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Abstract

Search with Subgoal Graphs (Uras, Koenig, and Hernán-
dez 2013) was a non-dominated optimal path-planning al-
gorithm in the Grid-Based Path Planning Competitions 2012
and 2013. During a preprocessing phase, it computes a Sim-
ple Subgoal Graph from a given grid, which is analogous to a
visibility graph for continuous terrain, and then partitions the
vertices into global and local subgoals to obtain a Two-Level
Subgoal Graph. During the path-planning phase, it performs
an A* search that ignores local subgoals that are not relevant
to the search, which significantly reduces the size of the graph
being searched.
In this paper, we generalize this partitioning process to any
undirected graph and show that it can be recursively applied
to generate more than two levels, which reduces the size of
the graph being searched even further. We distinguish be-
tween basic partitioning, which only partitions the vertices
into different levels, and advanced partitioning, which can
also add new edges. We show that the construction of Simple-
Subgoal Graphs from grids and the construction of Two-
Level Subgoal Graphs from Simple Subgoal Graphs are in-
stances of generalized partitioning. We then report on ex-
periments on Subgoal Graphs that demonstrate the effects of
different types and levels of partitioning. We also report on
experiments that demonstrate that our new N-Level Subgoal
Graphs achieve a speed up of 1.6 compared to Two-Level
Subgoal graphs from (Uras, Koenig, and Hernández 2013)
on maps from the video games StarCraft and Dragon Age:
Origins.

Introduction
For some search problems, the graph is known beforehand
and there is time to preprocess the graph to make the search
faster. One such example is video games, where one can of-
ten preprocess maps before a game is released or while a
map is loaded into memory. The data produced by prepro-
cessing should use only a small amount of memory, and,
in case they are generated during runtime, preprocessing
should be fast.

In this paper, we present a method of preprocessing any
undirected graph to partition its vertices into several levels
to create a hierarchy. These hierarchies satisfy one important
property: Between any two vertices of the graph, there must
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be an arching path between them whose length is equal to
the distance between them in the original graph. The levels
of the vertices on an arching path strictly monotonically in-
crease to some level, remain at this level, and then strictly
monotonically decrease. During search, any vertex that can-
not lie on an arching path between the start and goal vertices
is ignored. Depending on the structure of the original graph
and the hierarchy, the search can ignore a significant portion
of the graph.

The idea of partitioning vertices into levels to speed up
search has been used before in the context of Subgoal
Graphs (Uras, Koenig, and Hernández 2013), but only to
partition the vertices into two levels. The main contribu-
tion of this paper is the generalization of this partitioning
idea to using undirected graphs and recursively partitioning
the highest-level vertices to generate an arbitrary number of
levels. We distinguish two types of partitioning: Basic par-
titioning simply assigns levels to the vertices of a graph, but
otherwise leaves the graph unchanged. Advanced partition-
ing, on the other hand, may add new edges to the graph,
which can increase the number of vertices ignored during
search and, therefore, improve its performance. We provide
algorithms for constructing and searching N-Level Graphs
and prove their correctness. We show that Subgoal Graphs
are instances of 2-Level Graphs on grids and use our recur-
sive partitioning idea to construct N-Level Subgoal Graphs.
Our experimental evaluations show that, by partitioning ver-
tices into more levels, we can speed up search with Subgoal
Graphs by a factor of 1.6 on maps from the video game Star-
Craft, making search with Subgoal Graphs 193 times faster
than A* on these maps.

Methods for preprocessing graphs have been studied be-
fore and can be grouped into several categories. Hierarchi-
cal abstractions (Botea, Müller, and Schaeffer 2004; Sturte-
vant and Buro 2005) reduce the size of the search space by
abstracting groups of vertices and finding high-level paths
over these abstract vertices. These high-level paths are then
refined to low-level paths, which are not guaranteed to be op-
timal. More informed heuristics (Björnsson and Halldórsson
2006; Cazenave 2006; Sturtevant et al. 2009) guide the
searches better to expand fewer states. Hierarchies can also
be used to derive heuristics during search (Leighton, Ruml,
and Holte 2008; Holte et al. 1994). Dead-end detection and
other pruning methods (Björnsson and Halldórsson 2006;



(a) Simple Subgoal Graph (b) Two-Level Subgoal Graph

Figure 1: Simple and Two-Level Subgoal Graphs (local sub-
goals are shown in red).

