
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses∗

Jiaoyang Li,1 Andrew Tinka,2 Scott Kiesel,2
Joseph W. Durham,2 T. K. Satish Kumar,1 Sven Koenig1

1 University of Southern California
2 Amazon Robotics

jiaoyanl@usc.edu, {atinka, skkiesel, josepdur}@amazon.com, tkskwork@gmail.com, skoenig@usc.edu

Abstract

Multi-Agent Path Finding (MAPF) is the problem of mov-
ing a team of agents to their goal locations without colli-
sions. In this paper, we study the lifelong variant of MAPF,
where agents are constantly engaged with new goal loca-
tions, such as in large-scale automated warehouses. We pro-
pose a new framework Rolling-Horizon Collision Resolu-
tion (RHCR) for solving lifelong MAPF by decomposing
the problem into a sequence of Windowed MAPF instances,
where a Windowed MAPF solver resolves collisions among
the paths of the agents only within a bounded time horizon
and ignores collisions beyond it. RHCR is particularly well
suited to generating pliable plans that adapt to continually
arriving new goal locations. We empirically evaluate RHCR
with a variety of MAPF solvers and show that it can produce
high-quality solutions for up to 1,000 agents (= 38.9% of the
empty cells on the map) for simulated warehouse instances,
significantly outperforming existing work.

1 Introduction
Multi-Agent Path Finding (MAPF) is the problem of mov-
ing a team of agents from their start locations to their goal
locations while avoiding collisions. The quality of a solution
is measured by flowtime (the sum of the arrival times of all
agents at their goal locations) or makespan (the maximum of
the arrival times of all agents at their goal locations). MAPF
is NP-hard to solve optimally (Yu and LaValle 2013).

MAPF has numerous real-world applications, such as
autonomous aircraft-towing vehicles (Morris et al. 2016),
video game characters (Li et al. 2020b), and quadro-
tor swarms (Hönig et al. 2018). Today, in automated
warehouses, mobile robots called drive units already au-
tonomously move inventory pods or flat packages from one
location to another (Wurman, D’Andrea, and Mountz 2007;
Kou et al. 2020). However, MAPF is only the “one-shot”
variant of the actual problem in many applications. Typi-
cally, after an agent reaches its goal location, it does not stop
and wait there forever. Instead, it is assigned a new goal lo-
cation and required to keep moving, which is referred to as
lifelong MAPF (Ma et al. 2017) and characterized by agents
constantly being assigned new goal locations.

∗This paper is an extension of (Li et al. 2020c).
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing methods for solving lifelong MAPF include (1)
solving it as a whole (Nguyen et al. 2017), (2) decompos-
ing it into a sequence of MAPF instances where one re-
plans paths at every timestep for all agents (Wan et al. 2018;
Grenouilleau, van Hoeve, and Hooker 2019), and (3) de-
composing it into a sequence of MAPF instances where one
plans new paths at every timestep for only the agents with
new goal locations (Cáp, Vokrı́nek, and Kleiner 2015; Ma
et al. 2017; Liu et al. 2019).

In this paper, we propose a new framework Rolling-
Horizon Collision Resolution (RHCR) for solving lifelong
MAPF where we decompose lifelong MAPF into a sequence
of Windowed MAPF instances and replan paths once every
h timesteps (replanning period h is user-specified) for in-
terleaving planning and execution. A Windowed MAPF in-
stance is different from a regular MAPF instance in the fol-
lowing ways:

1. it allows an agent to be assigned a sequence of goal loca-
tions within the same Windowed MAPF episode, and

2. collisions need to be resolved only for the first w
timesteps (time horizon w ≥ h is user-specified).

The benefit of this decomposition is two-fold. First, it keeps
the agents continually engaged, avoiding idle time, and thus
increasing throughput. Second, it generates pliable plans that
adapt to continually arriving new goal locations. In fact, re-
solving collisions in the entire time horizon (i.e., w =∞) is
often unnecessary since the paths of the agents can change
as new goal locations arrive.

We evaluate RHCR with various MAPF solvers, namely
CA* (Silver 2005) (incomplete and suboptimal), PBS (Ma
et al. 2019) (incomplete and suboptimal), ECBS (Barer
et al. 2014) (complete and bounded suboptimal), and
CBS (Sharon et al. 2015) (complete and optimal). We show
that, for each MAPF solver, using a bounded time horizon
yields similar throughput as using the entire time horizon
but with a significantly smaller runtime. We also show that
RHCR outperforms existing work and can scale up to 1,000
agents (= 38.9% of the empty cells on the map) for simulated
warehouse instances.

2 Background
In this section, we first introduce several state-of-the-art

MAPF solvers and then discuss existing research on life-

long MAPF. We finally review the elements of the bounded
horizon idea that have guided previous research.

2.1 Popular MAPF Solvers
Many MAPF solvers have been proposed in recent years,
including rule-based solvers (Luna and Bekris 2011;
de Wilde, ter Mors, and Witteveen 2013), prioritized plan-
ning (Okumura et al. 2019), compilation-based solvers (Lam
et al. 2019; Surynek 2019), A*-based solvers (Golden-
berg et al. 2014; Wagner 2015), and dedicated search-based
solvers (Sharon et al. 2013; Barer et al. 2014). We present
four representative MAPF solvers.

