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Abstract

Auctions are promising decentralized methods for teams of
agents to allocate and re-allocate tasks among themselves
in dynamic, partially known and time-constrained domains
with positive or negative synergies among tasks. Auction-
based coordination systems are easy to understand, sim-
ple to implement and broadly applicable. They promise to
be efficient both in communication (since agents communi-
cate only essential summary information) and in computation
(since agents compute their bids in parallel). Artificial intelli-
gence research has explored auction-based coordination sys-
tems since the early work on contract networks (Smith 1980),
mostly from an experimental perspective. This overview pa-
per describes our recent progress towards creating a frame-
work for the design and analysis of cooperative auctions for
agent coordination.

Introduction
Centralized control is often inefficient for distributed sys-
tems in terms of both the required amount of computation
and communication since the central controller is the bottle-
neck of the system. Many researchers have therefore studied
agent coordination with cooperative auctions. An auction is
“a market institution with an explicit set of rules determin-
ing resource allocation and prices on the basis of bids from
the market participants” (McAfee and McMillan 1987). In
auction-based coordination systems, the bidders are agents,
and the items up for auction are tasks to be executed by the
agents. All agents bid their costs. Thus, the agent with the
smallest bid cost is best suited for a task. All agents then
execute the tasks that they win. Economics has an exten-
sive auction literature but its agents are rational and com-
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petitive, leading to long decision cycles, strategic behavior
and possibly collusion. Such issues do not arise in auction-
based coordination systems because the agents simply ex-
ecute their program. Thus, while some insights from eco-
nomics can be exploited for building auction-based coordi-
nation systems (for example, the concept of synergy), many
of them do not apply. Conversely, auction-based coordina-
tion systems must operate in real-time. Some researchers
therefore prefer to use the term “auction-inspired controlal-
gorithms” (for decentralized control) over “cooperative auc-
tions” to highlight these differences. This paper providesa
unified overview of our progress towards creating a frame-
work for the design and analysis of cooperative auctions for
agent coordination, drawing from publications in different
venues, including robotics and agents conferences.

Applications
Auction-based coordination systems apply to a wide range
of real-time domains.

On-Line Distributed Role Allocation
Allocate roles to agents with different capabilities for the
execution of a given plan or playbook so that every task
is performed by a qualified agent (Hunsberger and Grosz
2000). Examples include allocating attacker and defender
roles to robots in RoboSoccer (Frias-Martinez, Sklar, and
Parsons 2004), tasks to ambulance teams, fire brigades and
police forces in RoboCup Rescue (Nair et al. 2002), tasks
to team members that prevent incursions of aircraft or boats
into launch impact zones (Sycara et al. 2005), different ob-
servation targets to sensors in a wireless sensor network (for
example, for bird habitat sensing) (Yu and Prasanna 2005;
Howard and Viguria 2007), and observer and manipula-
tor roles for manipulation tasks (such as in box pushing)
(Gerkey and Matarić 2002).

On-Line Distributed Scheduling and Control
Allocate tasks (or processes) to machines (or processors) in
a distributed system to minimize latency, maximize through-
put or optimize other objectives, possibly considering con-
straints among the tasks, such as precedence constraints or
assignment restrictions. Examples include allocating com-
plex workflows with deadlines to CPUs in grid computing



(Reeves et al. 2005) and on-line control of environmental
conditions in smart buildings (Clearwater et al. 1996).

On-Line Distributed Routing

Allocate locations to agents. Examples include allocating
accidents to ambulances, incidents to police cars, mines
to autonomous underwater vehicles (for de-mining) (Sariel,
Balch, and Stack 2006), search-and-rescue locations to first
responders, customers to taxi cabs, rocks to Mars rovers (for
taking and analyzing rock probes) (Tovey et al. 2005), mines
to submarines (for identification) (Sariel, Balch, and Stack
2006), observation locations to robots that map terrain (Sim-
mons et al. 2000) and wings of an art gallery to guard robots
(Kalra, Stentz, and Ferguson 2005). In this context, auc-
tions have been used on actual robots (Thayer et al. 2000;
Gerkey and Matarić 2002; Zlot et al. 2002).