Goldenberg et al. 2010; Pochter et al. 2010) identify areas
of the graph that do not need to be searched to find shortest
paths. Search with contraction hierarchies (Geisberger et al.
2008) is an optimal and extremely hierarchical method, as
every level of the hierarchy contains only a single vertex. It
has been shown to be effective on road networks but seems
to be less effective on graphs with higher branching factors,
such as grid-based game maps (Storandt 2013).

Subgoal Graphs
In this section, we provide a brief introduction to Subgoal
Graphs, which are used as a running example throughout
the paper and as a testbed for our experiments. Subgoal
Graphs apply to 8-neighbor grids with obstacles consist-
ing of blocked cells. The agent moves from grid center to
grid center and can move to an unblocked cell in any car-
dinal or diagonal direction, with one exception: in order to
move diagonally, both adjacent cardinal directions must be
unblocked. For instance, in Figure 1, the agent cannot move
from A1 to B2 because A2 is blocked. The lengths of cardi-
nal and diagonal directions are 1 and

√
2, respectively. The

heuristic h(u, v) is the octile distance between cells u and
v, which is the distance between u and v assuming that the
grid is obstacle-free. We use the notation u+ c to denote the
cell that is reached from cell u by moving in direction c.

Simple Subgoal Graphs (SSGs), which are analogous to
visibility graphs in continuous terrain, are constructed by
placing subgoals at the convex corners of blocked cells and
adding edges between all direct-h-reachable subgoals. The
following definitions make this statement more precise. Fig-
ure 1(a) shows an instance of a SSG.

Definition 1. An unblocked cell u is a subgoal iff there are
two perpendicular cardinal directions c1 and c2 such that
u+c1 +c2 is blocked and u+c1, u+c2 are unblocked. Two
cells u and v are h-reachable iff there is a path of length
h(u, v) between them. Two h-reachable cells u and v are
direct-h-reachable iff none of the shortest paths between
them contain a subgoal t 6∈ {u, v}. The length of the edge
between two h-reachable cells is equal to the octile distance
between them.

SSGs are used for finding shortest paths only if the given
start and goal cells are not direct-h-reachable, which is
checked before the search. If they are direct-h-reachable, a
shortest path is returned by optimally following the direct-h-

reachable edge between them. Otherwise, the shortest path
is found by connecting the start and goal cells to their re-
spective direct-h-reachable subgoals, searching the resulting
graph for a shortest path that uses direct-h-reachable edges,
and finally optimally following these edges.

Two-Level Subgoal Graphs (TSGs) are constructed from
SSGs by partitioning the subgoals into global and local
subgoals and adding extra edges between some pairs of h-
reachable subgoals. The resulting graph has the following
property, called the TSG property: Between any two sub-
goals u and v, there exists a shortest path (s0 = u, . . . , sn =
v) on the TSG such that the length of this shortest path is
equal to the distance between u and v on the SSG and si
is a global subgoal for all i ∈ {1, . . . , n − 1}. Figure 1(b)
shows an instance of a TSG. Search with TSGs is similar to
search with SSGs, with the following exceptions: The search
uses the global subgoals and the edges between them, called
the global subgoal graph, instead of the SSG. The given
start and goal cells are connected to the the global subgoal
graph by first connecting them to their respective direct-h-
reachable subgoals and then connecting the local subgoals
among those subgoals to the global subgoal graph using ex-
isting edges in the TSG. This results in a smaller graph to
search for a shortest path compared to SSGs because local
subgoals that are not direct-h-reachable from the start or the
goal cells are ignored. Search with SSGs and TSGs result in
shortest paths.