CBS Conflict-Based Search (CBS) (Sharon et al. 2015) is
a popular two-level MAPF solver that is complete and opti-
mal. At the high level, CBS starts with a root node that con-
tains a shortest path for each agent (ignoring other agents).
It then chooses and resolves a collision by generating two
child nodes, each with an additional constraint that prohibits
one of the agents involved in the collision from being at the
colliding location at the colliding timestep. It then calls its
low level to replan the paths of the agents with the new con-
straints. CBS repeats this procedure until it finds a node with
collision-free paths. CBS and its enhanced variants (Gange,
Harabor, and Stuckey 2019; Li et al. 2019, 2020a) are among
the state-of-the-art optimal MAPF solvers.

ECBS Enhanced CBS (ECBS) (Barer et al. 2014) is a
complete and bounded-suboptimal variant of CBS. The
bounded suboptimality (i.e., the solution cost is a user-
specified factor away from the optimal cost) is achieved
by using focal search (Pearl and Kim 1982), instead of
best-first search, in both the high- and low-level searches
of CBS. ECBS is the state-of-the-art bounded-suboptimal
MAPF solver.

CA* Cooperative A* (CA*) (Silver 2005) is based on a
simple prioritized-planning scheme: Each agent is given a
unique priority and computes, in priority order, a shortest
path that does not collide with the (already planned) paths of
agents with higher priorities. CA*, or prioritized planning in
general, is widely used in practice due to its small runtime.
However, it is suboptimal and incomplete since its prede-
fined priority ordering can sometimes result in solutions of
bad quality or even fail to find any solutions for solvable
MAPF instances.

PBS Priority-Based Search (PBS) (Ma et al. 2019) com-
bines the ideas of CBS and CA*. The high level of PBS is
similar to CBS except that, when resolving a collision, in-
stead of adding additional constraints to the resulting child
nodes, PBS assigns one of the agents involved in the colli-
sion a higher priority than the other agent in the child nodes.
The low level of PBS is similar to CA* in that it plans a
shortest path that is consistent with the partial priority or-
dering generated by the high level. PBS outperforms many
variants of prioritized planning in terms of solution quality
but is still incomplete and suboptimal.

(a) Fulfillment warehouse map, borrowed from (Wurman,
D’Andrea, and Mountz 2007).

(b) Sorting center map, modified from (Wan et al. 2018).

Figure 1: A well-formed fulfillment warehouse map and a
non-well-formed sorting center map. Orange squares repre-
sent robots. In (a), the endpoints consist of the green cells
(representing locations that store inventory pods) and blue
cells (representing the work stations). In (b), the endpoints
consist of the blue cells (representing locations where the
drive units drop off packages) and pink cells (represent-
ing the loading stations). Black cells labeled “X” represent
chutes (obstacles).

2.2 Prior Work on Lifelong MAPF
We classify prior work on lifelong MAPF into three cate-
gories.

Method (1) The first method is to solve lifelong MAPF as
a whole in an offline setting (i.e., knowing all goal locations
a priori) by reducing lifelong MAPF to other well-studied
problems. For example, Nguyen et al. (2017) formulate life-
long MAPF as an answer set programming problem. How-
ever, the method only scales up to 20 agents in their paper,
each with only about 4 goal locations. This is not surpris-
ing because MAPF is a challenging problem and its lifelong
variant is even harder.

Method (2) A second method is to decompose lifelong
MAPF into a sequence of MAPF instances where one re-
plans paths at every timestep for all agents. To improve the
scalability, researchers have developed incremental search
techniques that reuse previous search effort. For example,
Wan et al. (2018) propose an incremental variant of CBS that
reuses the tree of the previous high-level search. However,
it has substantial overhead in constructing a new high-level
tree from the previous one and thus does not improve the
scalability by much. Svancara et al. (2019) use the frame-
work of Independence Detection (Standley 2010) to reuse
the paths from the previous iteration. It replans paths for

only the new agents (in our case, agents with new goal loca-
tions) and the agents whose paths are affected by the paths
of the new agents. However, when the environment is dense
(i.e., contains many agents and many obstacles, which is
common for warehouse scenarios), almost all paths are af-
fected, and thus it still needs to replan paths for most agents.

Method (3) A third method is similar to the second
method but restricts replanning to the paths of the agents
that have just reached their goal locations. The new paths
need to avoid collisions not only with each other but also
with the paths of the other agents. Hence, this method could
degenerate to prioritized planning in case where only one
agent reaches its goal location at every timestep. As a result,
the general drawbacks of prioritized planning, namely its in-
completeness and its potential to generate costly solutions,
resurface in this method. To address the incompleteness is-
sue, Cáp, Vokrı́nek, and Kleiner (2015) introduce the idea of
well-formed infrastructures to enable backtrack-free search.
In well-formed infrastructures, all possible goal locations
are regarded as endpoints, and, for every pair of endpoints,
there exists a path that connects them without traversing any
other endpoints. In real-world applications, some maps, such
as the one in Figure 1a, may satisfy this requirement, but
other maps, such as the one in Figure 1b, may not. More-
over, additional mechanisms are required during path plan-
ning. For example, one needs to force the agents to “hold”
their goal locations (Ma et al. 2017) or plan “dummy paths”
for the agents (Liu et al. 2019) after they reach their goal lo-
cations. Both alternatives result in unnecessarily long paths
for agents, decreasing the overall throughput, as shown in
our experiments.

Summary Method (1) needs to know all goal locations a
priori and has limited scalability. Method (2) can work in
an online setting and scales better than Method (1). How-
ever, replanning for all agents at every timestep is time-
consuming even if one uses incremental search techniques.
As a result, its scalability is also limited. Method (3) scales
to substantially more agents than the first two methods, but
the map needs to have an additional structure to guarantee
completeness. As a result, it works only for specific classes
of lifelong MAPF instances. In addition, Methods (2) and
(3) plan at every timestep, which may not be practical since
planning is time-consuming.