Testbed: Multi-Robot Routing
The standard testbed of auction-based coordination systems
is multi-robot routing (Dias et al. 2006), a special case of
on-line distributed routing. For multi-robot routing, thebid-
ders are the robots, and the items up for auction are tasks to
visit given targets (locations). The robots are identical and
know both their own location and the target locations. They
can move and broadcast information without error. They
might initially not know where the obstacles are in the ter-
rain but always observe the ones in their vicinity without
error. For ease of exposition, we assume in this overview
that the robots have to visit all targets (and do not need to
return to their initial locations) with a small sum of travel
distances. Multi-robot routing problems are similar to trav-
eling salesperson problems and their variants (Lawler et al.
1985), which simplifies their analysis.

Auction-Based Coordination Systems
Minimizing the sum of travel distances is NP-hard for multi-
robot routing problems even if the terrain and targets are ini-
tially known and do not change (Lagoudakis et al. 2005).
Auction-based coordination systems work as follows: Ev-
ery robot determines a path with the smallest travel distance
to visit all of the (unvisited) targets that are allocated toit
and starts to move along the path. Thus, the robot does not
necessarily visit the targets in the order in which they were
allocated to it. Whenever a robot gains more information
about the terrain or observes that the terrain has changed,
it shares this information with the other robots. If that in-
formation increases the travel distance of at least one robot
or new targets are introduced, then all robots put their (un-
visited) targets up for auction for re-allocation. Each robot
then bids in light of the new information, assuming that no
changes will be necessary in the future. The auction closes
after a predetermined amount of time and the robots are al-
located new targets. Auction-based coordination systems
based onparallel auctionsallocate the targets in indepen-
dent and simultaneous single-round auctions, one for each
target. Every robot bids on all targets. They do not take
synergies among targets into account, which often results in

a large sum of travel distances.1 Auction-based coordina-
tion systems based oncombinatorial auctionsallocate the
targets in one single-round auction. Every robot bids on all
bundles (sets) of targets. Hence, all synergies among tar-
gets are taken into account, which minimizes the sum of
travel distances. However, an exponential (in the number
of targets) number of bids must be generated, transmitted,
and processed. The approximations necessary to guarantee
real-time performance (Berhault et al. 2003) often interact
in unpredictable ways and result in complicated code that is
difficult to debug, maintain and integrate into robot archi-
tectures. Sequential single-item (SSI) auction-based coordi-
nation systems have recently emerged as a promising way
of combining the advantages of auction-based coordination
systems based on parallel auctions (namely, their small num-
ber of bids and fast winner determination) and combinato-
rial auctions (namely, their small sum of travel distances)
(Lagoudakis et al. 2005).

Sequential Single-Item (SSI) Auctions
The targets are allocated in one multi-round auction. During
each round, every robot bids on each unallocated target, and
winner determination then allocates one additional targetto
one robot. Every robot bids on a target the smallest increase
in its travel distance that would result from it being allocated
the target that it bids on in addition to all targets allocated
to it in previous rounds (marginal-cost bidding) (Sandholm
1993). Winner determination determines the bid with the
smallest bid cost and allocates the corresponding target to
the corresponding robot (Boutilier, Goldszmidt, and Sabata
1999; Fatima 2006).2 SSI auction-based coordination sys-
tems take some (but not all) synergies among targets into
account and provide the following performance guarantee if
the terrain and targets are initially known and do not change.
Some intuition for this result can be gained from interpret-
ing the greedy construction of minimum spanning trees as a
cooperative auction (Lagoudakis et al. 2004).

Theorem 1 (Lagoudakis et al. 2005) The sum of travel
distances can be a factor of 1.5 larger than minimal but is
at most a factor of two larger than minimal, whether each
robot calculates its travel distance exactly or uses the cheap-
est insertion heuristic (Lawler et al. 1985) to determine it
approximately, which results in a polynomial-time auction
mechanism.

SSI auction-based coordination systems perform even
better experimentally. It can be shown that they perform
hill-climbing in each round by allocating one additional tar-
get to one robot so that the sum of travel distances increases
the least. This insight can be exploited to automatically de-
termine how the robots should bid for different performance

1Two targets have positive (negative) synergy for a robot if the
smallest travel distance for visiting both targets is smaller (larger)
than the sum of the smallest travel distances for visiting both targets
individually from the current location of the robot.

