider the cheapest edge that
As already discussed, the team cost of standard SSI auc-connectsh? and any vertex i/* and call this vertex. By the
tions is at most a factor of two larger than minimal and a triangle inequalityp? can be inserted into the robot path that con-
factor of 1.5 larger than minimal for Example 1. We showed tainsv with an increase in robot cost of at mazt(bf’, v). Since
that the team cost of SSI auctions with regret clearing is min  the auctioneer assigi to the robot whose bid on it is lowest and
imal for Example 1. Unfortunately, the team cost of SSl auc- the bid costs correspond to these increases in robot cost, it holds
tions with regret clearing can be larger than the team cost of thatb* < 2¢(bF,v). We now bound:(b¥, v). Let F' be a min-
standard SSI auctions as shown Byample 2 from Fig- imum spanning forest off with roots A and assume that be-
ure 2. The thick lines are walls. Edges are labeled with |ongs to the tred, of F" with roota. Sincec(b?, v) is the weight
their traversal costs, which could be Euclidean planar dis- of the cheapest edge that conneltsand any vertex i’* and

tances. There argk + 1 robots calledr, r; ; andr; » for a € V¥, itholds thate(bF, v) < ¢(b¥, a). By the triangle inequal-
i =1,...,k. There arek? + k + 1 targets called, and ity, c(b¥,a) is no larger than the weight of the path that connects
t;;fori=1,..., kandj =0,...,2k. The auctioneer first b¥ anda in T, which is no larger than the weightof the whole

assigns target, to robotr, and then, one by one, also all  minimum spanning forest. Thus(b¥,a) < 3. The robot paths
other targets to robat, if ties are broken correctly. (The  that minimize the team cost form a spanning forest, but not neces-



sarily a minimum spanning forest. Thug,< z for the minimum
team cost. To summarizez = Y_3_, b8 < 377 2¢(bf,v) <
S 2e(bf,a) <SR 2y =2ny < 2nz. =

MiniMax Team Objective

We now study the MiniMax team objective. For the Min-
iMax team objective, the team cost of standard SSI auc-
tions is no longer guaranteed to be at most a constant factor
larger than minimal, even if each robot calculates its robot
costs exactly (Lagoudakis et al. 2005). Furthermore, the
experimentally determined average team costs of standard
SSI auctions tend to be farther away from minimal for the
MiniMax team objective than the MiniSum team objective
(Tovey et al. 2005). Therefore, it is even more important to
decrease the team cost of standard SSI auctions for the Mini-
Max team objective than the MiniSum team objective while
respecting the real-time constraint. We again let the auc-
tioneer assign the target with the largest regret to thetrobo
whose bid on it is lowest, for the same reason that we gave in
the context of the MiniSum team objective. The team cost
maxXgeA ca(Tgl’t/) = max(cy (T Ut'), maxgen co(Ty))
resulting from assigning targéte U to robota’ € A equals

the maximum of the bid,. (T, Ut') of robota’ on target’

and a constant, namely the team c@sk,c 4 ¢, (7,) before

the assignment (which the auctioneer knows from the previ-
ous round). Therefore, the difference of the second-sstalle
and smallest team costs resulting from assigning a target to
the second-best and best robot, respectively, and thusthe r
gret of the target equals the difference of the second-sstall
and smallest bid on the target after all bid costs have been in
creased to the team cost before the assignment in case the
were smaller. We refer to such bidsiasreased bidsto dis-
tinguish them from the original (unincreased) bids. SStauc
tions with regret clearing thus modify again (only) the win-
ner determination rule of standard SSI auctions. They pro-
ceed in several rounds, until all targets have been asstgned
robots. During each round, the robots bid their robot costs o
visiting the targets that they bid on and all targets assigne
to them in previous rounds (as before for the MiniMax team
objective) and the auctioneer then assigns one additianal t
get to robots. The auctioneer now assigns the target that
maximizes the difference of its second-lowest and lowest in
creased bids to the robot whose original bid on it is lowest.
Formally, consider any round of an SSI auction with regret
clearing, let the team cost before the assignmet bad let

the increased bid with the smallest bid cost on tatgetU

beb’ = argmin,c gy, ~¢ max(bc, ¢), whereb. denotes the
original bid costs. Then, the auctioneer assigns target

arg max;cy ((minye gyt | ,—¢ max(be, ¢)) — max(b, c)) to
robotb, with b = arg minye | 5,—¢ be. Ties can be broken in

an arbitrary way, but we suggest that the auctioneer conside
all targets that maximize the difference of its second-ktwe
and lowest increased bids, choose the target from this set
with the lowest original bid, and assign it to the robot whose
original bid on it is lowest. SSI auctions with regret cleayi
then behave like standard SSI auctions in case the regrets of
all targets are identical. The auctioneer then remembers th
team costmax(b., ¢) and uses it (instead @) in the next

round as team cost before the assignment.

