
Flex Distribution for Bounded-Suboptimal Multi-Agent Path Finding

Shao-Hung Chan,1 Jiaoyang Li,1 Graeme Gange,2
Daniel Harabor,2 Peter J. Stuckey,2 Sven Koenig1

1 University of Southern California
2 Monash University, Australia

{shaohung,jiaoyanl}@usc.edu, {graeme.gange,daniel.harabor,peter.stuckey}@monash.edu, skoenig@usc.edu

Abstract

Multi-Agent Path Finding (MAPF) is the problem of find-
ing collision-free paths for multiple agents that minimize the
sum of path costs. EECBS is a leading two-level algorithm
that solves MAPF bounded-suboptimally, that is, within some
factor w of the minimum sum of path costs C∗. It uses fo-
cal search to find bounded-suboptimal paths on the low level
and Explicit Estimation Search (EES) to resolve collisions
on the high level. EES keeps track of a lower bound LB on
C∗ to find paths whose sum of path costs is at most w · LB
in order to solve MAPF bounded-suboptimally. However, the
costs of many paths are often much smaller than w times their
minimum path costs, meaning that the sum of path costs is
much smaller than w ·C∗. In this paper, we therefore propose
Flexible EECBS (FEECBS), which uses a flex(ible) distri-
bution of the path costs (that relaxes the requirement to find
bounded-suboptimal paths on the low level) in order to reduce
the number of collisions that need to be resolved on the high
level while still guaranteeing to solve MAPF bounded sub-
optimally. We address the drawbacks of flex distribution via
techniques such as restrictions on the flex distribution, restarts
of the high-level search with EECBS, and low-level focal-A*
search. Our empirical evaluation shows that FEECBS sub-
stantially improves the efficiency of EECBS on MAPF in-
stances with large maps and large numbers of agents.

Introduction
Multi-Agent Path Finding (MAPF) is the problem of find-
ing collision-free paths for multiple agents, the set of which
is called a solution. A solution of MAPF is optimal iff the
sum of path costs (that is, travel times) is minimum, and
bounded-suboptimal iff the sum of path costs is a user-
specified suboptimality factor w ≥ 1 away from minimum.
MAPF has many applications, such as autonomous ware-
houses (Ma et al. 2017), airports (Li et al. 2019d), video
games (Li et al. 2020b), and UAVs (Ho et al. 2019).

Conflict-Based Search (CBS) (Sharon et al. 2015) is one
of the leading algorithms that solves MAPF optimally. It is
a two-level algorithm that finds paths for agents individually
on the low level and resolves collisions on the high level.
Once CBS finds a collision between the paths of two agents
on the high level, it generates two branches, where each

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

branch forces one of the two agents to find a new path in or-
der to avoid the found collision. Although several techniques
have been proposed to speed up CBS significantly (Boyarski
et al. 2015a,b, 2020b,a; Felner et al. 2018; Gange, Hara-
bor, and Stuckey 2019; Li et al. 2019a,b,c, 2020a), the fact
that finding optimal solutions of MAPF is NP-hard (Yu and
LaValle 2013) motivates researchers to develop algorithms
that find bounded-suboptimal solutions in order to speed up
the search.

Explicit Estimation CBS (EECBS) (Li, Ruml, and Koenig
2021) is a variant of CBS that solves MAPF bounded-
suboptimally by replacing A* search with Explicit Estima-
tion Search (EES) (Thayer and Ruml 2011) on the high level
of CBS and A* search with focal search (Pearl and Kim
1982) on the low level of CBS. Focal search maintains a
lower bound on the minimum path cost of each agent. It
finds a bounded-suboptimal path for an agent by finding a
path whose path cost is at most w times the lower bound on
the minimum path cost of that agent. EES maintains a lower
bound LB on the sum of path costs of an optimal solution,
which it calculates using the lower bounds on the minimum
path costs for all agents maintained by the low-level focal
search. It finds a bounded-suboptimal solution by finding a
solution whose sum of path costs is at most w times LB.

We call the difference between w times the sum of the
lower bounds on the minimum path costs for all agents
and the sum of the path costs of the current (perhaps not
collision-free) paths for all agents the flex. The flex is thus
the largest amount by which the sum of path costs of the cur-
rent paths for all agents can increase when resolving colli-
sions to guarantee that a bounded-optimal solution is found.
EECBS distributes the flex in an inflexible way by requiring
every current path of an agent to be bounded-suboptimal. In
this paper, we propose Flexible EECBS (FEECBS) to dis-
tribute the flex among agents in a flexible way by allowing
some current paths of agents not to be bounded-suboptimal
as long as the set of paths is bounded-suboptimal. This al-
lows FEECBS to resolve collisions and thus find bounded-
suboptimal solutions faster than EECBS.

