
EECBS: A Bounded-Suboptimal Search for Multi-Agent Path Finding

Jiaoyang Li,1∗ Wheeler Ruml,2 Sven Koenig1

1University of Southern California, Los Angeles, California, USA
2University of New Hampshire, Durham, New Hampshire, USA

jiaoyanl@usc.edu, ruml@cs.unh.edu, skoenig@usc.edu

Abstract

Multi-Agent Path Finding (MAPF), i.e., finding collision-free
paths for multiple robots, is important for many applications
where small runtimes are necessary, including the kind of
automated warehouses operated by Amazon. CBS is a lead-
ing two-level search algorithm for solving MAPF optimally.
ECBS is a bounded-suboptimal variant of CBS that uses focal
search to speed up CBS by sacrificing optimality and instead
guaranteeing that the costs of its solutions are within a given
factor of optimal. In this paper, we study how to decrease
its runtime even further using inadmissible heuristics. Moti-
vated by Explicit Estimation Search (EES), we propose Ex-
plicit Estimation CBS (EECBS), a new bounded-suboptimal
variant of CBS, that uses online learning to obtain inadmis-
sible estimates of the cost of the solution of each high-level
node and uses EES to choose which high-level node to ex-
pand next. We also investigate recent improvements of CBS
and adapt them to EECBS. We find that EECBS with the im-
provements runs significantly faster than the state-of-the-art
bounded-suboptimal MAPF algorithms ECBS, BCP-7, and
eMDD-SAT on a variety of MAPF instances. We hope that
the scalability of EECBS enables additional applications for
bounded-suboptimal MAPF algorithms.

1 Introduction
Multi-Agent Path Finding (MAPF) is the problem of find-
ing collision-free paths for a team of agents in a known en-
vironment while minimizing the sum of their travel times.
It is inspired by real-world applications such as warehouse
logistics (Ma et al. 2017), airport operations (Li et al.
2019d), UAV traffic management (Ho et al. 2019), auto-
mated valet parking (Okoso, Otaki, and Nishi 2019), and
video games (Li et al. 2020b).

CBS (Sharon et al. 2015) is a leading two-level search al-
gorithm for solving MAPF optimally. Its central idea is to
plan a path for each agent independently and then resolve
collisions between two agents by branching. Each branch
is a new candidate plan wherein one agent or the other is
forced to find a new path that avoids the chosen collision.
Researchers have made significant progress on speeding up
CBS (Boyarski et al. 2015a,b, 2020a,b; Felner et al. 2018;

∗Jiaoyang Li performed the research during her visit to Monash
University.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gange, Harabor, and Stuckey 2019; Li et al. 2019b,c, 2020a;
Zhang et al. 2020) and designing compilation-based algo-
rithms that use ideas similar to CBS (Surynek 2019; Lam
et al. 2019; Lam and Le Bodic 2020). However, for many
applications, we need to coordinate hundreds of agents with
limited computational resources. The fact that MAPF is NP-
hard to solve optimally (Yu and LaValle 2013) motivates
finding bounded-suboptimal solutions in order to reduce the
runtime of the search.

Enhanced CBS (ECBS) (Barer et al. 2014) is a bounded-
suboptimal variant of CBS that is guaranteed to find solu-
tions whose costs are no more than a user-specified factor
away from optimal. Its bounded suboptimality is achieved
by replacing the best-first search in the high and low levels
of CBS with focal search (Pearl and Kim 1982). Focal search
uses an admissible heuristic for bounding the solution cost
and another heuristic for determining the distance of nodes
to the goal nodes. We will demonstrate that ECBS becomes
inefficient if these heuristics are negatively correlated.

In this paper, we propose a new bounded-suboptimal
variant of CBS, called Explicit Estimation CBS (EECBS).
EECBS replaces focal search with Explicit Estimation
Search (Thayer and Ruml 2011) on the high level and uses
online learning (Thayer, Dionne, and Ruml 2011) to learn
an informed but potentially inadmissible heuristic to guide
the high-level search. ECBS and EECBS differ from CBS
only in the node selection rules used in their high- and low-
level searches. Hence, the ideas behind many improvements
of CBS, such as bypassing conflicts (Boyarski et al. 2015a),
prioritizing conflicts (Boyarski et al. 2015b), symmetry rea-
soning (Li et al. 2019c, 2020a), and focusing the high-level
search with admissible heuristics (Li et al. 2019a), might im-
prove ECBS and EECBS as well, and we show how they
can be adapted to them. We empirically evaluate how each
improvement affects performance, finding that their combi-
nation is best. EECBS with the improvements runs signif-
icantly faster than ECBS and BCP-7 (Lam and Le Bodic
2020) and eMDD-SAT (Surynek et al. 2018), two other
state-of-the-art bounded-suboptimal MAPF algorithms.

2 Preliminaries
In this section, we formalize the definition of MAPF and
introduce the baseline algorithms CBS and ECBS.

2.1 Multi-Agent Path Finding (MAPF)
MAPF has many variants. In this paper, we focus on the vari-
ant defined by Stern et al. (2019) that (1) considers vertex
and swapping conflicts, (2) uses the “stay at target” assump-
tion, and (3) optimizes the sum of costs. Formally, we define
MAPF by a graph and a set of m agents {a1, . . . , am}. Each
agent ai has a start vertex si and a target vertex gi. Time is
discretized into timesteps. At each timestep, every agent can
either move to an adjacent vertex or wait at its current vertex.
A path pi for agent ai is a sequence of vertices that are pair-
wise adjacent or identical (indicating a wait action), starting
at the start vertex si and ending at the goal vertex gi. The cost
of a path pi is its length |pi|. Agents remain at their goal ver-
tices after they complete their paths. We say that two agents
have a conflict iff they are at the same vertex or traverse the
same edge in opposite directions at the same timestep. A so-
lution is a set of conflict-free paths {p1, . . . , pm}, one for
each agent. An optimal solution is a solution with the mini-
mum sum of costs

∑m
i=1 |pi|.