N-Level Graphs
A TSG is constructed by partitioning the subgoals of an SSG
into two levels. In this section, we generalize this idea to
undirected graphs and an arbitrary number of levels. We give
a formal definition of N-Level Graphs and describe the key
ideas behind them, including how they are constructed and
how they are searched.
Definition 2. An undirected graph G is a 3-tuple G =
(V,E, c), where V is a set of vertices, E is a set of edges,
and c: E 7→ R>0 is a function that assigns a length to each
edge. A path Π = (v0, . . . , vk) on G is a list of vertices such
that ∀i ∈ {0, . . . , k − 1} (vi, vi+1) ∈ E. dG(u, v) is the
distance between any two vertices u and v on G.
Assumption 1. We assume that the algorithms described in
this paper operate on connected graphs G = (V,E, c) and,
if ∃(u, v) ∈ E, then c(u, v) = dG(u, v).

Graphs that are not connected can be partitioned into their
connected components. Edges that are not shortest paths be-
tween the vertices they connect can be removed from the
graph without increasing the distance between those ver-
tices.
Definition 3. An N-Level Graph of the undirected graph
G = (V,E, c) is a 4-tuple GN = (V,EN , cN , l), where
G′ = (V,EN , cN ) is an undirected graph with EN ⊇ E
and l: V 7→ {1, . . . , N} is a function that assigns levels to
vertices, with the following properties:

1. ∀u, v ∈ V , there is an arching path between u and v on
GN with length dG(u, v); and

2. ∀(u, v) ∈ EN , cN (u, v) = dG(u, v).



(a) An undirected graph with unit-length
edges

(b) 3-Level graph of the undirected graph (c) Graph searched for a shortest path
between F and B

Figure 2: Idea behind N-Level graphs.

Algorithm 1 Constructing N-Level Graphs

1: function GetNextLevel(Gi = (V,E, c, l), P )
2: V ∗ := {v ∈ V : l(v) = i};
3: for all v ∈ V ∗ do
4: l(v) := i+ 1;
5: for all v ∈ V ∗ do
6: S := {u ∈ V ∗: (v, u) ∈ E};
7: E+ := ∅;
8: necessary := false;
9: for all u, t ∈ S do

10: d ←length of a shortest arching path between u and t
on Gi+1 = (V,E, c, l) that does not pass through v;

11: if d > c(u, v) + c(v, t) then
12: if (u, t) satisfies P then
13: E+ := E+ ∪ {(u, v)};
14: else
15: necessary := true;
16: break;
17: if ¬necessary then
18: E := E ∪ E+;
19: for all (u, t) ∈ E+ do
20: c(u, t) := c(u, v) + c(v, t);
21: l(v) := i;
22: return Gi+1 = (V,E, c, l);

23: function Partition(G = (V,E, c), N , P )
24: for all v ∈ V do
25: l(v) := 1;
26: G1 := (V,E, c, l);
27: for i := 1, . . . , N − 1 do
28: Gi+1 := GetNextLevel(Gi, P );
29: return GN ;

Let Π = (v0, . . . , vk) be a path on G′. Π is an ascend-
ing path on GN iff ∀i ∈ {0, . . . , k − 1} l(vi) < l(vi+1).
Π is a descending path on GN iff ∀i ∈ {0, . . . , k − 1}
l(vi) > l(vi+1). Π is an arching path on GN iff ∃i, j ∈
{0 . . . k} with i ≤ j such that (v0, . . . , vi) is an ascending
path, (vj , . . . , vk) is a descending path, l(vi) = · · · = l(vj),
and, if l(vi) < N , then i = j or i + 1 = j.

N-Level Graphs are constructed by a process called par-
titioning. The key idea behind partitioning is to create a hi-
erarchy among the vertices of a graph by assigning levels to
them, such that there is always an arching path between any
two vertices u and v on the N-Level Graph whose length is
equal to the distance between u and v on the original graph.