Experimental Results

SSI auctions with regret clearing solve multi-robot rogtin
problems greedily, just like standard SSI auctions and thei
variants discussed in the section on related work. We there-
fore perform experiments to evaluate SSI auctions with re-
gret clearing for multi-robot routing without capacity con
straints (where each robot can visit an arbitrary number of
targets, as assumed so far) (Dias et al. 2005) and with
capacity constraints (where each robot can visit at most a
given number of targets, called its capacity, and stops bid-
ding once the number of targets assigned to it equals its ca-
pacity) (Koenig et al. 2007). We set all capacities in the
latter case to the ratio of the number of targets and robots.
We use multi-robot routing on a known eight-neighbor pla-
nar grid of size51 x 51 with square cells that are either
blocked or unblocked. The grid resembles an office environ-
ment with walls and doors (Koenig et al. 2007). We average
over 25 instances with randomly closed doors for each num-
ber of robots and targets. Each robot uses a combination
of the two-opt and cheapest-insertion heuristics (Lawter e
al. 1985) to determine its robot costs approximately and
fast (which usually results in shorter travel distancesitha
the cheapest-insertion heuristic). Space constrairds als

to show only a small number of our results. Table 1 tabu-
lates the team costs (called cost in the table and measured
in distance units) and runtimes (called time in the table and
measured in seconds). N/A means that the runtime exceeded
500 seconds. The table shows that the runtimes of SSI auc-
tions with rollouts can be so large that they do not respect th

Yeal-time constraint, which is why we exclude them from the

comparison. SSI auctions with regret clearing tend to run
about as fast as standard SSI auctions and faster than SSI
auctions with bundle size 3, yet their team costs tend to be
smaller for multi-robot routing with capacity constraiiie
matter what the team objective is) and multi-robot routing
for the MiniMax team objective (no matter whether there
are capacity constraints). For the remaining case, namely
multi-robot routing without capacity constraints for thénvi
iSum team objective, standard SSI auctions result in smalle
team costs than SSI auctions with regret clearing and also
tend to result in smaller team costs than SSI auctions with
bundle size 3. To test support for these statements, we per-
form a statistical analysis of the data. There is no clear way
to compare either absolute or relative differences in team
costs among scenarios with different parameter settings. W
therefore perform a non-parametric analysis, which doés no
depend on distributional assumptions. A one-sided cumula-
tive binomial test finds the following support for the stated
hypotheses:

e For the MiniMax team objective with capacity con-
straints, SSI auctions with regret clearing are not slower
than standard SSI auctions with confidence 0.995, result
in smaller team costs than standard SSI auctions with con-
fidence 0.995, are faster than SSI auctions with bundle
size 3 with confidence 0.995 and result in smaller team
costs than SSI auctions with bundle size 3 with confidence