2.2 Conflict-Based Search (CBS)
Vanilla CBS CBS (Sharon et al. 2015) is a two-level
search algorithm for solving MAPF optimally. On the high
level, CBS performs a best-first search on a binary constraint
tree (CT). Each CT node N contains a set of constraints
N.constraints that are used to coordinate agents to avoid
conflicts and a set of pathsN.paths, one for each agent, that
satisfy the constraints. We useN.paths[i] to denote the path
of agent ai. The cost of N is the sum of costs of its paths,
i.e., cost(N) =

∑m
i=1 |N.paths[i]|. The root CT node con-

tains an empty set of constraints and a set of shortest paths.
When expanding a CT node, CBS checks for conflicts

among its paths. If there are none, then the CT node is a goal
CT node, and CBS terminates. Otherwise, CBS chooses one
of the conflicts and resolves it by splitting the CT node into
two child CT nodes. In each child CT node, one agent from
the conflict is prohibited from using the conflicting vertex
or edge at the conflicting timestep by way of an additional
constraint. The path of this agent does not satisfy the new
constraint and is replanned with A* on the low level. CBS
guarantees completeness by eventually exploring both ways
of resolving each conflict. It guarantees optimality by per-
forming best-first searches on both its high and low levels.

Recent Improvements of CBS Researchers have pro-
posed many techniques for speeding up CBS while preserv-
ing its completeness and optimality.

Bypassing conflicts (Boyarski et al. 2015a) is a conflict-
resolution technique that, instead of splitting a CT node,
modifies the paths of the agents involved in the chosen con-
flict. When expanding a CT nodeN and generating child CT
nodes, if the cost of a child CT node N ′ is equal to cost(N)
and the number of conflicts of N ′.paths is smaller than the
number of conflicts of N.paths, then it replaces the paths in
N with the paths in N ′ and discards all generated child CT
nodes. Otherwise, it splits N as before. It has been shown
that bypassing conflicts often produces smaller CTs and de-
creases the runtime of CBS.

Figure 1: Examples of symmetries on 4-neighbor grids.

Prioritizing conflicts (Boyarski et al. 2015b) is a conflict-
selection technique. A conflict is cardinal iff, when CBS
uses the conflict to split a CT nodeN , the costs of both child
CT nodes are larger than cost(N). It is semi-cardinal iff the
cost of one child CT node is larger than cost(N) and the
cost of the other child CT node is equal to cost(N). It is
non-cardinal iff the costs of both child CT nodes are equal
to cost(N). The cardinality of a conflict is determined by
building a Multi-Valued Decision Diagram (MDD) (Sharon
et al. 2013) for each agent (i.e., an acrylic directed graph that
consists of all shortest paths of the agent). CBS can signifi-
cantly improve its efficiency by resolving cardinal conflicts
first, then semi-cardinal conflicts, and finally non-cardinal
conflicts, because generating CT nodes with larger costs first
typically improves the lower bound of the CT (i.e., the min-
imum cost of the CT nodes in the open list) faster and thus
produce smaller CTs.

Symmetry reasoning (Li et al. 2019c, 2020a) is a tech-
nique for avoiding to resolve conflicts between the same
pair of agents repeatedly due to symmetric paths and con-
flicts. Figure 1(a) shows an example of rectangle symmetry.
There exist multiple shortest paths for each agent, each of
which can be obtained by changing the order of the indi-
vidual RIGHT and DOWN moves. Any shortest path for one
agent is in conflict with any shortest path for the other agent.
CBS has to try multiple combinations of these paths before
realizing that one of the agents has to wait for one timestep.
The size of the CT grows exponentially as the size of the
yellow rectangular area (i.e., the region where conflicts can
occur) increases. Similar behaviors of CBS can be observed
in corridor and target symmetries (Figure 1(b) and (c)). Sym-
metry reasoning identifies each symmetry efficiently and re-
solves it by a single splitting action with specialized con-
straints, producing smaller CTs and decreasing the runtime
of CBS.

Weighted Dependency Graph (WDG) heuristic (Li et al.
2019a) is an admissible heuristic for the high-level search of
CBS. It proceeds by building a weighted dependency graph
for each CT nodeN , whose vertices represent agents, whose
edges represent that the two corresponding agents are de-
pendent, i.e., the minimum sum of costs of their conflict-
free paths that satisfy N.constraints (which is computed
by solving a 2-agent MAPF instance using CBS) is larger
than the sum of costs of their paths in N.paths (which are
the shortest paths that satisfy N.constraints but are not
necessarily conflict-free), and whose edge weights repre-
sent the difference between the minimum sum of costs of
the conflict-free paths that satisfy N.constraints and the

sum of costs of their paths in N.paths. The value of the
edge-weighted minimum vertex cover of the graph is then
used as an admissible heuristic for the high-level search.
Despite the runtime overhead of building the weighted de-
pendency graphs and finding their edge-weighted minimum
vertex cover, the addition of the WDG heuristics often pro-
duces smaller CTs and decreases the runtime of CBS.

2.3 Enhanced CBS (ECBS)
Focal search is a bounded-suboptimal search algorithm
based on A∗ε (Pearl and Kim 1982). It maintains two lists
of nodes: OPEN and FOCAL. OPEN is the regular open list
of A*, sorted according to an admissible cost function f . Let
bestf be the node in OPEN with the minimum f value and
w be a user-specified suboptimality factor. FOCAL contains
those nodes n in OPEN for which f(n) ≤ w · f(bestf),
sorted according to a function d that estimates the distance-
to-go, i.e., the number of hops from node n to a goal node.
Focal search always expands a node with the minimum d
value in FOCAL. Since f(bestf) is a lower bound on the
optimal solution cost C∗, focal search guarantees that the
returned solution cost is at most w · C∗.