2.3 Bounded-Horizon Planing
Bounded-horizon planning is not a new idea. Silver (2005)
has already applied this idea to regular MAPF with CA*.
He refers to it as Windowed Hierarchical Cooperative A*
(WHCA*) and empirically shows that WHCA* runs faster
as the length of the bounded horizon decreases but also gen-
erates longer paths. In this paper, we showcase the benefits
of applying this idea to lifelong MAPF and other MAPF
solvers. In particular, RHCR yields the benefits of lower
computational costs for planning with bounded horizons
while keeping the agents busy and yet, unlike WHCA* for
regular MAPF, decreasing the solution quality only slightly.

3 Problem Definition
The input is a graph G = (V,E), whose vertices V corre-
spond to locations and whose edges E correspond to con-
nections between two neighboring locations, and a set of m
agents {a1, . . . , am}, each with an initial location. We study
an online setting where we do not know all goal locations
a priori. We assume that there is a task assigner (outside of
our path-planning system) that the agents can request goal
locations from during the operation of the system.1 Time is
discretized into timesteps. At each timestep, every agent can
either move to a neighboring location or wait at its current
location. Both move and wait actions have unit duration. A
collision occurs iff two agents occupy the same location at
the same timestep (called a vertex conflict in (Stern et al.
2019)) or traverse the same edge in opposite directions at
the same timestep (called a swapping conflict in (Stern et al.
2019)). Our task is to plan collision-free paths that move
all agents to their goal locations and maximize the through-
put, i.e., the average number of goal locations visited per
timestep. We refer to the set of collision-free paths for all
agents as a MAPF plan.

We study the case where the task assigner is not within our
control so that our path-planning system is applicable in dif-
ferent domains. But, for a particular domain, one can design
a hierarchical framework that combines a domain-specific
task assigner with our domain-independent path-planning
system. Compared to coupled methods that solve task as-
signment and path finding jointly, a hierarchical framework
is usually a good way to achieve efficiency. For example, the
task assigners in (Ma et al. 2017; Liu et al. 2019) for fulfill-
ment warehouse applications and in (Grenouilleau, van Ho-
eve, and Hooker 2019) for sorting center applications can be
directly combined with our path-planning system. We also
showcase two simple task assigners, one for each applica-
tion, in our experiments.

We assume that the drive units can execute any MAPF
plan perfectly. Although this seems to be not realistic, there
exist some post-processing methods (Hönig et al. 2016) that
can take the kinematic constraints of drive units into consid-
eration and convert MAPF plans to executable commands
for them that result in robust execution. For example, Hönig
et al. (2019) propose a framework that interleaves planning
and execution and can be directly incorporated with our
framework RHCR.

4 Rolling-Horizon Collision Resolution
Rolling-Horizon Collision Resolution (RHCR) has two
user-specified parameters, namely the time horizon w and
the replanning period h. The time horizon w specifies that
the Windowed MAPF solver has to resolve collisions within
a time horizon of w timesteps. The replanning period h spec-
ifies that the Windowed MAPF solver needs to replan paths
once every h timesteps. The Windowed MAPF solver has to

1In case there are only a finite number of tasks, after all tasks
have been assigned, we assume that the task assigner will assign
a dummy task to an agent whose goal location is, e.g., a charging
station, an exit, or the current location of the agent.

replan paths more frequently than once every w timesteps to
avoid collisions, i.e., w should be larger than or equal to h.

In every Windowed MAPF episode, say, starting at
timestep t, RHCR first updates the start location si and the
goal location sequence gi for each agent ai. RHCR sets the
start location si of agent ai to its location at timestep t. Then,
RHCR calculates a lower bound on the number of timesteps
d that agent ai needs to visit all remaining locations in gi,
i.e.,

d = dist(si ,gi[0]) +

|gi|−1∑
j=1

dist(gi[j − 1],gi[j]), (1)

where dist(x, y) is the distance from location x to location y
and |x| is the cardinality in sequence x.2 d being smaller
than h indicates that agent ai might finish visiting all its
goal locations and then being idle before the next Windowed
MAPF episode starts at timestep t + h. To avoid this situa-
tion, RHCR continually assigns new goal locations to agent
ai until d ≥ h. Once the start locations and the goal location
sequences for all agents require no more updates, RHCR
calls a Windowed MAPF solver to find paths for all agents
that move them from their start locations to all their goal lo-
cations in the order given by their goal location sequences
and are collision-free for the first w timesteps. Finally, it
moves the agents for h timesteps along the generated paths
and remove the visited goal locations from their goal loca-
tion sequences.

RHCR uses flowtime as the objective of the Windowed
MAPF solver, which is known to be a reasonable objective
for lifelong MAPF (Svancara et al. 2019). Compared to reg-
ular MAPF solvers, Windowed MAPF solvers need to be
changed in two aspects:

1. each path needs to visit a sequence of goal locations, and

2. the paths need to be collision-free for only the first w
timesteps.

We describe these changes in detail in the following two sub-
sections.