2In practice, each robot can determine the winning bid quickly
itself by listening to the bids and identifying the one with the small-
est bid cost.



measures, such as having to visit all targets with a small task-
completion or flow time instead of a small sum of travel dis-
tances (Tovey et al. 2005). Furthermore, every robot needs
to bid on only one target per round, namely the target with
the smallest bid cost, since targets with larger bid costs can-
not win. The runtime of winner determination during each
round is linear in the number of submitted bids, which re-
sults in the following desirable communication and runtime
complexities of winner determination:

Proposition 1 (Lagoudakis et al. 2005) The number of
bids submitted by all robots during each round and the run-
time of winner determination are linear in the number of
robots and independent of the number of unallocated tar-
gets.

Improving SSI Auctions
Researchers have investigated several variants of SSI auc-
tions to build SSI auction-based coordination systems that
decrease the sums of travel distances while still allocating
tasks to robots in real time. Researchers have also inves-
tigated how to further improve the target allocation after-
wards, for example, using task swaps among robots (Dias
and Stentz 2000; Zheng and Koenig 2009).

SSI Auctions with Rollouts
Everything is the same as for SSI auction-based coordina-
tion systems, except that every robot now bids on a target the
sum of travel distances of the complete target allocation that
would result from it being allocated the target that it bids on
in addition to all targets allocated to it in previous rounds, all
other robots being allocated the targets allocated to them in
previous rounds, and then hill-climbing completing this par-
tial target allocation to a complete target allocation (Zheng,
Koenig, and Tovey 2006). The bid costs of the robots are
now more informed since they are based on complete rather
than partial target allocations, which takes more synergies
among targets into account and makes hill-climbing less my-
opic. This is most helpful in the early rounds where the tar-
get allocations are far from being complete. Proposition 1
continues to hold trivially. However, the number of rounds
increases since each round of the main SSI auction is now
preceeded by the rounds of the SSI auctions for the corre-
sponding (parallel) rollouts.

SSI Auctions with Bundle Bids
Everything is the same as for SSI auction-based coordina-
tion systems, except that every robot now bids on each bun-
dle of at mostk unallocated targets, and winner determina-
tion then allocatesk additional targets to one or more robots,
making SSI auctions with bundle bids the same as standard
SSI auctions ifk = 1 and the same as combinatorial auc-
tions if k is large (Koenig et al. 2007). SSI auction-based
coordination systems with bundle bids allocatek additional
targets to one or more robots in each round so that the sum of
travel distances increases the least, which takes more syner-
gies among targets into account and makes hill-climbing less
myopic. It can be shown that every robot needs to bid on
only a constant number of bundles per round since the other

bundles cannot win. These bundles can be determined au-
tomatically. For example, every robot needs to bid on three
bundles per round ifk = 2, namely the single-target bundles
with the two lowest bid costs and the double-target bundle
with the lowest bid cost, and only seven bundles per round
if k = 3, which can reduce the number of bids by several
orders of magnitude. For example, the number of bids sub-
mitted by every robot per round for twenty unallocated tar-
gets andk = 6 is only 105 instead of 60,459 (Koenig et al.
2007). The winner determination procedure can be automat-
ically determined and, to decrease runtime, be compiled into
compact program code (Daniel and Koenig 2009). Propo-
sition 1 continues to hold for fixedk (although the proof
is nontrivial), which makes SSI auctions with bundle bids
an attractive cross between SSI and combinatorial auctions
(Koenig et al. 2007).

SSI Auctions with Regret Clearing
Everything is the same as for SSI auction-based coordina-
tion systems, except that winner determination now allocates
the target with the largest regret to the robot whose bid cost
on it is smallest, where the regret of a target is the difference
of the second-smallest and smallest bid cost on it (Koenig et
al. 2008). If the terrain and targets are initially known and
do not change, SSI auction-based coordination systems with
regret clearing provide the following performance guaran-
tee, which could be worse than that of Theorem 1.

Theorem 2 (Koenig et al. 2008) The sum of travel dis-
tances can be a factor of three larger than minimal but is
at most a factor of twice the number of targets larger than
minimal, whether each robot calculates its travel distance
exactly or uses the cheapest insertion heuristic to determine
it approximately, which results in a polynomial-time auction
mechanism.