ECBS (Barer et al. 2014) is a bounded-suboptimal variant
of CBS that uses focal search with the same suboptimality
factor w on both the high and low levels. The low level of
ECBS finds a bounded-suboptimal path for agent ai that sat-
isfies the constraints of CT node N and minimizes the num-
ber of conflicts with the paths of other agents. It achieves
this by using a focal search with f(n) being the standard
f(n) = g(n) + h(n) of A* and d(n) being the number of
conflicts with the paths of other agents. When it finds a so-
lution, it returns not only the path but also the minimum f
value f imin(N) in OPEN, indicating a lower bound on the
cost of the shortest path for agent ai. For clarity, we denote
the cost of the shortest path for agent ai as f iopt(N), but this
value is in general unknown during search. Thus,

f imin(N) ≤ f iopt(N) ≤ |N.paths[i]| ≤ w · f imin(N). (1)

Unlike usual bounded-suboptimal searches, the focal search
used on the low level of ECBS is to speed up the high-level
search, instead of the low-level search itself, as it tries to
reduce the number of conflicts that need to be resolved by
the high-level search.

The high level of ECBS uses a modified focal search.
OPEN is the regular open list of A*, which sorts its CT
nodes N according to lb(N) =

∑m
i=1 f

i
min(N), indicating a

lower bound on the minimum cost of the solutions below
CT node N . From Equation (1), we know that lb(N) ≤
cost(N) ≤ w · lb(N). Let bestlb be the node in OPEN with
the minimum lb value. FOCAL contains those CT nodes N
in OPEN for which cost(N) ≤ w · lb(bestlb), sorted accord-
ing to the number of conflicts hc(N) of N.paths, roughly
indicating the distance-to-go for the high-level search, i.e.,
the number of splitting actions required to find a solution
below CT node N . Since lb(bestlb) is a lower bound on the
optimal sum of costs, the cost of any CT node in FOCAL is
no larger than w times the optimal sum of costs. Thus, once
a solution is found, its sum of costs is also no larger than w
times the optimal sum of costs.

w 1.04 1.08 1.12 1.16 1.20
ECBS ∆lb 0.63 0.63 0.64 0.52 0.56

EECBS ∆lb 5.21 2.32 1.40 0.71 0.64
Cleanup 39.6% 14.4% 11.1% 0.7% 0.0%

Table 1: Lower-bound improvement ∆lb, i.e., the value of
lb(bestlb) when the algorithm terminates minus the lb value
of the root CT node. Cleanup represents the percentage of
expanded CT nodes that are selected from CLEANUP.

3 Explicit Estimation CBS (EECBS)
We first analyze the behavior of the high-level focal search
of ECBS. We then present our new algorithm EECBS, which
uses Explicit Estimation Search on the high level and online
learning to estimate the solution cost.

To evaluate the effectiveness of each technique that
we introduce, we test it on 200 standard MAPF bench-
marks (Stern et al. 2019) with a time limit of one minute per
instance. In particular, we use map random-32-32-20, a
32 × 32 4-neighbor grid with 20% randomly blocked cells,
shown in Figure 2, with the number of agents varying from
45 to 150 in increments of 15. We use the “random” scenar-
ios of the benchmarks, yielding 25 instances for each num-
ber of agents. We vary the suboptimality factor from 1.02 to
1.20 in increments of 0.02.

3.1 Limitations of ECBS
Figure 3 shows the typical behavior of ECBS on a hard
MAPF instance, revealing two drawbacks of its high-level
focal search. The first drawback is that, when selecting CT
nodes for expansion, ECBS only considers the distance-to-
go and requires the cost of the selected CT node N to be
within suboptimality bound w · lb(bestlb) but ignores the
fact that the cost of the solution below CT node N is likely
to be larger than cost(N) and thus could also be larger than
the suboptimality bound. In the example of Figure 3, ECBS
first keeps expanding CT nodes roughly along a branch (i.e.,
CT nodes 1→ 2→ 3→ · · · → 487 in the left diagram), so
the cost of the selected CT node keeps increasing and its hc
value keeps decreasing until it expands a CT node N both
of whose child CT nodes are not qualified for inclusion in
FOCAL (i.e., CT node 487 in the left diagram). As a result,
it then expands a neighboring CT node N ′ whose cost is
slightly smaller than cost(N) and whose hc value is slightly
larger than hc(N). It keeps expanding CT nodes below CT
node N ′, but, after several iterations, expands another CT
node both of whose child CT nodes are not qualified for in-
clusion in FOCAL (i.e., CT node 506 in the left diagram). It
repeats numerous times, indicated by the right charts, and as
a result, as shown in the middle diagram, ECBS is stuck in a
local area of the CT and never gets a chance to explore other
parts of the CT. This thrashing behavior, in which the neg-
ative correlation of hc(N) and cost(N) causes focal search
to repeatedly abandon the children of expanded CT nodes,
was noted by Thayer, Ruml, and Kreis (2009).

The second drawback is that the lower bound of ECBS
rarely increases, as shown by the flat red line in the first
chart of Figure 3. This is because, when expanding a CT

Figure 2: Performance. The left figure plots the average runtime of the algorithms over 200 instances. One minute is included
in the average for each unsolved instance. The right figure plots the success rate (i.e., the percentage of the instances solved
within the time limit) of the algorithms with suboptimality factors 1.02, 1.10, and 1.20. BP, PC, SR, and WDG are short for
bypassing conflicts, prioritizing conflicts, symmetry reasoning, and using the WDG heuristic, respectively.