Algorithm 2 Searching N-Level Graphs

1: function FindArchingPath(GN = (V,E, c, l), u, v)
2: V A = {t ∈ V : there is an ascending path from u to t onGN};
3: V D = {t ∈ V : there is an ascending path from v to t onGN};
4: VM = {t ∈ V : l(t) = N};
5: V ′ = V A ∪ V D ∪ VM ;
6: E′ = {(t, s) ∈ E: t, s ∈ V ′};
7: Π← find a shortest path between u and v onG′ = (V ′, E′, c);
8: return Π;

9: function FindPath(G,GN , u, v)
10: Π← FindArchingPath(GN , u, v);
11: π ← empty path;
12: for all edges (vi, vi+1) in Π (in order) do
13: π′ ← find a shortest path between vi and vi+1 on G;
14: π ← append π′ to π;
15: return π;

This allows a search to find a shortest path between any two
vertices by finding an arching path between them while ig-
noring vertices that cannot be on an arching path between
them. Figure 2 illustrates this idea with an example of a 3-
Level Graph. The graph searched for a shortest path contains
all highest-level vertices. Lower level vertices are usually
used to connect the start and goal vertices to the highest-
level vertices. An analogy can be made to traveling between
two locations in different cities. One can use the streets of
the first city to get to a highway, travel to the second city
using the network of highways, and finally use the streets of
the second city to get to one’s destination. A shortest path
does not always need to use highest-level vertices. For in-
stance, one does not always need to use highways to travel
between two locations in the same city. Such is the case with
the shortest paths between K and L (or F and J) in Figure 2.

We distinguish two types of partitioning: Basic partition-
ing simply assigns levels to the vertices of a graph, but oth-
erwise leaves the graph unchanged, which is the case in the
example in Figure 2. Advanced partitioning, on the other
hand, may add new edges to the graph, whose lengths are
equal to the distances between the vertices they connect.
This might allow partitioning to move more vertices into
lower levels, which might increase the number of vertices
ignored during search. For instance, by adding an extra edge
of length 2 between B and G, we can decrease C’s level to 1,
in which case C does not need to be part of the graph shown



in Figure 2(c). Such edges can be refined after a search if
they are on the shortest path found by the search, by replac-
ing them with a corresponding shortest path on the original
graph. One needs to be careful when adding extra edges, as
they can increase the branching factor of the graph and the
memory required to store the graph. In the extreme case,
partitioning can add edges between all pairs of vertices, in
which case partitioning can move all vertices to the lowest
level. We leave it to the user to provide a property P that
all extra edges need to satisfy in order to get a good per-
formance/memory trade-off. Figure 3 shows examples of N-
Level Graphs constructed from SSGs using basic partition-
ing and a version of advanced partitioning that is allowed to
add h-reachable edges.

Algorithm 1 shows how to construct N-Level Graphs from
undirected graphs. Given an undirected graph G, a positive
integer N , and a user-defined property P that extra edges
need to satisfy, Function Partition(G,N ,P ) returns an N-
Level Graph GN of G, where all extra edges satisfy P . It
obtains G1 by setting the level of all vertices of G to 1 (Lines
24-26). It then constructs GN by incrementally adding levels
to G1 (Lines 27-28). Function GetNextLevel(Gi, P ) builds
an (i + 1)-Level Graph Gi+1 from an i-Level Graph Gi by
partitioning all ith level vertices of Gi into levels i and i+1,
and is allowed to add extra edges to the graph that satisfy
the user-specified edge property P . It first promotes all ith
level vertices to level i + 1, at which point the graph sat-
isfies the properties of (i + 1)-Level Graphs (Lines 2-4). It
then iterates over all (i + 1)st level vertices v and tries to
demote them back to level i without violating the properties
of (i + 1)-Level Graphs (Lines 5-21). Demoting v to level
i would cause any arching path with the sub-path (u, v, t),
where u and t are neighbors of v with level i or higher, to no
longer be an arching path, which might violate Property 1
of (i + 1)-Level Graphs. In order to make sure that the only
shortest arching path between any two vertices is not lost
by demoting v, Function GetNextLevel(Gi,P ) checks if v is
necessary to optimally connect at least one pair of its neigh-
bors u and t of level i or higher (Lines 6 and 9). v is not
necessary to optimally connect its neighbors u and t iff (a)
there is an arching path between u and t with length at most
c(u, v) + c(v, t) that does not pass through v (Lines 10-11),
or (b) an edge can be added between u and t that satisfies P
(Line 12). If (b) is satisfied but not (a), then the edge (u, t) is
added to E+, the set of extra edges to be added to the graph
if v gets demoted to level i (Line 13). If v is not necessary
to optimally connect any pair of its neighbors, then v is de-
moted to level i and all edges (u, t) ∈ E+ are added to the
graph with length c(u, v) + c(v, t) (Lines 17-21).