4.1 A* for a Goal Location Sequence
The low-level searches of all MAPF solvers discussed in
Section 2.1 need to find a path for an agent from its start
location to its goal location while satisfying given spatio-
temporal constraints that prohibit the agent from being at
certain locations at certain timesteps. Therefore, they often
use location-time A* (Silver 2005) (i.e., A* that searches in
the location-time space where each state is a pair of location
and timestep) or any of its variants. However, a characteris-
tic feature of a Windowed MAPF solver is that it plans a path
for each agent that visits a sequence of goal locations. De-
spite this difference, techniques used in the low-level search

2Computing d relies on the distance function dist(x, y). Here,
and in any other place where dist(x, y) is required, prepossessing
techniques can be used to increase efficiency. In particular, large
warehouses have a candidate set of goal locations as the only pos-
sible values for y, enabling the pre-computation and caching of
shortest-path trees.

Algorithm 1: The low-level search for Win-
dowed MAPF solvers generalizing Multi-Label
A* (Grenouilleau, van Hoeve, and Hooker 2019).

Input: Start location si, goal location sequence gi.

1 R.location ← si, R.time ← 0, R.g ← 0;
2 R.label ← 0;
3 R.h← COMPUTEHVALUE(R.location , R.label);
4 open .push(R);
5 while open is not empty do
6 P ← open .pop(); // Pop the node with the

minimum f .
7 if P.location = gi[P.label] then // Update label.
8 P.label ← P.label + 1;
9 if P.label = |gi| then // Goal test.

10 return the path retrieved from P ;
11 foreach child node Q of P do // Generate child

nodes.
12 open .push(Q);

13 return “No Solution”;

14 Function COMPUTEHVALUE(Location x, Label l) :
15 return

dist(x ,gi[l]) +
∑|gi|−1

j=l+1 dist(gi[j − 1],gi[j]);

of regular MAPF solvers can be adapted to the low-level
search of Windowed MAPF solvers. In fact, Grenouilleau,
van Hoeve, and Hooker (2019) perform a truncated version
of this adaptation for the pickup and delivery problem. They
propose Multi-Label A* that can find a path for a single
agent that visits two ordered goal locations, namely its as-
signed pickup location and its goal location. In Algorithm 1,
we generalize Multi-Label A* to a sequence of goal loca-
tions.3

Algorithm 1 uses the structure of location-time A*. For
each node N , we add an additional attribute N.label that
indicates the number of goal locations in the goal location
sequence gi that the path from the root node to node N has
already visited. For example, N.label = 2 indicates that the
path has already visited goal locations gi[0] and gi[1] but
not goal location gi[2]. Algorithm 1 computes the h-value
of a node as the distance from the location of the node to the
next goal location plus the sum of the distances between con-
secutive future goal locations in the goal location sequence
[Lines 14-15]. In the main procedure, Algorithm 1 first cre-
ates the root node R with label 0 and pushes it into the pri-

3Planning a path for an agent to visit a sequence of goal lo-
cations is not straightforward. While one can call a sequence of
location-time A* to plan a shortest path between every two con-
secutive goal locations and concatenate the resulting paths, the
overall path is not necessarily the shortest because the presence
of spatio-temporal constraints introduces spatio-temporal depen-
dencies among the path segments between different goal locations,
e.g., arriving at the first goal location at the earliest timestep may
result in a longer overall path than arriving there later. We therefore
need Algorithm 1.

oritized queue open [Lines 1-4]. While open is not empty
[Line 5], the node P with the smallest f -value is selected
for expansion [Line 6]. If P has reached its current goal lo-
cation [Line 7], P.label is incremented [Line 8]. If P.label
equals the cardinality of the goal location sequence [Line 9],
Algorithm 1 terminates and returns the path [Line 10]. Oth-
erwise, it generates child nodes that respect the given spatio-
temporal constraints [Lines 11-12]. The labels of the child
nodes equal P.label . Checking the priority queue for dupli-
cates requires a comparison of labels in addition to other
attributes.

4.2 Bounded-Horizon MAPF Solvers
Another characteristic feature of Windowed MAPF solvers
is the use of a bounded horizon. Regular MAPF solvers can
be easily adapted to resolving collisions for only the first w
timesteps. Beyond the first w timesteps, the solvers ignore
collisions among agents and assume that each agent follows
its shortest path to visit all its goal locations, which ensures
that the agents head in the correct directions in most cases.
We now provide details on how to modify the various MAPF
solvers discussed in Section 2.1.

Bounded-Horizon (E)CBS Both CBS and ECBS search
by detecting and resolving collisions. In their bounded-
horizon variants, we only need to modify the collision detec-
tion function. While (E)CBS finds collisions among all paths
and can then resolve any one of them, bounded-horizon
(E)CBS only finds collisions among all paths that occur
in the first w timesteps and can then resolve any one of
them. The remaining parts of (E)CBS stay the same. Since
bounded-horizon (E)CBS needs to resolve fewer collisions,
it generates a smaller high-level tree and thus runs faster than
standard (E)CBS.

Bounded-Horizon CA* CA* searches based on prior-
ities, where an agent avoids collisions with all higher-
priority agents. In its bounded-horizon variant, an agent is
required to avoid collisions with all higher-priority agents
but only during the first w timesteps. Therefore, when run-
ning location-time A* for each agent, we only consider the
spatio-temporal constraints during the first w timesteps in-
duced by the paths of higher-priority agents. The remaining
parts of CA* stay the same. Since bounded-horizon CA* has
fewer spatio-temporal constraints, it runs faster and is less
likely to fail to find solutions than CA*. Bounded-horizon
CA* is identical to WHCA* in (Silver 2005).