Figure 3: Performance of ECBS on a hard MAPF instance. The left and middle diagrams illustrate the CT tree of ECBS after
506 and 5,000 iterations (i.e., after expanding 506 and 5,000 CT nodes). The right three charts plot the cost, the hc value, and
the depth of the selected CT node at each iteration, respectively, with the red and green lines in the first chart being the lower
bound lb(bestlb) and the suboptimality bound w · lb(bestlb) at each iteration.

node N , ECBS resolves a conflict and adds new constraints
to the generated child CT nodes, so the lb values of the child
CT nodes tend to be equal to or larger than lb(N) while
the hc values of the child CT nodes tend to be smaller than
hc(N). As a result, bestlb tends to have a large hc value.
This results in bestlb being expanded only when FOCAL is
almost empty. Since there are many CT nodes of the same
cost, ECBS rarely empties FOCAL, and thus its lower bound
lb(bestlb) rarely increases. More statistics can be found in
Table 1 (second row). Therefore, if the optimal sum of costs
is not within the initial suboptimality bound, ECBS can have
difficulty finding a solution within a reasonable time. While
this problematic behavior is similar to that in the first draw-
back, in that both involve a negative correlation of node val-
ues, it is subtly different as it involves the lower bound rather
than the cost.

3.2 Explicit Estimation Search (EES)
EES (Thayer and Ruml 2011) is a bounded-suboptimal
search algorithm designed in part to overcome the poor
behavior of focal search. It introduces a third function f̂
that estimates, potentially inadmissibly, the cost of the so-
lution below a given node. EES combines estimates of the
distance-to-go and the solution cost to predict the expansion
of which nodes will lead most quickly to a solution within
the given suboptimality factor. If the nodes of interest are not
within the current suboptimality bound, it expands the node
with the minimum f value to improve the current subopti-
mality bound. Formally, EES maintains three lists of nodes:
CLEANUP, OPEN, and FOCAL. CLEANUP is the regu-

lar open list of A*, sorted according to an admissible cost
function f . Let bestf be the node in CLEANUP with the
minimum f value and w be the user-specified suboptimal-
ity factor. OPEN is also another regular open list of A*,
sorted according to a more informed but potentially inad-
missible cost function f̂ . Let bestf̂ be the node in OPEN

with the minimum f̂ value. FOCAL contains those nodes n
in OPEN for which f̂(n) ≤ w · f̂(bestf̂), sorted accord-

ing to a distance-to-go function d. f̂(bestf̂) is an estimate
of the cost of an optimal solution, so EES suspects that ex-
panding the nodes in FOCAL can lead to solutions that are
no more than w times away from optimal. Let bestd be the
node in FOCAL with the minimum d value. When selecting
nodes for expansion, EES first considers bestd, as expand-
ing nodes with nearby goal nodes should lead to a goal node
fast. To guarantee bounded suboptimality, EES selects bestd
for expansion only if f(bestd) ≤ w · f(bestf). If bestd is
not selected, EES next considers bestf̂ , as it suspects that
bestf̂ lies along a path to an optimal solution. To guaran-
tee bounded suboptimality, EES selects bestf̂ for expansion
only if f(bestf̂) ≤ w · f(bestf). If neither bestd nor bestf̂
is selected, EES selects bestf , which can raise the subopti-
mality bound w · f(bestf), allowing EES to consider bestd
or bestf̂ in the next iteration.

3.3 Explicit Estimation CBS (EECBS)
We form EECBS by replacing focal search with EES on
the high level of ECBS. Formally, the high level of EECBS

maintains three lists of CT nodes: CLEANUP, OPEN, and
FOCAL. CLEANUP is the regular open list of A*, sorted
according to the lower bound function lb. OPEN is another
regular open list of A*, sorted according to a potentially in-
admissible cost function f̂ , which estimates the minimum
cost of a solutions below a CT node. We use f̂(N) =

cost(N) + ĥ(N), where ĥ(N) is the cost-to-go. We intro-
duce ĥ in Section 3.4. FOCAL contains those CT nodes N
in OPEN for which f̂(N) ≤ w · f̂(bestf̂), sorted according
to the distance-to go function hc. EECBS selects CT nodes
from these three lists using the SELECTNODE function:

1. if cost(besthc
) ≤ w · lb(bestlb), then select besthc

(i.e.,
selected from FOCAL);

2. else if cost(bestf̂) ≤ w ·lb(bestlb), then select bestf̂ (i.e.,
selected from OPEN);

3. else select bestlb (i.e., selected from CLEANUP).
Like EES, EECBS selects a CT node N only if its cost is
within the current suboptimality bound, i.e.,

cost(N) ≤ w · lb(bestlb), (2)

which guarantees bounded suboptimality. EECBS uses the
same focal search as ECBS on its low level.

EECBS overcomes the first drawback from Section 3.1
by taking the potential cost increment below a CT node into
consideration in Steps 1 and 2 and selecting a CT node N
whose estimated cost f̂(N) is within estimated suboptimal-
ity bound w · f̂(bestf̂). It overcomes the second drawback
by selecting the CT node with the minimum lb value in Step
3 to raise the lower bound. Table 1 (third row) shows its em-
pirical behavior in comparison with ECBS. Unlike ECBS,
whose lower-bound improvement is always around 0.6, the
lower-bound improvement of EECBS increases as the sub-
optimality factor w decreases. The smaller w is, the less
likely a solution is within the initial suboptimality bound
and thus the more frequently EECBS selects CT nodes from
CLEANUP (as shown in Table 1 (fourth row)). Figure 2
shows the runtimes and success rates of ECBS and EECBS.
As expected, EECBS (green lines) has a smaller runtime and
larger success rate than ECBS (red lines). The improvement
increases as w decreases.