C R T SSIw. Regret Clearing Standard SSI Comparison of Cost SSlw. Bundle Size 2| SSIw. Bundle Size 3 SSlw. Rollouts Ideal Hybrid SSI
Cost Time Cost Time | Difference | Dominance Cost Time Cost Time Cost Time Cost Time
MiniMax Team Objective with Capacity Constraints
3 8 | 24 94.54 0.03 111.45 0.03 12.29% 20/25 106.83 0.03 | 100.92 0.14 69.03 0.29 87.99 0.04
3 12 | 36 92.94 0.05 109.24 0.05 10.04% 16/25 102.75 0.06 | 102.48 0.66 66.19 1.94 86.93 0.07
3 16 48 79.13 0.07 109.81 0.07 26.03% 22/25 107.79 0.09 99.91 2.08 65.66 7.99 77.72 0.09
3 20 60 94.40 0.10 118.63 0.10 17.39% 21/25 115.52 0.13 | 105.97 5.06 69.59 24.20 91.35 0.11
4 6 | 24 100.00 0.03 121.65 0.03 14.81% 17/25 118.28 0.04 | 109.38 0.27 76.50 0.47 97.50 0.04
4 9 | 36 99.71 0.05 125.27 0.05 18.16% 19/25 124.63 0.07 | 112.45 1.36 7254 3.29 96.44 0.06
4 12 | 48 102.54 0.08 125.82 0.08 16.73% 18/25 123.38 0.12 | 118.26 4.33 71.75 13.45 || 100.04 0.09
4 15 | 60 101.83 0.11 123.14 0.11 15.17% 18/25 130.36 0.19 | 117.30 10.69 68.82 40.25 || 101.03 0.11
MiniMax Team Objective without Capacity Constraints
o 8 [ 24 50.21 0.03 59.44 0.03 14.80% 24125 60.48 0.04 58.90 0.69 48.65 1.07 50.21 0.04
oo 12 | 36 4215 0.05 51.60 0.05 17.35% 22/25 50.53 0.10 50.93 3.73 40.10 9.96 42.03 0.06
oo 16 | 48 36.97 0.09 4571 0.09 19.23% 23/25 46.48 0.21 44.99 11.72 36.15 43.63 36.82 0.09
= 20 | 60 35.02 0.11 45.11 0.11 22.28% 25/25 44.65 0.39 44.69 30.46 N/A N/A 35.02 0.12
[e] 6 24 61.64 0.03 71.05 0.03 12.62% 21/25 71.95 0.05 68.18 0.86 58.46 1.57 61.47 0.04
o 9 | 36 50.59 0.05 64.44 0.05 18.69% 23/25 62.26 0.14 60.86 4.72 48.57 13.42 49.61 0.07
o 12 | 48 45.07 0.09 54.32 0.09 16.24% 24/25 53.66 0.32 53.37 16.06 44.37 69.57 45.07 0.10
o) 15 60 41.45 0.11 51.79 0.11 18.20% 23/25 50.87 0.54 50.78 37.91 N/A N/A 41.39 0.12
MiniSum Team Objective with Capacity Constraints
3 8 | 24 360.73 0.03 || 375.59 0.03 3.24% 15/25 350.03 0.03 | 356.94 0.14 || 292.31 0.29 || 349.18 0.04
3 12 | 36 461.36 0.06 || 468.70 0.05 1.97% 11/25 459.41 0.06 | 45319 0.67 352.86 2.02 || 443.38 0.07
3 16 48 550.11 0.08 572.52 0.07 3.18% 17/25 560.09 0.09 | 555.44 2.07 420.58 8.38 536.59 0.09
3 20 60 642.30 0.11 658.75 0.10 1.33% 14/25 657.68 0.13 | 644.70 5.07 478.30 26.17 613.57 0.11
4 6 | 24 342.74 0.03 360.77 0.03 3.57% 14/25 349.76 0.04 | 351.49 0.24 || 289.44 0.52 || 328.06 0.04
4 9 | 36 431.19 0.05 462.35 0.05 5.89% 19/25 454.74 0.07 | 447.11 1.48 || 351.36 3.64 || 424.66 0.06
4 12 | 48 537.94 0.08 572.38 0.08 5.14% 11/25 559.41 0.12 | 549.04 3.81 || 436.31 14.89 || 522.92 0.09
4 15 60 572.13 0.10 596.13 0.10 3.89% 17125 603.25 0.19 | 581.41 9.24 443.58 45.94 554.79 0.11
MiniSum Team Objective without Capacity Constraints
(o] 8 24 220.29 0.03 215.52 0.03 -2.16% 6/25 217.71 0.07| 21751 1.38 213.00 6.96 214.29 0.04
o] 12 36 244.95 0.07 240.56 0.07 -1.84% 7125 241.55 0.27 | 24257 10.04 235.82 89.22 239.28 0.08
o] 16 48 266.45 0.10 262.68 0.12 -1.48% 5/25 264.43 0.70 | 261.55 33.54 258.22 497.57 261.51 0.13
oo 20 | 60 290.07 0.13 || 284.96 0.20 -2.36% 7125 286.61 1.31| 28458 86.36 N/A N/A 283.45 0.23
[e%S) 6 24 239.41 0.03 232.24 0.03 -2.99% 4125 233.34 0.11| 233.24 1.93 228.11 9.40 231.66 0.05
o] 9 36 268.04 0.06 263.61 0.06 -1.68% 7125 264.53 0.41| 264.34 15.14 257.43 116.01 262.01 0.10
o] 12 48 294.95 0.13 288.68 0.24 -2.19% 3/25 290.51 1.42 | 290.85 74.72 284.11 801.90 288.27 0.28
oo 15 | 60 309.05 0.15 || 305.93 0.23 -1.11% 9/25 308.59 2.29 | 307.31 115.68 N/A N/A 303.51 0.29
[bold = minimal cost among SSI auctions with regret clearstgndard SSI auctions and SSI auctions with bundle sized 3Ja
Table 1: Experimental Results (C=Capacities, R=Robot3afgets)
0.995. which the team cost of SSI auctions with regret clearing is

e For the MiniMax team objective without capacity con- smaller than the team cost of standard SSI auctions (called
straints, SSI auctions with regret clearing are not slower dominance in the table). A one-sided binomial test with nor-