Bounded-Horizon PBS The high-level search of PBS is
similar to that of CBS and is based on resolving collisions,
while the low-level search of PBS is similar to that of CA*
and plans paths that are consistent with the partial prior-
ity ordering generated by the high-level search. Hence, we
need to modify the collision detection function of the high
level of PBS (just like how we modify CBS) and incorpo-
rate the limited consideration of spatio-temporal constraints
into its low level (just like how we modify CA*). As a result,

bounded-horizon PBS generates smaller high-level trees and
runs faster in its low level than standard PBS.

4.3 Behavior of RHCR
We first show that resolving collisions for a longer time hori-
zon in lifelong MAPF does not necessarily result in better
solutions. Below is such an example.
Example 1. Consider the lifelong MAPF instance shown
in Figure 2a with time horizon w = 4 and replanning pe-
riod h = 2, and assume that we use an optimal Windowed
MAPF solver. At timestep 0 (left figure), all agents follow
their shortest paths as no collisions will occur during the
first 4 timesteps. Then, agent a3 reaches its goal location at
timestep 2 and is assigned a new goal location (right figure).
If agents a1 and a3 both follow their shortest paths, the Win-
dowed MAPF solver finds a collision between them at cell B
at timestep 3 and forces agent a1 to wait for one timestep.
The resulting number of wait actions is 1. However, if we
solve this example with time horizon w = 8, as shown in
Figure 2b, we could generate paths with more wait actions.
At timestep 0 (left figure), the Windowed MAPF solver finds
a collision between agents a1 and a2 at cell A at timestep 6
and thus forces agent a2 to wait for one timestep. Then, at
timestep 2 (right figure), the Windowed MAPF solver finds
a collision between agents a1 and a3 at cell B at timestep 3
and forces agent a3 to wait for one timestep. The resulting
number of wait actions is 2.

Similar cases are also found in our experiments: some-
times RHCR with smaller time horizons achieves higher
throughput than with larger time horizons. All of these cases
support our claim that, in lifelong MAPF, resolving all col-
lisions in the entire time horizon is unnecessary, which is
different from regular MAPF. Nevertheless, the bounded-
horizon method also has a drawback since using too small
a value for the time horizon may generate deadlocks that
prevent agents from reaching their goal locations, as shown
in Example 2.
Example 2. Consider the lifelong MAPF instance shown
in Figure 2c with time horizon w = 2 and replanning pe-
riod h = 2, and assume that we use an optimal Windowed
MAPF solver. At timestep 0, the Windowed MAPF solver re-
turns path [B, B, B, C, D, E] (of length 5) for agent a1 and
path [C, C, C, B, A, L] (of length 5) for agent a2, which are
collision-free for the first 2 timesteps. It does not return the
collision-free paths where one of the agents uses the upper
corridor, nor the collision-free paths where one of the agents
leaves the lower corridor first (to let the other agent reach
its goal location) and then re-enters it, because the resulting
flowtime is larger than 5 + 5 = 10. Therefore, at timestep 2,
both agents are still waiting at cells B and C. The Windowed
MAPF solver then finds the same paths for both agents again
and forces them to wait for two more timesteps. Overall, the
agents wait at cells B and C forever and never reach their
goal locations.

4.4 Avoiding Deadlocks
To address the deadlock issue shown in Example 2, we can
design a potential function to evaluate the progress of the

(a) A lifelong MAPF instance with time horizon w =
4. Agent a3 reaches its goal location at timestep 2 and
is then assigned a new goal location.

(b) The same lifelong MAPF instance as shown in (a)
with time horizon w = 8.

(c) A lifelong MAPF
instance with time
horizon w = 2.

Figure 2: Lifelong MAPF instances with replanning period h = 2. Solid (dashed) circles represent the current (goal) locations
of the agents.

agents and increase the time horizon if the agents do not
make sufficient progress. For example, after the Windowed
MAPF solver returns a set of paths, we compute the po-
tential function P (w) = |{ai|COMPUTEHVALUE(xi, li) <
COMPUTEHVALUE(si, 0), 1 ≤ i ≤ m}|, where function
COMPUTEHVALUE(·, ·) is defined on Lines 14-15 in Algo-
rithm 1, xi is the location of agent ai at timestep w, li is
the number of goal locations that it has visited during the
first w timesteps, and si is its location at timestep 0. P (w)
estimates the number of agents that need fewer timesteps to
visit all their goal locations from timestep w on than from
timestep 0 on. We increase w and continue running the Win-
dowed MAPF solver until P (w) ≥ p, where p ∈ [0,m] is a
user-specified parameter. This ensures that at least p agents
have visited (some of) their goal locations or got closer to
their next goal locations during the first w timesteps.
Example 3. Consider again the lifelong MAPF instance in
Figure 2c. Assume that p = 1. When the time horizon w = 2,
as discussed in Example 2, both agents keep staying at their
start locations, and thus P (2) = 0. When we increase w
to 3, the Windowed MAPF solver finds the paths [B, C, D,
E] (of length 3) for agent a1 and [C, D, E, ..., K, L] (of
length 9) for agent a2. Now, P (3) = 1 because agent a1 is
at cell E at timestep 3 and needs 0 more timesteps to visit its
goal locations. Since P (3) = p, the Windowed MAPF solver
returns this set of paths and avoids the deadlock.

There are several methods for designing such potential
functions, e.g., the number of goal locations that have been
reached before timestep w or the sum of timesteps that all
agents need to visit their goal locations from timestep w on
minus that the sum of timesteps that all agents need to visit
their goal locations from timestep 0 on. In our experiments,
we use only the one described above. We intend to design
more potential functions and compare their effectiveness in
the future.