3.4 Online Learning of the Cost-To-Go ĥ
Our estimate of the minimum cost of the solutions below
a given CT node N uses online learning since it does not
require preprocessing and allows for instance-specific learn-
ing. Thayer, Dionne, and Ruml (2011) present a method for
learning the cost-to-go during search using the error expe-
rienced during node expansions. Consider a node n with an
admissible cost heuristic h and a distance-to-go heuristic d.
The error εd of the distance-to-go heuristic d, called one-step
distance error, is defined as εd(n) = d(bc(n))− (d(n)−1),
where bc(n) is the best child node of node n, i.e., the child
node with the smallest f̂ value, breaking ties in favor of
the child node with the smallest d value. Similarly, the er-
ror εh of the cost function f , called one-step cost error, is
defined as εh(n) = h(bc(n))− (h(n)− c(n, bc(n))), where

c(n, bc(n)) is the cost of moving from node n to node bc(n).
These errors can be calculated after every node expansion.
They use a global error model that assumes that the distri-
bution of one-step errors across the entire search space is
uniform and can be estimated as an average of all observed
one-step errors. Therefore, the search maintains a running
average of the one-step errors observed so far, denoted by
εd and εh. Then, they prove that the true cost-to-go of node
n can be approximated by ĥ(n) = h(n) + d(n)

1−εd(n) · εh(n)

(Thayer, Dionne, and Ruml 2011).
We apply this method to EECBS. Since EECBS does not

have an admissible cost heuristic h, we define εd of CT
node N as εd(N) = hc(bc(N)) − (hc(N) − 1) and εh of
CT node N as εh(N) = cost(bc(N)) − cost(N). Then,
ĥ(N) = hc(N)

1−εd(N) · εh(N). Thus ĥ(N) is linear in hc(N), in-
dicating that the larger the number of conflicts of a CT node,
the higher the potential cost increments below the CT node
could be.

Algorithm 1 shows the pseudo-code of the high-level
search of EECBS. For now, we ignore Lines 2, 8-13, and
19-22 since they will be introduced in the next section. Com-
pared to the high-level search of ECBS, EECBS changes the
PUSHNODE and SELECTNODE functions and adds an UP-
DATEONESTEPERRORS function at the end of each iteration
to update the one-step errors (Line 26).

4 Bringing CBS Improvements to EECBS
We now show how we can incorporate recent CBS improve-
ments into EECBS. We introduce these techniques one by
one and, for each one, evaluate its effectiveness by adding it
to the best version of EECBS so far and showing the result-
ing performance in Figure 2.

4.1 Bypassing Conflicts
In CBS, the paths of every CT node N are the shortest paths
that satisfy N.constraints. However, in EECBS, the paths
can be bounded-suboptimal. Therefore, we can resolve more
conflicts with the bypassing conflicts technique in EECBS if
we relax the conditions of accepting bypasses. In addition,
since bypassing conflicts resolves conflicts without adding
any constraints, it does not change the lb value of a CT node.
Therefore, it may not be helpful if the purpose of expand-
ing a CT node N is to improve the lower bound, i.e., CT
node N is selected from CLEANUP. Formally, when ex-
panding a CT node N and generating its child CT nodes,
EECBS replaces the paths of N with the paths of a child
CT node N ′ and discards all generated child CT nodes iff
(1) CT node N is not selected from CLEANUP, (2) the
cost of every path of CT node N ′ is within the suboptimal-
ity bound of the corresponding agent in CT node N , i.e.,
∀i |N ′.paths[i]| ≤ w · f imin(N), (3) the cost of CT node
N ′ is within suboptimality bound w · lb(bestlb), and (4)
the number of conflicts decreases, i.e., hc(N ′) < hc(N).
The first condition avoids wasting time in applying the by-
passing conflicts technique to CT nodes that are selected
from CLEANUP. The second and third conditions ensure
that Equations (1) and (2) hold after replacing the paths,
which in turn guarantees bounded suboptimality. The last

Algorithm 1: High-level search of EECBS.
1 Generate root CT node R;
2 COMPUTEWDGHEURISTIC(R);
3 PUSHNODE(R);
4 while OPEN is not empty do
5 P ← SELECTNODE();
6 if P.conflicts is empty then
7 return P .paths; // P is a goal node

8 if P is selected from CLEANUP and the WDG
heuristic of P has not been computed yet then

9 COMPUTEWDGHEURISTIC(P);
10 PUSHNODE(P);
11 continue;

12 CONFLICTPRIORITIZATION(P.conflicts);
13 SYMMETRYREASONING(P.conflicts);
14 conflict← CHOOSECONFLICT(P.conflicts);
15 constraints← RESOLVECONFLICT(conflict);
16 children← ∅;
17 for constraint in constraints do
18 Q← GENERATECHILD(P, constraint);
19 if P is not selected from CLEANUP and

∀i |Q.paths[i]| ≤ w · f i
min(P) and

cost(Q) ≤ w · lb(bestlb) and hc(Q) < hc(P)
then // Bypassing

20 P.paths← Q.paths;
21 P.conflicts← Q.conflicts;
22 Go to Line 6;

23 Add Q to children;

24 for Q in children do
25 PUSHNODE(Q);

26 UPDATEONESTEPERRORS(P, children);

27 return “No solutions”;

w 1.04 1.08 1.12 1.16 1.20
CBS bypassing 0.086 0.107 0.110 0.116 0.108

Relaxed bypassing 0.091 0.114 0.104 0.131 0.126

Table 2: Average number of accepted bypasses per CT node.

condition avoids deadlocks, as in the standard CBS bypass-
ing technique. See Lines 19-22 of Algorithm 1.1

Empirically, we compare the effectiveness of EECBS
with relaxed bypassing and EECBS with CBS bypassing.
Table 2 reports the average number of accepted bypasses
per expanded CT node. Relaxed bypassing accepts more by-
passes than CBS bypassing, and the difference increases as
the suboptimality factor w increases. The yellow and green
lines in Figure 2 show the performance of EECBS with and
without relaxed bypassing. Relaxed bypassing improves the
performance of EECBS for all values of w and all numbers
of agents. In general, the improvement increases with w.