However, SSI auction-based coordination systems with
regret clearing can perform much better experimentally than
standard SSI auction-based coordination systems, which can
be explained as follows: Later allocations of targets to robots
are typically more informed than earlier ones since the tar-
get allocations in earlier rounds are far from being com-
plete. If a target is allocated to a robot in the current round
then one wants to ensure that, if this allocation were post-
poned, the same allocation would be made in later rounds.
SSI auction-based coordination systems with regret clearing
achieve this objective by no longer performing hill-climbing
in each round but rather maximizing the difference of the
second-smallest and smallest team costs that would result
from the second-best and best robot, respectively, being al-
locating one additional target. The communication and run-
time complexities of winner determination remain polyno-
mial but Proposition 1 no longer holds since every robot now
needs to bid on all unallocated targets per round.

Extensions
Auction-based coordination systems have also been success-
fully applied to several generalizations of multi-robot rout-
ing problems, for example, where a team of robots has to
visit a set of given targets with linear decreasing rewards



over time, such as required for the delivery of goods to res-
cue sites after disasters. The robots have to visit a subset
of targets so as to maximize the surplus, which is defined
to be the sum of the rewards of the visited targets minus
the sum of travel costs. Auction-based coordination sys-
tems are able to solve these NP-hard problems in seconds
and with a surplus that is comparable to the surplus found
by a mixed integer program with a 12 hour time limit (Ekici,
Keskinocak, and Koenig 2009). Auction-based coordination
systems have also been applied to multi-robot routing prob-
lems where a team of robots has to visit a set of given targets
with given priorities during given time windows that do not
overlap, such as required for planetary exploration. Again,
auction-based coordination systems are able to solve these
NP-hard problems in seconds and with good team perfor-
mance (Melvin et al. 2007). Current work includes apply-
ing SSI auction-based coordination systems to multi-robot
routing problems where robots need to visit some targets si-
multaneously, such as required for moving large obstacles
out of the way cooperatively. Every robot now needs to bid
on each pair of time slot and unallocated target. The result-
ing function maps pairs of time slots and unallocated targets
to bid costs but is typically more compact and approximated
more easily if it is expressed as a function that maps unallo-
cated targets to reaction functions, where a reaction function
maps time slots to bid costs (Zheng and Koenig 2008).

Future Work
There are many alternative approaches for building coordi-
nation systems, both centralized (for example, mixed integer
programming) and decentralized (for example, distributed
constraint optimization or token passing). More work needs
to be done on determining when to use which approach since
the strengths and weaknesses of the individual approaches
are not yet well understood and only a few experimental
comparisons exist (Xu et al. 2006). More work needs to be
done on developing auction-based coordination systems that
better exploit the local (private) information of the agents
and auction-based coordination systems for heterogeneous
agents. More generally, more work needs to done on ap-
plying auction-based coordination systems in more complex
application domains than has been done so far.

• Example 1: Consider a heterogeneous team of two dif-
ferent kinds of agents, namely general agents X that can
perform both tasks A and B, and specialized agents Y that
can perform only task A. Then, it might not be a good
idea to let the myopically best agent execute a task (which
is what SSI auction-based coordination systems do cur-
rently). For example, if two agents X and Y are available
and agent X is assigned to execute task A, then no agent is
available to execute an arriving task B. On the other hand,
if agent Y is assigned to execute task A, then agent X is
still available to execute an arriving task A or B. Thus,
the agents need to predict the future to achieve a small
team cost, perhaps using methods from machine learning
(Schneider et al. 2005).

• Example 2: Consider tasks that involve time-consuming
planning or scheduling to determine the bid costs of the

agents. Then, the agents can calculate only a limited num-
ber of bid costs and first need to determine which bid costs
to calculate. Thus, they need to predict the bid costs be-
fore calculating them, perhaps again using methods from
machine learning (Busquets and Simmons 2006).

Finally, more work needs to be done on making auction-
based coordination systems robust against error (Sariel,
Balch, and Erdogan 2006; Nanjanath and Gini 2008), for
example, to ensure that each target gets visited even when
robots fail or leave the communication range of other robots.
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