Algorithm 2 shows how to search undirected graphs, us-
ing N-Level Graphs. Given an undirected graph G, an N-
Level Graph GN of G, a start vertex u and a goal vertex
v, Function FindPath(G, GN , u, v) finds a shortest arch-
ing path between u and v on GN (Line 10) and then re-
fines it to a shortest path on G (Lines 11-14). Function
FindArchingPath(GN , u, v) first constructs a set of vertices
V ′ that contains only vertices of level N and any vertices
that can be reached from u or v by ascending paths (Lines 2-
5). Any vertex of a level lower than N that cannot be reached

from u or v by ascending paths cannot be on an arching
path between u and v and, therefore, is excluded from V ′.
Then, a subgraph G′ of GN , that includes all edges of GN

that connect vertices in V ′, is constructed and searched for
a shortest path between u and v (Lines 6-7). The implemen-
tation details of Algorithm 2 are crucial for the performance
of the search. We discuss them in the following sections, in
the context of N-Level Subgoal Graphs.

Theoretical Results
Theorem 1. Function Partition(G, N , P ) returns an N-
Level Graph GN of the undirected graph G, where N is a
positive integer and P is a user-defined property that the ex-
tra edges of GN need to satisfy.

Proof. Let (G1, . . . , GN ) be the series of graphs con-
structed by function Partition(G, N , P ). Let Si be the state-
ment that Gi is an i-Level Graph of G. We show that Si
holds for all i ∈ {1, . . . , N} when function Partition(G, N ,
P ) returns, by using induction on i to show that both proper-
ties of i-Level Graphs hold (Definition 3). G1 is constructed
from G on Lines 24-26. Since E1 = E and c1 = c, Prop-
erty 2 holds. Since l1(v) = 1 for all vertices v, all paths on
the graph are arching paths and, therefore, Property 1 holds.
Consequently, S1 holds. To prove the induction step, we as-
sume that Si−1 holds when function GetNextLevel(Gi, P )
is called and show that Si holds when it returns.

We show that Properties 1 and 2 hold when the function
returns by using a second induction, this time on the number
of times Line 5 is executed. Lines 2-4 increment the levels of
all vertices with level i. Since E and c are unchanged, Prop-
erty 2 holds when Line 5 is executed for the first time. Since
the levels of all vertices with level i are incremented, any
arching path remains an arching path and, therefore, Prop-
erty 1 holds the first time Line 5 is executed. To prove the
induction step, we assume that Properties 1 and 2 hold when
Line 5 is executed for the jth time and show that they hold
when Line 5 is executed for the j + 1st time.

We start with Property 2 by showing that, when Line 20
is executed, c(u, t) = dG(u, t). Since (u, t) ∈ E+ (Line
19), (u, v), (v, t) ∈ E (Lines 6, 9, and 13) and, therefore,
(u, v, t) is a path. Since l(v) = i + 1, (u, v, t) is an arch-
ing path (Definition 3). Since we assume that Property 2
holds when Line 5 is executed for the jth time, (u, v, t) is
a shortest arching path between u and t that passes through
v. Since (u, t) ∈ E+ (Line 19), the condition on Line 11
is satisfied for u and t and, therefore, (u, v, t) is a short-
est arching path between u and t. Since we assume that
Property 1 holds when Line 5 is executed for the jth time,
dG(u, t) = c(u, v) + c(v, t) = c(u, t). Therefore, Property
2 holds when Line 5 is executed for the j + 1st time.