1There are many other ways to relax the conditions. For exam-
ple, one can omit the third condition and re-insert CT node N into
the appropriate lists (instead of keeping expanding it) after apply-
ing the bypassing conflicts technique. We leave it for future work
to evaluate different ways of relaxing the conditions of accepting
bypasses for EECBS.

4.2 Prioritizing Conflicts
In CBS, the prioritizing conflicts technique (PC) tries to im-
prove the costs of CT nodes faster since the cost of a CT
node also serves as a lower bound on the minimum cost
of the solutions below this CT node. In EECBS, however,
the cost of a CT node is different from its lower bound.
Therefore, we reformulate cardinal, semi-cardinal, and non-
cardinal conflicts. A conflict is cardinal iff, when CBS uses
the conflict to split CT node N and generates two child CT
nodesN ′ andN ′′, both

∑m
i=1 f

i
opt(N

′) and
∑m
i=1 f

i
opt(N

′′)

are larger than
∑m
i=1 f

i
opt(N). The changes to the defini-

tions of semi-cardinal and non-cardinal conflicts are simi-
lar. Like CBS, EECBS performs PC before it chooses con-
flicts (Line 12) and uses MDDs to classify conflicts. Since
the construction of MDDs induces runtime overhead and
not all cardinal conflicts are important to EECBS, EECBS
classifies a conflict between agents ai and aj only when
(1) the CT node N is selected from CLEANUP or (2) at
least one of the path costs is equal to its lower bound, i.e.,
|N.paths[i]| = f imin(N) or |N.paths[j]| = f jmin(N). PC
is applied in Case (1) because resolving cardinal conflicts
tends to raise the lower bound in this case. It is applied in
Case (2) because resolving cardinal conflicts can increase
the agents’ path costs in this case (which makes the costs
of the resulting child CT nodes closer to the sum of costs
of the solutions below them). EECBS selects cardinal con-
flicts first, then semi-cardinal conflicts, then non-cardinal
conflicts, and finally unclassified conflicts. By comparing
the purple and yellow lines in Figure 2, we see that PC im-
proves the performance of EECBS.

4.3 Symmetry Reasoning
We adapt symmetry reasoning techniques to EECBS with
almost no changes. EECBS performs symmetry reasoning
before it chooses conflicts (Line 13). Rectangle symmetry
occurs only if the paths of both agents are the shortest be-
cause, otherwise, one of the agents can simply perform a
wait action to avoid the rectangle symmetry. Therefore, for
a given conflict between agents ai and aj at CT node N , we
apply rectangle symmetry reasoning only when the paths of
both agents are provably the shortest, i.e., |N.paths[i]| =

f imin(N) and |N.paths[j]| = f jmin(N). Corridor and target
symmetries can occur even if the paths of the agents are sub-
optimal. Therefore, we apply corridor and target symmetry
reasoning to all conflicts. By comparing the grey and purple
lines in Figure 2, we see that the symmetry reasoning tech-
nique significantly improves the performance of EECBS.

4.4 WDG Heuristic
Since a path of a CT node N in EECBS is not necessarily
the shortest one and, for each agent ai, f imin(N) could be
smaller than f iopt(N), we need to modify the WDG heuris-
tic as follows. When EECBS computes the WDG heuristic
for a CT node N , it builds a weighted dependency graph
G = (V,E). Each vertex i ∈ V corresponds to an agent
ai. The edge weight on each edge (i, j) ∈ E is equal to the
minimum sum of costs of the conflict-free paths for agents ai
and aj that satisfyN.constraintsminus f iopt(N)+f jopt(N)

w 1.04 1.08 1.12 1.16 1.20

No WDG ∆lb 36.1 23.4 12.9 7.4 3.9
Cleanup 84.0% 74.0% 56.6% 40.4% 11.6%

CBS WDG ∆lb 54.5 45.0 37.0 30.1 25.8
Cleanup 49.9% 46.5% 25.1% 17.8% 5.7%

WDG time 87.9% 84.5% 80.1% 76.4% 65.3%

Adaptive WDG
∆lb 54.8 45.2 36.8 29.1 25.3

Cleanup 53.2% 44.0% 27.2% 14.4% 8.7%
WDG time 77.6% 62.6% 56.9% 43.2% 24.1%

Table 3: Lower-bound improvement ∆lb, i.e., the lb+h value
of the best CT node in CLEANUP when EECBS terminates
minus the lb value of the root CT node. WDG time is the
percentage of runtime spent on computing WDG heuristics.

(instead of |N.paths[i]| + |N.paths[j]|). Like CBS, we
compute each edge weight by solving a 2-agent MAPF in-
stance (with the constraints in N.constraints) using CBS:
f iopt(N) and f jopt(N) are equal to the costs of the paths
of agents ai and aj of the root CT node of CBS, and the
minimum sum of costs of the conflict-free paths for agents
ai and aj is equal to the cost of the solution returned by
CBS. Since computing the edge weights for all pairs of
agents is time-consuming, we follow CBS by computing the
weight for an edge (i, j) only when the paths N.paths[i]
and N.paths[j] are in conflict (as the weight is more likely
to be larger than 0 in this case). We delete the other edges
and the vertices that have no edges. Let hWDG(N) be the
value of the edge-weighted minimum vertex cover of G (Li
et al. 2019a). By the proof in (Li et al. 2019a), we know that∑m
i=1 f

i
opt(N) + hWDG(N) is a lower bound on the mini-

mum sum of costs of the solutions below CT node N . Since∑m
i=1 f

i
opt(N) + hWDG(N)

= lb(N) +
∑m
i=1(f iopt(N)− f imin(N)) + hWDG(N)

≥ lb(N) +
∑
i∈V (f iopt(N)− f imin(N)) + hWDG(N),

h(N) =
∑
i∈V (f iopt(N) − f imin(N)) + hWDG(N) is ad-

missible, and we can thus use lb(N) + h(N) to sort the CT
nodes in CLEANUP and compute the lower bound.