Unfortunately, RHCR with the deadlock avoidance mech-
anism is still incomplete. Imagine an intersection where
many agents are moving horizontally but only one agent
wants to move vertically. If we always let the horizontal
agents move and the vertical agent wait, we maximize the
throughput but lose completeness (as the vertical agent can

(a) Fulfillment warehouse map.

(b) Sorting center map.

Figure 3: Two typical warehouse maps. Black cells represent
obstacles, which the agents cannot occupy. Cells of other
colors represent empty locations, which the agents can oc-
cupy and traverse.

never reach its goal location). But if we let the vertical agent
move and the horizontal agents wait, we might guarantee
completeness but will achieve a lower throughput. This is-
sue can occur even if we use time horizon w = ∞. Since
throughput and completeness can compete with each other,
we choose to focus on throughput instead of completeness
in this paper.

5 Empirical Results
We implement RHCR in C++ with four Windowed MAPF
solvers based on CBS, ECBS, CA* and PBS.4 We use

4The code is available at https://github.com/Jiaoyang-Li/
RHCR.

Framework m = 60 m = 100 m = 140

RHCR 2.33 3.56 4.55
HE 2.17 (-6.80%) 3.33 (-6.33%) 4.35 (-4.25%)

RDP 2.19 (-6.00%) 3.41 (-4.16%) 4.50 (-1.06%)

RHCR 0.33± 0.01 2.04± 0.04 7.78± 0.14
HE 0.01± 0.00 0.02± 0.00 0.04± 0.01

RDP 0.02± 0.00 0.05± 0.01 0.17± 0.05

Table 1: Average throughput (Rows 2-4) and average run-
time (in seconds) per run (Rows 5-7) of RHCR, holding
endpoints (denoted by HE) and reserving dummy paths
(denoted by RDP). Numbers in parenthesis characterize
throughput differences (in percentage) compared to RHCR.
Numbers after “±” indicate standard deviations.

SIPP (Phillips and Likhachev 2011), an advanced variant of
location-time A*, as the low-level solver for CA* and PBS.
We use Soft Conflict SIPP (SCIPP) (Cohen et al. 2019),
a recent variant of SIPP that generally breaks ties in fa-
vor of paths with lower numbers of collisions, for CBS and
ECBS. We use CA* with random restarts where we repeat-
edly restart CA* with a new random priority ordering until
it finds a solution. We also implement two existing realiza-
tions of Method (3) for comparison, namely holding end-
points (Ma et al. 2017) and reserving dummy paths (Liu
et al. 2019). We do not compare against Method (1) since
it does not work in our online setting. We do not compare
against Method (2) since we choose dense environments to
stress test various methods and its performance in dense en-
vironments is similar to that of RHCR with an infinite time
horizon. We simulate 5,000 timesteps for each experiment
with potential function threshold p = 1. We conduct all ex-
periments on Amazon EC2 instances of type “m4.xlarge”
with 16 GB memory.

5.1 Fulfillment Warehouse Application
In this subsection, we introduce fulfillment warehouse prob-
lems, that are commonplace in automated warehouses and
are characterized by blocks of inventory pods in the cen-
ter of the map and work stations on its perimeter. Method
(3) is applicable in such well-formed infrastructures, and we
thus compare RHCR with both realizations of Method (3).
We use the map in Figure 3a from (Liu et al. 2019). It is a
33 × 46 4-neighbor grid with 16% obstacles. The initial lo-
cations of agents are uniformly chosen at random from the
orange cells, and the task assigner chooses the goal loca-
tions for agents uniformly at random from the blue cells.
For RHCR, we use time horizon w = 20 and replanning pe-
riod h = 5. For the other two methods, we replan at every
timestep, as required by Method (3). All methods use PBS
as their (Windowed) MAPF solvers.

Table 1 reports the throughput and runtime of these meth-
ods with different numbers of agents m. In terms of through-
put, RHCR outperforms the reserving dummy path method,
which in turn outperforms the holding endpoints method.
This is because, as discussed in Section 2.2, Method (3)
usually generates unnecessary longer paths in its solutions.

In terms of runtime, however, our method is slower per run
(i.e., per call to the (Windowed) MAPF solver) because the
competing methods usually replan for fewer than 5 agents.
The disadvantages of these methods are that they need to re-
plan at every timestep, achieve a lower throughput, and are
not applicable to all maps.

5.2 Sorting Center Application
In this subsection, we introduce sorting center problems, that
are also commonplace in warehouses and are characterized
by uniformly placed chutes in the center of the map and
work stations on its perimeter. Method (3) is not applica-
ble since they are typically not well-formed infrastructures.
We use the map in Figure 3b. It is a 37 × 77 4-neighbor
grid with 10% obstacles. The 50 green cells on the top and
bottom boundaries represent work stations where humans
put packages on the drive units. The 275 black cells (except
for the four corner cells) represent the chutes where drive
units occupy one of the adjacent blue cells and drop their
packages down the chutes. The drive units are assigned to
green cells and blue cells alternately. In our simulation, the
task assigner chooses blue cells uniformly at random and
chooses green cells that are closest to the current locations
of the drive units. The initial locations of the drive units are
uniformly chosen at random from the empty cells (i.e., cells
that are not black). We use a directed version of this map to
make MAPF solvers more efficient since they do not have to
resolve swapping conflicts, which allows us to focus on the
efficiency of the overall framework. Our handcrafted hori-
zontal directions include two rows with movement from left
to right alternating with two rows with movement from right
to left, and our handcrafted vertical directions include two
columns with movement from top to bottom alternating with
two columns with movement from bottom to top. We use re-
planning period h = 5.