We prove by contradiction that Property 1 holds when
Line 5 is executed for the j + 1st time. Let s and r be arbi-
trary vertices. Since we assume that Property 1 holds when
Line 5 is executed for the jth time, there must be an arch-
ing path Π between s and r with length dG(s, r). Assume
that, when Line 5 is executed for the j +1st time, there is no
longer an arching path between s and r with length dG(s, r).
Since Lines 5-21 never remove edges, Π is still a path. Since



(a) A Simple Subgoal
Graph

(b) 2-Level
(Basic partitioning)

(c) 5-Level
(Basic partitioning)

(d) 2-Level
(Advanced partitioning)

(e) 5-Level
(Advanced partitioning)

Figure 3: N-Level Subgoal Graphs constructed using basic partitioning and advanced partitioning that is allowed to add h-
reachable edges. (Only the highest level vertices and the edges between them are shown.)

we have shown that Property 2 holds when Line 5 is exe-
cuted for the j + 1st time, the length of Π is unchanged.
Therefore, Π must no longer be an arching path. This can
only happen if v, the vertex chosen on Line 5, lies on Π, and
Line 21 reduces v’s level from i + 1 to i. For the reduction
in v’s level to cause Π to no longer be an arching path, there
must exist vertices v− and v+, preceding and succeeding v
on Π, respectively, such that l(v−), l(v+) ∈ {i, i+ 1} (Def-
inition 3). Therefore, v−, v+ ∈ S (Line 6), Lines 10-16 are
executed for u = v− and t = v+, and, either the condition
on Line 11 is not satisfied or the condition on Line 12 is
satisfied (because, otherwise, necessary = true and Line
21 is not executed). Since Π is a shortest path between s
and r, its sub-path Π′ = (v−, v, v+) must be a shortest path
between v− and v+. If the condition on Line 11 is not sat-
isfied, then there must be a path Π′′ = (v−, . . . , v+), which
does not pass through v, with length c(v−, v) + c(v, v+),
and that contains only vertices of level i+ 1, with the possi-
ble exceptions of v− and v+. Therefore, we can replace Π′

with Π′′ in Π to get another arching path between s and r,
with the same length as Π. Otherwise, if the condition on
Line 12 is satisfied, we add the edge (v−, v+) with length
c(v−, v) + c(v, v+) to the graph. Therefore, we can replace
Π′ with edge (v−, v+) in Π to get another arching path be-
tween s and r, with the same length as Π. This contradicts
our initial assumption, and, therefore, Property 1 holds when
Line 5 is executed for the j + 1st time. Therefore, Si holds
when the function GetNextLevel(G,P ) returns and, conse-
quently, when function Partition(G,N ,P ) returns.

Theorem 2. Function FindPath(G,GN , u, v) returns a
shortest path from u to v on G, where G is an undirected
graph, GN is an N-Level Graph of G, and u, v are vertices
on G.

Proof. Let Π = (v0 = u, . . . , vk = v) be an arching path
on GN with length dG(u, v) (Definition 3). We show that
Π is contained in G′, constructed on Lines 2-6. Let ΠA =
(v0, . . . , vi), ΠD = (vj , . . . , vk) and ΠM = (vi, . . . , vj),
where ΠA is an ascending path, ΠD is a descending path,
and ΠM is the middle part where l(vi) = · · · = l(vj). Any
vertex vm on ΠA is in V A, since (v0, . . . , vm) is an ascend-
ing path from v0 to vm (Line 2). By a similar argument, any

vertex on ΠD is in V D. Let n denote the level of the vertices
on ΠM . If n < N , then l(vi) = l(vj) < N and, therefore,
i = j or i + 1 = j (Definition 3). This means that the only
vertices on ΠM are vi and vj , which are already in V A and
V D, respectively. If n = N , then all vertices on ΠM are in
V M (Line 4). Therefore, all vertices on Π are in V ′ (Line
5). Since E′ contains all edges between vertices in V ′, the
graph G′ = (V ′, E′, c) contains all edges on Π. Therefore,
the search must find Π or another arching path between u
and v with length dG(u, v). Any edge on Π corresponds to a
shortest path on G (Definition 3) and, therefore, Lines 9-15
find and return a shortest path on G.

N-Level Subgoal Graphs
In this section, we show that SSGs and TSGs are instances
of N-Level Graphs and provide implementation details on
search with N-Level Subgoal Graphs.