Since computing the WDG heuristic for a CT node is
time-consuming, Li et al. (2019a) suggest to calculate the
heuristic lazily by computing a cheaper but less informed
heuristic (e.g., using pathmax) when generating a CT node
N . Only when CT node N is selected for expansion is the
WDG heuristic computed and N re-inserted into the appro-
priate lists. Here, we follow the same scheme, as shown on
Lines 8-11. But, instead of computing the WDG heuristic for
all CT nodes, we only compute it for CT nodes selected from
CLEANUP, as the purpose of computing the WDG heuristic
is to improve the lower bound. In addition, we also compute
the WDG heuristic for the root CT node (Line 2), as this can
provide a higher lower bound to begin with.

Table 3 reports the lower-bound improvements of EECBS
without the WDG heuristic technique (denoted as No
WDG), with the WDG heuristic being computed for all CT
nodes (denoted as CBS WDG), and with the WDG heuris-
tic technique introduced above (denoted as Adaptive WDG).
Compared to No WDG, Adaptive WDG selects CT nodes
less frequently from CLEANUP but obtains a larger lower-
bound improvement. Compared to CBS WDG, Adaptive

Figure 4: Runtimes of ECBS and EECBS+ on the random
map with m varying from 45 to 150 and w varying from
1.02 to 1.20. The runtime of each unsolved instance is set to
60 seconds. Among the 2,000 instances, 475 instances are
solved by neither algorithm; 444 instances are solved only
by EECBS+; and 0 instances are solved only by ECBS.

WDG obtains similar lower-bound improvements but spends
less time on computing the WDG heuristic. By comparing
the blue and grey lines in Figure 2, we see that adaptive
WDG improves the performance of EECBS for small and
moderately large suboptimality factors.

5 Empirical Evaluation
We evaluate the algorithms on 6 maps of different sizes
and structures from the MAPF benchmark suite (Stern et al.
2019) with 8 different numbers of agents per map. We use
the “random” scenarios, yielding 25 instances for each map
and number of agents. We evaluate 10 different values of
w for each setting, and the values of w decrease as the
map size increases. The algorithms are implemented in C++,
and the experiments are conducted on Ubuntu 20.04 LTS
on an Intel Xeon 8260 CPU with a memory limit of 16
GB and a time limit of 1 minute. The code is available at
https://github.com/Jiaoyang-Li/EECBS.

As shown in Figure 5, EECBS (green lines) outperforms
ECBS (red lines) on some maps but shows a similar or
even slightly worse performance on other maps. The four
improvements improve the performance of both ECBS and
EECBS, but EECBS benefits more from them. As a result,
EECBS+ (EECBS with all improvements, purple lines) sig-
nificantly outperforms the other algorithms on all six maps
in terms of both runtime and success rate. When compar-
ing the dashed lines in the success rate figures, we observe
that, in many cases (e.g., for 60 agents on the random map
and 180 agents on the empty map), EECBS+ is able to solve
almost all instances within the runtime limit while ECBS
solves only a few or even no instances. For a given success
rate, EECBS+ is able to solve instances with up to twice the
number of agents than ECBS (e.g., on map den520d).

We provide more details of the experiment on the ran-
dom map in Figure 4. EECBS+ runs faster than ECBS in
most cases and never fails to solve an instance that is solved
by ECBS. In addition, when comparing the solution qual-
ity, the average solution costs of ECBS and EECBS+ over
the 1,081 instances solved by both algorithms are 1,967 and
1,958, respectively, indicating that the improvements used in
EECBS+ do not sacrifice the solution quality.

Figure 5: Performance of ECBS, EECBS, ECBS+ (ECBS with all improvements), EECBS+ (EECBS with all improvements),
BCP-7, and eMDD-SAT. All results are presented in the same format as in Figure 2. The legend for each row is shown above
it. The algorithms are indicated by the legend with the same color and the same marker style, while the suboptimality factors of
the lines in the success rate figures are indicated by the legend with the same line style. Since some algorithms solve (almost)
zero instances, their lines overlap at the top of the runtime figures and the bottom of the success rate figures: the grey lines are
hidden by the blue lines in the runtime figures of maps warehouse-10-2-10-2-1, den520d, and Pairs 1 256; the red
and green dashed lines are hidden by the yellow dashed line in the success rate figure of map den312d; and many of the grey/
blue dashed/solid/dotted lines are hidden by other lines at the bottom of many of the success rate figures.

We omit comparisons with the many search-based
bounded-suboptimal MAPF algorithms that have already
been shown to perform worse than ECBS (Aljalaud and
Sturtevant 2013; Barer et al. 2014; Wagner 2015). However,
there are two recent reduction-based bounded-suboptimal
MAPF algorithms, namely BCP-7 (Lam and Le Bodic 2020)
and eMDD-SAT (Surynek et al. 2018). BCP-7 can out-
perform CBS when finding optimal solutions (Lam and
Le Bodic 2020), and eMDD-SAT can outperform ECBS in
some domains (Surynek et al. 2018). We therefore com-
pare them with our algorithms. We modify the search of the
ILP solver used by BCP-7 from a best-first search (which
is more beneficial for finding optimal solutions) to a depth-
first search with restarts (which is more beneficial for find-
ing suboptimal solutions). As shown in Figure 5, BCP-7 and
eMDD-SAT outperform ECBS on the two small maps when
the suboptimality factor is small. But for larger suboptimal-
ity factors or larger maps, they perform worse than ECBS.

EECBS+ performs better than them on all six maps.