than standard SSI auctions with confidence 0.95, resultin Mal @pproximation(n = 200; p = 0.5;0 = 7.07) finds the
smaller team costs than standard SSI auctions with con- following support for the stated hypotheses:
f[dence 0995, Q.re faster than SSI aUCti(:.)nS with bundle e For the MiniMax team objective with Capacity con-
size 3 with confidence 0.995 and result in smaller team  straints, SSI auctions with regret clearing result in serall
costs than SSl auctions with bundle size 3 with confidence  team costs than standard SSI auctions with confidence
0.995. 1 — 107'2 and a median average difference of 16.3 per-
e For the MiniSum team objective with capacity con- cent.
straints, SSI auctions v_vith regret clearing are not slowe_r e For the MiniMax team objective without capacity con-
than standard SS| auctions with confidence 0.95, resultin  giraints, SS|I auctions with regret clearing result in serall
smaller team costs than standard SSI auctions with confi-  taam costs than standard SSI auctions with confidence
dence 0.995, are faster than SSI auctions with bundle size | _ 1(-25 and a median average difference of 17.4 per-
3 with confidence 0.995 and result in smaller team costs  gnt.

than SSI auctions with bundle size 3 with confidence 0.85 o o _ )
(which is not significant). e For the MiniSum team objective with capacity con-

straints, SSI auctions with regret clearing result in serall
team costs than standard SSI auctions with confidence
0.995 and a median average difference of 3.5 percent.

e For the MiniSum team objective without capacity con-
straints, SSI auctions with regret clearing are not faster
than standard SSI auctions with confidence 0.995, result
in larger team costs than standard SSI auctions with con- ® For the MiniSum team objective without capacity con-
fidence 0.995, are faster than SSI auctions with bundle  straints, SSI auctions with regret clearing result in large
size 3 with confidence 0.995 and result in larger team  téam costs than standard SSI auctions with confidence
costs than SSI auctions with bundle size 3 with confidence 1 —10~'* and a median average difference of 2.0 percent.

0.995. The table also contains a column for running both a stan-

We also captured finer-scale data about the team costs ofdard SSI auction and an SSI auction with regret clearing and
standard SSI auctions and the team costs of SSI auctionsthen using the solution with the smallest team cost, which
with regret clearing. Table 1 tabulates their percent diffe  we call ideal hybrid SSI auctions. (In practice, one would
ence (called difference in the table) and the frequency with use a classifier to determine whether one expects standard



SSl auctions or SSI auctions with regret clearing to result i

smaller team costs and then use the auction recommended

by the classifier.) We have argued for Example 1 (and Ex-
ample 2) under the MiniSum team objective that the team
cost of standard SSI auctions is large (and minimal, respec-
tively) but the team cost of SSI auctions with regret clegrin

is minimal (and large, respectively). Thus, it could be the
case that both versions of SSI auctions have complementary
strengths. The table shows that ideal hybrid SSI auctions
indeed result in smaller team costs than both standard SSI
auctions and SSI auctions with regret clearing, although th
difference can be small.

Interpretation

To understand the results better, consider a task-altocati
problem without synergies among the tasks. The MiniMax
team objective with or without capacity constraints then re
quires one to assign the tasks to robots so that the resulting
robot costs are balanced. Standard SSI auctions iterativel
assign the task with the smallest cost to a robot. However, it
would be more effective to assign the tasks whose costs are
large for all robots first and then balance the robot costs us-
ing the other tasks. SSI auctions with regret clearing do not
necessarily assign the tasks in order of their costs and thus
have an advantage over standard SSI auctions. For the Min-
iSum team objective without capacity constraints, regset i
an irrelevant criterion since any task not assigned to atrobo
in the current round can still be assigned to it in later raund
Standard SSI auctions use hillclimbing to minimize the team
cost directly and thus have an advantage over SSI auctions
with regret clearing. For the MiniSum team objective with
capacity constraints, regret is a relevant criterion. kane

ple, if the cost of task; is small for robots; andr, and

the cost of task is small for robot-, but large for robot-,

then SSI auctions with regret clearing correctly assigh tas
to to robotr; and thus have an advantage over standard SSI
auctions.

Conclusions

We studied how to improve the team performance of stan-
dard sequential single-item (SSI) auctions while still -con
trolling the robots in real time. Our idea was to assign
that target to robots during the current round whose regret
is large. Our experimental results show that SSI auctions
with regret clearing indeed tend to run about as fast as stan-
dard SSI auctions, yet their team costs are smaller for three
out of four combinations of two different team objectives
and two different capacity constraints (including no capac
ity constraints). It is future work to combine the various im
provements, for example, to study SSI auctions with regret
clearing and bundle size > 1.
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