To ensure that the solution is bounded-suboptimal,
EECBS and FEECBS need to increase LB until the sum of
path costs of the solution is at most w times LB. When the
flex assigned to an agent is large, the low-level focal search
of FEECBS often finds a path for the agent with a suffi-



ciently small path cost and then does not need to increase the
lower bound on the minimum path cost of that agent. Thus,
FEECBS often increases LB more slowly than EECBS. To
address this issue, we propose restrictions on the flex dis-
tribution and rules for restarting the high-level search with
EECBS. We also propose focal-A* search, where FEECBS
switches to A* search on the low level after its focal search
has generated more than a given number of nodes. This al-
lows the low level of FEECBS to both increase the lower
bound on the minimum path cost faster and return a path
faster than EECBS (although that path can have more col-
lisions with the paths of other agents). Our empirical eval-
uation shows that, although FEECBS has runtimes similar
to EECBS on small maps, it substantially improves the effi-
ciency of EECBS on MAPF instances with large maps and
large numbers of agents. A preliminary study of this work
has been published as (Chan et al. 2021).

Preliminaries
In this section, we introduce MAPF and EECBS as well as
its speed-up techniques.

Multi-Agent Path Finding (MAPF)
We use the MAPF definition by Stern et al. (2019). A MAPF
instance consists of an undirected graph and a set of k agents
{a1, . . . , ak}. Each agent ai has a unique start vertex si and
a unique goal vertex gi. Time is discretized into timesteps.
At each timestep, an agent is allowed to either move to an
adjacent vertex or wait at its current vertex. A path of an
agent, starting at its start vertex and ending at its goal ver-
tex, is a sequence of vertices indicating where the agent is at
each timestep. Each agent permanently waits at its goal ver-
tex after it completes its path. The cost of a path is the num-
ber of timesteps needed by the agent to move from its start
vertex to its goal vertex, ignoring the timesteps when it per-
manently waits at its goal vertex. The paths of two agents ai
and aj have a vertex collision or, equivalently, vertex conflict
iff the agents stay at the same vertex v at the same timestep
t, denoted as ⟨ai, aj , v, t⟩. The paths of two agents ai and aj
have an edge collision or, equivalently, edge conflict iff the
agents traverse the same edge (u, v) in opposite directions at
the same timestep t, denoted as ⟨ai, aj , u, v, t⟩. A solution is
a set of conflict-free paths, one for each agent. We assume
that a solution exists. An optimal solution is a solution with
the minimum sum of the costs (SoC) of the paths, denoted
as C∗. A bounded-suboptimal solution for a user-specified
suboptimality factor w ≥ 1 is a solution with a SoC of at
most w · C∗.

Explicit Estimation CBS (EECBS)
EECBS (Li, Ruml, and Koenig 2021) is a two-level algo-
rithm that solves MAPF bounded-suboptimally for a user-
specified suboptimality factor w ≥ 1. On the high level,
EECBS constructs a Constraint Tree (CT). Each CT node N
contains a set of constraints constraints(N) that coordinate
agents to avoid conflicts. In addition, for each agent ai, CT
node N also contains a path that satisfies constraints(N),
whose cost is denoted as ci(N), and a lower bound lbi(N)

on the cost c∗i (N) of a minimum-cost path for agent ai that
satisfies constraints(N). Since EECBS uses focal search
on the low level, the path of each agent is guaranteed to be
bounded-suboptimal, meaning that ci(N) ≤ w · c∗i (N). Let
c(N) denote

∑k
i=1 ci(N). The root CT node contains no

constraints. Given a conflict between two paths in CT node
N selected for expansion, EECBS resolves it by generating
two child CT nodes, each with an additional constraint that
prohibits one of the conflicting agents from using the con-
tested vertex or edge at the conflicting timestep.

On the high level, EECBS maintains three lists of CT
nodes: CLEANUPH , OPENH , and FOCALH . CLEANUPH

is a regular open list of A* search and sorts the CT nodes N
in increasing order of an admissible cost function f(N) =

g(N) + h(N), where g(N) is
∑k

i=1 lbi(N) and h(N) is
an admissible heuristic, which is a cost-to-go function that
underestimates the difference between the minimum SoC
of all solutions in the subtree of CT node N and g(N).
OPENH is another regular open list of A* search and sorts
the CT nodes in increasing order of another cost function
f̂(N) = g(N) + ĥ(N), where ĥ(N) is a more informed
but potentially inadmissible heuristic. Let Nf be a CT node
in CLEANUPH with the minimum f -value of all CT nodes
in CLEANUPH and Nf̂ be a CT node in OPENH with the