6 Conclusion
We proposed a new bounded-suboptimal MAPF algorithm
EECBS that uses online learning to estimate the cost of the
solution below each high-level node and uses EES to se-
lect high-level nodes for expansion. We further improve it
by adding bypassing conflicts, prioritizing conflicts, symme-
try reasoning, and using the WDG heuristic. With these im-
provements, EECBS significantly outperforms the state-of-
the-art bounded-suboptimal MAPF algorithms ECBS, BCP-
7, and eMDD-SAT. Within one minute, it is able to find so-
lutions that are provably at most 2% worse than optimal for
large MAPF instances with up to 1,000 agents, while, on the
same map, state-of-the-art optimal algorithms can handle at
most 200 agents (Lam and Le Bodic 2020). We hope that
the scalability of EECBS enables additional applications for
bounded-suboptimal MAPF algorithms.

Acknowledgments
The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1409987, 1724392, 1817189, 1837779, and
1935712 as well as a gift from Amazon. The research at the
University of New Hampshire was supported by NSF-BSF
grant 2008594. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, or the
U.S. government.

References
Aljalaud, F.; and Sturtevant, N. R. 2013. Finding Bounded
Suboptimal Multi-Agent Path Planning Solutions Using In-
creasing Cost Tree Search (Extended Abstract). In Helmert,
M.; and Röger, G., eds., Proceedings of the Annual Sympo-
sium on Combinatorial Search (SoCS), 203–204.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal Variants of the Conflict-Based Search Algorithm for
the Multi-Agent Pathfinding Problem. In Proceedings of the
Annual Symposium on Combinatorial Search (SoCS), 19–
27.
Boyarski, E.; Felner, A.; Harabor, D.; Stuckey, P. J.; Co-
hen, L.; Li, J.; and Koenig, S. 2020a. Iterative-Deepening
Conflict-Based Search. In Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
4084–4090.
Boyarski, E.; Felner, A.; Sharon, G.; and Stern, R. 2015a.
Don’t Split, Try To Work It Out: Bypassing Conflicts in
Multi-Agent Pathfinding. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 47–51.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015b. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 740–746.
Boyarski, E.; Harabor, D.; Stuckey, P. J.; Le Bodic, P.; and
Felner, A. 2020b. F-Cardinal Conflicts in Conflict-Based
Search. In Proceedings of the International Symposium on
Combinatorial Search (SoCS), 123–124.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T.
K. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Pathfinding. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS), 83–87.
Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implict Conflict-Based Search Using Lazy Clause Genera-
tion. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS), 155–162.
Ho, F.; Salta, A.; Geraldes, R.; Goncalves, A.; Cavazza, M.;
and Prendinger, H. 2019. Multi-Agent Path Finding for UAV
Traffic Management. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 131–139.

Lam, E.; and Le Bodic, P. 2020. New Valid Inequalities in
Branch-and-Cut-and-Price for Multi-Agent Path Finding. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 184–192.

Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-Cut-and-Price for Multi-Agent Pathfinding. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1289–1296.

Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved Heuristics for Multi-Agent Path Finding
with Conflict-Based Search. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
442–449.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020a. New Techniques for Pairwise Symmetry
Breaking in Multi-Agent Path Finding. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 193–201.

Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019b. Disjoint Splitting for Conflict-Based
Search for Multi-Agent Path Finding. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 279–283.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2019c. Symmetry-Breaking Constraints for Grid-Based
Multi-Agent Path Finding. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 6087–6095.

Li, J.; Sun, K.; Ma, H.; Felner, A.; Kumar, T. K. S.; and
Koenig, S. 2020b. Moving Agents in Formation in Con-
gested Environments. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 726–734.

Li, J.; Zhang, H.; Gong, M.; Liang, Z.; Liu, W.; Tong, Z.;
Yi, L.; Morris, R.; Pasareanu, C.; and Koenig, S. 2019d.
Scheduling and Airport Taxiway Path Planning under Un-
certainty. In Proceedings of the AIAA Aviation Forum.

Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017. Life-
long Multi-Agent Path Finding for Online Pickup and Deliv-
ery Tasks. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
837–845.

Okoso, A.; Otaki, K.; and Nishi, T. 2019. Multi-Agent
Path Finding with Priority for Cooperative Automated Valet
Parking. In Proceedings of the IEEE Intelligent Transporta-
tion Systems Conference (ITSC), 2135–2140.

Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transaction on Pattern Analysis and Ma-
chine Intelligence 4(4): 392–399.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence 219: 40–66.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The Increasing Cost Tree Search for Optimal Multi-Agent
Pathfinding. Artificial Intelligence 195: 470–495.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Proceedings
of the International Symposium on Combinatorial Search
(SoCS), 151–159.
Surynek, P. 2019. Lazy Compilation of Variants of Multi-
robot Path Planning with Satisfiability Modulo Theory
(SMT) Approach. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
3282–3287.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2018.
Sub-Optimal SAT-Based Approach to Multi-Agent Path-
Finding Problem. In Proceedings of the International Sym-
posium on Combinatorial Search (SoCS), 90–105.
Thayer, J. T.; Dionne, A. J.; and Ruml, W. 2011. Learning
Inadmissible Heuristics During Search. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 250–257.
Thayer, J. T.; and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 674–679.
Thayer, J. T.; Ruml, W.; and Kreis, J. 2009. Using Distance
Estimates in Heuristic Search: A Re-Evaluation. In Pro-
ceedings of the Annual Symposium on Combinatorial Search
(SoCS).
Wagner, G. 2015. Subdimensional Expansion: A Frame-
work for Computationally Tractable Multirobot Path Plan-
ning. Ph.D. thesis, Carnegie Mellon University.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 1444–1449.
Zhang, H.; Li, J.; Surnek, P.; Koenig, S.; and Kumar, T. K. S.
2020. Multi-Agent Path Finding with Mutex Propagation. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 323–332.