Tables 2 and 3 report the throughput and runtime of
RHCR using PBS, ECBS with suboptimality factor 1.1,
CA*, and CBS for different values of time horizon w. As
expected, w does not substantially affect the throughput. In
most cases, small values of w change the throughput by less
than 1% compared to w = ∞. However, w substantially
affects the runtime. In all cases, small values of w speed
up RHCR by up to a factor of 6 without compromising the
throughput. Small values of w also yield scalability with re-
spect to the number of agents, as indicated in both tables by
missing “-”. For example, PBS with w = ∞ can only solve
instances up to 700 agents, while PBS with w = 5 can solve
instances up to at least 1,000 agents.

5.3 Dynamic Bounded Horizons
We evaluate whether we can use the deadlock avoidance
mechanism to decide the value of w for each Windowed
MAPF episode automatically by using a larger value of p
and starting with a smaller value of w. We use RHCR with
w = 5 and p = 60 on the instances in Section 5.1 with
60 agents. We use ECBS with suboptimality factor 1.5 as
the Windowed MAPF solver. The average time horizon that
is actually used in each Windowed MAPF episode is 9.97
timesteps. The throughput and runtime are 2.10 and 0.35s,

w m = 400 m = 500 m = 600 m = 700 m = 800 m = 900 m = 1000
T

hr
ou

gh
pu

t 5 12.27 (-1.56%) 15.17 (-1.84%) 17.97 (-2.35%) 20.69 (-2.85%) 23.36 25.79 27.95
10 12.41 (-0.41%) 15.43 (-0.19%) 18.38 (-0.11%) 21.19 (-0.52%) 23.94 26.44 28.77
20 12.45 (-0.07%) 15.48 (+0.12%) 18.38 (-0.11%) 21.24 (-0.26%) 23.91 - -
∞ 12.46 15.46 18.40 21.30 - - -

R
un

tim
e 5 0.61± 0.00 1.12± 0.01 1.87± 0.01 3.01± 0.01 4.73± 0.02 7.30± 0.04 10.97± 0.06

10 0.89± 0.00 1.66± 0.01 2.91± 0.01 4.81± 0.02 7.79± 0.04 12.66± 0.07 21.31± 0.14
20 1.36± 0.01 2.71± 0.01 5.11± 0.03 9.28± 0.06 17.46± 0.14 - -
∞ 1.83± 0.01 3.84± 0.03 7.63± 0.06 16.16± 0.17 - - -

Table 2: Average throughput and average runtime (in seconds) per run of RHCR using PBS. “-” indicates that it takes more
than 1 minute for the Windowed MAPF solver to find a solution in any run. Numbers in parenthesis characterize throughput
differences (in percentage) compared to time horizon w =∞. Numbers after “±” indicate standard deviations.

w m = 100 m = 200 m = 300 m = 400 m = 500 m = 600

Throughput 5 3.19 (+1.02%) 6.23 (-1.21%) 9.17 (-1.47%) 12.03 (-2.03%) 14.79 (-2.68%) 17.28
∞ 3.16 6.31 9.31 12.28 15.20 -

Runtime 5 0.07± 0.00 0.26± 0.00 0.64± 0.00 1.27± 0.01 2.37± 0.02 4.22± 0.10
∞ 0.38± 0.00 1.81± 0.01 5.09± 0.03 11.48± 0.09 23.47± 0.22 -

(a) RHCR using ECBS.

w m = 100 m = 200 m = 300 m = 400

Throughput 5 3.19 (+0.53%) 6.17 (-0.48%) 9.12 (-0.35%) -
∞ 3.17 6.20 9.16 -

Runtime 5 0.05± 0.00 0.21± 0.01 1.07± 0.10 -
∞ 0.19± 0.00 0.84± 0.02 2.58± 0.12 -

(b) RHCR using CA*.

w m = 100 m = 200

Throughput 5 3.17 -
∞ - -

Runtime 5 0.14± 0.03 -
∞ - -

(c) RHCR using CBS.

Table 3: Results of RHCR using ECBS, CA*, and CBS. Numbers are reported in the same format as in Table 2.

respectively. However, if we use a fixed w (i.e., p = 0),
we achieve a throughput of 1.72 and a runtime of 0.07s for
time horizon w = 5 and a throughput of 2.02 and a run-
time of 0.17s for time horizon w = 10. Therefore, this dy-
namic bounded-horizon method is able to find a good hori-
zon length that produces high throughput but induces run-
time overhead as it needs to increase the time horizon re-
peatedly.

6 Conclusions
In this paper, we proposed Rolling-Horizon Collision Res-
olution (RHCR) for solving lifelong MAPF by decompos-
ing it into a sequence of Windowed MAPF instances. We
showed how to transform several regular MAPF solvers to
Windowed MAPF solvers. Although RHCR does not guar-
antee completeness or optimality, we empirically demon-
strated its success on fulfillment warehouse maps and sort-
ing center maps. We demonstrated its scalability up to 1,000
agents while also producing solutions of high throughput.
Compared to Method (3), RHCR not only applies to gen-
eral graphs but also yields better throughput. Overall, RHCR
applies to general graphs, invokes replanning at a user-
specified frequency, and is able to generate pliable plans that
cannot only adapt to continually arriving new goal locations
but also avoids wasting computational effort in anticipating

a distant future.
RHCR is simple, flexible, and powerful. It introduces a

new direction for solving lifelong MAPF problems. There
are many avenues of future work:

1. adjusting the time horizon w automatically based on the
congestion and the planning time budget,

2. grouping the agents and planning in parallel, and

3. deploying incremental search techniques to reuse search
effort from previous searches.