minimum f̂ -value of all CT nodes in OPENH . For each
CT node N in CLEANUPH , f(N) is a lower bound on
the SoC of the best solution in its subtree. Since the CT
node with an optimal solution is in one of the subtrees,
there is a CT node N ′ in CLEANUPH with f(N ′) ≤ C∗.
Since f(Nf ) is the minimum f -value of all CT nodes in
CLEANUPH , it holds that f(Nf ) ≤ f(N ′) ≤ C∗. Thus,
LB = f(Nf ) is a lower bound on the SoC C∗ of the optimal
solution. FOCALH contains those CT nodes N in OPENH

with f̂(N) ≤ w · f̂(Nf̂ ), sorted in increasing order of the
distance-to-go function hc(N), which is the number of con-
flicts in the set of paths of CT node N . Let Nhc

be the CT
node in FOCALH with the minimum hc-value of all CT
nodes in FOCALH . At each iteration, EECBS uses the fol-
lowing rules to select a CT node for expansion:
(E1) If c(Nhc

) ≤ w · LB, then expand Nhc
.

(E2) Else if c(Nf̂ ) ≤ w · LB, then expand Nf̂ .
(E3) Else, expand Nf .
Thus, each expanded CT node N satisfies c(N) ≤ w · LB
and thus

k∑
i=1

ci(N) = c(N) ≤ w · LB ≤ w · C∗. (1)

The smaller the number of conflicts among the paths of some
CT node N is, the more likely EECBS is to find a CT node
with a solution in the subtree of CT node N . The smaller the
f̂ -value of some CT node N is, the more likely it lies on a
branch to a CT node with an optimal solution (Li, Ruml, and
Koenig 2021) and thus the more likely EECBS is to find a
CT node with an optimal solution in the subtree of CT node
N . Thus, EECBS uses Rules (E1) and (E2) to speed up the
search by expanding CT nodes with the minimum number of



conflicts or the minimum f̂ -value. EECBS uses Rule (E3)
to increase LB to make the conditions of Rules (E1) and
(E2) more likely to hold in the future and thus facilitate the
expansion of CT nodes with those rules.

On the low level, given a CT node N , EECBS uses vertex-
timestep nodes or, for short, v-t nodes n = (v, t) to repre-
sent the case that an agent ai stays at vertex v at timestep
t. It performs focal search to find a bounded-suboptimal
path for the agent and a low-level lower bound lbi(N) on
the minimum cost of its paths that satisfy all constraints in
constraints(N). The low-level search maintains two lists
of v-t nodes: OPENL and FOCALL. OPENL is the regular
open list of A* search and sorts the v-t nodes in increasing
order of an admissible cost function fi(n) = gi(n) + hi(n),
where gi(n) = t is the number of timesteps for agent ai
to move from its start vertex si to vertex v and hi(n) is
an admissible heuristic that underestimates the number of
timesteps for agent ai to move from vertex v to its goal ver-
tex gi. FOCALL contains those v-t nodes in OPENL with
fi(n) ≤ τi(N) = w · fmin,i(N), where fmin,i(N) is the
minimum f -value of all v-t nodes n in OPENL and τi(N) is
called the low-level focal threshold, and sorts these v-t nodes
n = (v, t) in increasing order of the number of conflicts
d(n) with the paths of the other agents in CT node N when
agent ai moves from start vertex si at timestep 0 to vertex
v at timestep t. At each iteration, focal search first updates
FOCALL and fmin,i, if necessary, and then expands the v-t
node with the minimum d-value of all v-t nodes in FOCALL.
It terminates when it expands a v-t node whose vertex is gi.

For each v-t node n in OPENL, fi(n) is a lower bound on
the cost of the best path in its subtree. Since the v-t node with
the minimum-cost path is in one of the subtrees, there is a v-t
node n′ in OPENL with fi(n

′) ≤ c∗i (N). Since fmin,i(N)
is the minimum f -value of all v-t nodes in OPENL, it holds
that fmin,i(N) ≤ fi(n

′) ≤ c∗i (N). Thus, fmin,i(N) is a
low-level lower bound on the cost c∗i (N) of the minimum-
cost path for agent ai that satisfies constraints(N). Since
the low-level search expands only v-t nodes from FOCALL,
that is, v-t nodes n = (v, t) with fi(n) ≤ τi(N) during the
search, which includes those v-t nodes with v = gi, τi(N)
guarantees that the found path is bounded-suboptimal. Since
the fi(n) of any v-t node n in FOCALL is at most τi(N),
EECBS always finds a bounded-suboptimal path whose cost
ci(N) satisfies

fmin,i(N) ≤ ci(N) ≤ τi(N) = w · fmin,i(N). (2)

EECBS updates fmin,i(N) during the low-level search and
sets lbi(N) to fmin,i(N) after the low-level search termi-
nates. Then,

lbi(N) ≤ ci(N) ≤ w · lbi(N) ≤ w · c∗i (N). (3)

Thus, the cost of CT node N satisfies

c(N) =

k∑
i=1

ci(N) ≤ w ·
k∑

i=1

lbi(N) = w · g(N). (4)

Table 1 provides a glossary of terms, notations, and defini-
tions used in the paper.