Consider any grid graph. Let G2 = (V,E, c, l), such that:
V is the set of unblocked cells; E is the set of edges between
all direct-h-reachable cells; ∀(u, v) ∈ E c(u, v) = h(u, v) ;
and, ∀v ∈ V , if v is a subgoal, l(v) = 2, otherwise, l(v) = 1.
The distance between two direct-h-reachable cells u and
v is h(u, v). Therefore, G2 satisfies Property 2 of 2-Level
Graphs. (Uras, Koenig, and Hernández 2013) shows that, be-
tween any two cells u and v, there is a shortest path that can
be divided into segments between direct-h-reachable sub-
goals (plus u and v). Such paths are arching paths in G2

since E contains edges between all direct-h-reachable sub-
goals and all subgoals have level 2. Therefore, G2 satisfies
Property 1 of 2-Level Graphs. Consequently, G2 is a 2-Level
Graph of the grid graph.

The memory required to store all edges between direct-
h-reachable cells can be very large. As an implementation
trick, one can discard all edges between level 1 vertices
and check before a search if the start and goal vertices are
direct-h-reachable. This works because the start and goal
vertices are the only vertices with level 1 in the graph that
is searched. Furthermore, one can discard all edges between
level 1 and level 2 vertices and reconstruct the necessary
edges before a search by identifying the direct-h-reachable
subgoals from the start and goal vertices. This allows one
to store only the edges between subgoals, which is exactly
what SSGs do. Therefore, SSGs are 2-Level Graphs of grid



Runtime per Instance (ms) Average Level Partition Time (ms)
A* S TL SN S+

N SN S+
N TL SN S+

N

bg512 2.69 0.07 0.05 0.06 0.05 26.17 7.59 267 398 284
DAO 5.45 0.36 0.13 0.26 0.08 27.70 10.06 229 837 257

starcraft 24.87 0.94 0.30 0.63 0.18 71.12 14.43 8657 59334 8912
wc3maps512 5.52 0.08 0.06 0.07 0.06 28.44 9.22 313 376 379

maze1 15.73 3.84 3.39 0.47 0.45 1263.60 1138.40 45 22697 21230
maze2 29.95 2.53 1.78 0.33 0.30 832.20 675.60 48 9536 7864
maze4 42.99 1.04 0.49 0.21 0.18 407.80 179.90 36 1654 697
maze8 52.65 0.39 0.23 0.16 0.15 228.60 101.30 12 299 140

maze16 59.24 0.18 0.14 0.12 0.12 105.70 47.20 4 47 29
maze32 59.23 0.09 0.10 0.08 0.09 39.00 17.60 2 5 6

random10 3.93 1.52 1.44 1.52 1.30 7.60 13.70 875 1900 6430
random15 6.32 2.70 2.40 2.67 2.17 7.80 11.10 685 2003 4268
random20 8.37 3.69 3.12 3.56 2.75 9.70 12.20 533 2332 3706
random25 10.00 4.40 3.57 4.03 2.87 12.20 13.50 421 2554 3172
random30 11.15 4.77 3.58 3.98 2.57 17.60 14.30 324 2984 2509
random35 12.65 5.27 3.61 3.66 2.09 27.30 22.70 244 3340 2647
random40 12.16 4.84 3.05 2.51 1.22 39.50 32.30 126 2281 1645

room8 15.37 0.65 0.57 0.64 0.54 8.40 7.40 35 164 206
room16 16.75 0.17 0.16 0.17 0.15 6.90 7.10 9 33 54
room32 19.60 0.07 0.07 0.07 0.06 7.30 5.70 3 8 13
room64 23.61 0.04 0.05 0.04 0.04 6.40 6.70 1 2 5

Table 1: Results of different subgoal graphs

graphs.
The properties of TSGs satisfy the properties of 2-Level

Graphs of SSGs. Algorithms 1 and 2 allow us to construct
N-Level Graphs of SSGs, called N-Level Subgoal Graphs,
and search with them to find shortest paths on the SSG,
which can then be refined to shortest paths on grids. Edges
are stored as directed edges in both directions, with the fol-
lowing exception: Between different-level vertices, one adds
an ascending edge from the lower-level vertex to the higher-
level vertex. This allows one to construct the graph to search
much faster, by only following the ascending edges from
the goal vertex and then reversing their directions to form
descending paths to the goal vertex. A shortest path on the
resulting graph is found by a forward A* search using a bi-
nary heap as priority queue. The search ignores edges that
connect vertices of the same level, unless they connect level
N vertices or lead to vertices that have descending paths to
the goal vertex.