Acknowledgments

The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1409987, 1724392, 1817189, 1837779, and
1935712 as well as a gift from Amazon. Part of the research
was completed during Jiaoyang Li’s internship at Amazon
Robotics. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies, or the U.S.
government.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal Variants of the Conflict-Based Search Algorithm for
the Multi-Agent Pathfinding Problem. In Proceedings of the
Annual Symposium on Combinatorial Search (SoCS), 19–
27.

Cáp, M.; Vokrı́nek, J.; and Kleiner, A. 2015. Complete
Decentralized Method for On-Line Multi-Robot Trajectory
Planning in Well-Formed Infrastructures. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 324–332.

Cohen, L.; Uras, T.; Kumar, T. K. S.; and Koenig, S.
2019. Optimal and Bounded-Suboptimal Multi-Agent Mo-
tion Planning. In Proceedings of the International Sympo-
sium on Combinatorial Search (SoCS), 44–51.

de Wilde, B.; ter Mors, A.; and Witteveen, C. 2013. Push and
Rotate: Cooperative Multi-Agent Path Planning. In Proceed-
ings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 87–94.

Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implicit Conflict-Based Search Using Lazy Clause Gener-
ation. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 155–162.

Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturte-
vant, N. R.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced
Partial Expansion A*. Journal of Artificial Intelligence Re-
search 50: 141–187.

Grenouilleau, F.; van Hoeve, W.; and Hooker, J. N. 2019. A
Multi-Label A* Algorithm for Multi-Agent Pathfinding. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 181–185.

Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Aya-
nian, N. 2019. Persistent and Robust Execution of MAPF
Schedules in Warehouses. IEEE Robotics and Automation
Letters 4(2): 1125–1131.

Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 477–485.

Hönig, W.; Preiss, J. A.; Kumar, T. K. S.; Sukhatme, G. S.;
and Ayanian, N. 2018. Trajectory Planning for Quadrotor
Swarms. IEEE Transactions on Robotics 34(4): 856–869.

Kou, N. M.; Peng, C.; Ma, H.; Kumar, T. K. S.; and Koenig,
S. 2020. Idle Time Optimization for Target Assignment and
Path Finding in Sortation Centers. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 9925–
9932.

Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-Cut-and-Price for Multi-Agent Pathfinding. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1289–1296.

Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019. Improved Heuristics for Multi-Agent Path Finding

with Conflict-Based Search. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
442–449.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020a. New Techniques for Pairwise Symmetry
Breaking in Multi-Agent Path Finding. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 193–201.

Li, J.; Sun, K.; Ma, H.; Felner, A.; Kumar, T. K. S.; and
Koenig, S. 2020b. Moving Agents in Formation in Con-
gested Environments. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 726–734.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2020c. Lifelong Multi-Agent Path Finding
in Large-Scale Warehouses. In Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 1898–1900.

Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and Path
Planning for Multi-Agent Pickup and Delivery. In Proceed-
ings of the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 1152–1160.

Luna, R.; and Bekris, K. E. 2011. Push and Swap: Fast Co-
operative Path-Finding with Completeness Guarantees. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), 294–300.

Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with Consistent Prioritization for Multi-
Agent Path Finding. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 7643–7650.

Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017. Life-
long Multi-Agent Path Finding for Online Pickup and Deliv-
ery Tasks. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
837–845.

Morris, R.; Pasareanu, C. S.; Luckow, K. S.; Malik, W.;
Ma, H.; Kumar, T. K. S.; and Koenig, S. 2016. Planning,
Scheduling and Monitoring for Airport Surface Operations.
In AAAI Workshop on Planning for Hybrid Systems.

Nguyen, V.; Obermeier, P.; Son, T. C.; Schaub, T.; and Yeoh,
W. 2017. Generalized Target Assignment and Path Finding
Using Answer Set Programming. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 1216–1223.

Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2019. Priority Inheritance with Backtracking for Iterative
Multi-Agent Path Finding. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
535–542.

Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 4(4): 392–399.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In Proceedings

of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 5628–5635.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The Increasing Cost Tree Search for Optimal Multi-Agent
Pathfinding. Artificial Intelligence 195: 470–495.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the Artificial Intelligence and Interactive Digital Entertain-
ment Conference (AIIDE), 117–122.
Standley, T. S. 2010. Finding Optimal Solutions to Coop-
erative Pathfinding Problems. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 173–178.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Proceedings
of the International Symposium on Combinatorial Search
(SoCS), 151–159.
Surynek, P. 2019. Unifying Search-Based and Compilation-
Based Approaches to Multi-Agent Path Finding through Sat-
isfiability Modulo Theories. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1177–1183.
Svancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Barták,
R. 2019. Online Multi-Agent Pathfinding. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI),
7732–7739.
Wagner, G. 2015. Subdimensional Expansion: A Frame-
work for Computationally Tractable Multirobot Path Plan-
ning. Ph.D. thesis, Carnegie Mellon University.
Wan, Q.; Gu, C.; Sun, S.; Chen, M.; Huang, H.; and Jia, X.
2018. Lifelong Multi-Agent Path Finding in a Dynamic En-
vironment. In Proceedings of the International Conference
on Control, Automation, Robotics and Vision (ICARCV),
875–882.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2007. Co-
ordinating Hundreds of Cooperative, Autonomous Vehicles
in Warehouses. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 1752–1760.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 1444–1449.