Experimental Results
We compare A*, S, TL, SN and S+

N , where S and TL are the
implementations of SSGs and TSGs used in (Uras, Koenig,
and Hernández 2013) and SN , S+

N are our implementations
of N-Level Subgoal Graphs. TL is a state-of-the art algo-
rithm and was one of the undominated entries in the Grid-
Based Path Planning Competition (GPPC) in 20121. It trades
optimality for reduced memory requirements and improved
search performance, by discarding all edges between lo-
cal subgoals. In GPPC 2012, the average suboptimality of
TL was no more than 1%. SN is constructed from an SSG
using simple partitioning, whereas S+

N is constructed from
an SSG using a version of advanced partitioning that is al-
lowed to add h-reachable edges. For both variants, function

1http://movingai.com/GPPC

GetNextLevel(Gi, P ) is called until the highest level ver-
tices can no longer be partitioned.

The experiments are run on a PC with a dual-core 3.2GHz
Intel Xeon CPU and 2GB of RAM. We compare the methods
on different map types2, namely maps from the games Bal-
dur’s Gate II and Warcraft III (resized to 512 × 512), maps
from the game Dragon Age: Origins (ranging from 22× 28
to 1260 × 1104), maps from the game StarCraft (ranging
from 384 × 384 to 1024 × 1024), room maps (of varying
room sizes), maze maps (of varying corridor widths), and
maps with randomly blocked cells (of varying blockage per-
centages), all of size 512× 512. For each map type, Table 1
shows the average runtime per instance for all methods, the
average levels for SN and S+

N , and the average preprocess-
ing time for TL, SN , and S+

N needed for partitioning. The
memory requirements are very similar and thus not reported.

The results show that, in general, S+
N is the fastest method,

followed by TL, SN , S, and finally A*. S+
N is faster than

TL by a factor of 1.6 on Dragon Age: Origins and StarCraft
maps, a factor of 7.5 on maze maps with corridor width 1,
and a factor of 2.5 on maps with 40% randomly blocked
cells. Its performance is comparable to TL on other game
maps and room maps. It is faster than A* by a factor of
193 on StarCraft maps. S+

N is generally faster than SN , es-
pecially on Dragon Age: Origins and StarCraft maps (by
a factor of 3.5 and 3.2, respectively), which demonstrates
the benefits of adding extra edges during partitioning. SN

is generally slower than TL, except on maze maps. TL is
faster than SN by a factor of 2.1 on StarCraft maps. On
the other hand, SN is faster than TL by a factor of 7.2 on
maze maps with corridor width 1. These results show that
the structure of the graph can have a significant impact on the
performance increase obtained by adding extra edges during
partitioning and by partitioning the vertices into more levels.
For instance, StarCraft maps have lots of diagonal obstacles
that result in a large number of subgoals. Many of these can
be partitioned into the lowest level, by adding h-reachable
edges between them. On the other hand, mazes have lots of
bending corridors, which limits the number of h-reachable
edges that can be added.

Conclusions
N-Level Graphs are constructed from undirected graphs by
partitioning the vertices into levels to create a hierarchy,
which allows searching for shortest paths while ignoring
parts of the graph. We gave a formal definition of N-Level
Graphs and provided algorithms for constructing and search-
ing them. We proved the correctness of these algorithms and
demonstrated their effectiveness on Subgoal Graphs, by im-
proving the state-of-the-art of path planning on grids. Fu-
ture research includes application of these methods to differ-
ent domains, investigation of whether stopping partitioning
early increases performance, exploration of new techniques
for partitioning and search, and generalization of these meth-
ods to directed graphs.

2All maps are available from Nathan Sturtevant’s repository at
http://movingai.com/benchmarks/.
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