Li, Ruml, and Koenig (2021) modified the speed-up tech-
niques of CBS so that they can be used to speed up EECBS,
namely prioritizing conflicts, bypassing conflicts, symmetry
reasoning, and using the WDG heuristic as the admissible
h-value of CT nodes. We provide more details of bypassing
conflicts in the following.

Bypassing Conflicts for EECBS
Bypassing conflicts (Boyarski et al. 2015a) is a technique
originally used in CBS. Instead of keeping the child CT
nodes after expansion, it replaces the paths of the current
CT node with the paths of one of the child CT nodes if the
paths of that child CT node have the same cost as the corre-
sponding paths of the current CT node but fewer conflicts.
However, since paths are bounded-suboptimal, EECBS can
relax the condition on their costs. While expanding CT
node N̂ and generating its child CT node N , the high-level
search bypasses conflicts if (C1) CT node N̂ is not from
CLEANUPH , (C2) ci(N) ≤ w · lbi(N̂) ∀i ∈ {1, 2, . . . , k},
(C3) c(N) ≤ w · LB, and (C4) hc(N) < hc(N̂). EECBS
uses (C1) because selecting CT nodes from CLEANUPH

has a chance to increase LB and bypassing their conflicts
would not increase LB. It uses (C2) and (C3) to guar-
antee the bounded suboptimality. It uses (C4) to reduce
the number of conflicts and avoid repeatedly finding the
same set of paths while bypassing conflicts. Since lbi(N)
uses constraints(N) and constraints(N) contains more
constraints than constraints(N̂), EECBS does not replace
lbi(N̂) with lbi(N) when bypassing conflicts.

Flexible EECBS (FEECBS)
EECBS uses focal search on the low level. Thus, each
path is guaranteed to be bounded-suboptimal (see Inequal-
ity (3)). However, since EECBS finds a bounded-suboptimal
solution by only expanding CT nodes that satisfy Inequal-
ity (1) on the high level, it is not necessary to insist that
ci(N) ≤ w · lbi(N) for every agent ai in CT node N .
Thus, we propose Flexible EECBS (FEECBS), which re-
laxes the bounded suboptimality of each path while guar-
anteeing the bounded suboptimality of the solution, mean-
ing that Inequality (4) still holds for every CT node. Such
a relaxation can be used for both resolving and bypassing
conflicts.

Resolving Conflicts with Flex Distribution
Suppose that EECBS expands CT node N̂ and generates one
of its child CT nodes N . We first define the flex (over all k
agents) of CT node N as1

∆(N) = w · g(N)− c(N). (5)

1We use g(N) instead of f(N) to define the flex in Equa-
tion (5) because, otherwise, we cannot compute the flex over the
other k− 1 agents in Equation (6). The reason for this issue is that
h(N) = f(N) − g(N) estimates the difference between the SoC
of an optimal solution in the subtree of CT node N and g(N) and
does not specify the difference between the minimum cost of the
path for each agent ai and ci(N).



Term Notation Definition
The user-specified suboptimality factor w A solution is bounded-suboptimal iff the sum of costs of the paths of the

solution is at most a factor of w away from minimum. A path is bounded-
suboptimal iff its cost is at most a factor of w away from minimum.

The g-value of v-t node n = (v, t) for agent
ai

gi(n) The number of timesteps for agent ai to move from its start vertex si to
vertex v.

The admissible h-value of v-t node n = (v, t)
for agent ai

hi(n) An underestimate of the number of timesteps for agent ai to move from
vertex v to its goal vertex gi.

The admissible f -value of v-t node n for agent
ai

fi(n) gi(n) + hi(n).

Minimum low-level f -value of agent ai in CT
node N

fmin,i(N) The minimum fi(n) of all v-t nodes n in OPENL during the low-level
search for agent ai in CT node N .

The low-level lower bound on the path cost of
agent ai in CT node N

lbi(N) For EECBS, the value fmin,i(N) after the low-level search for agent ai

in CT node N . For FEECBS, the value max{fmin,i(N), lbi(N̂)} after
the low-level search for agent ai in CT node N , where N̂ is the parent
CT node of N .

The flex over all agents other than agent ai ∆i(N)
∑k

j=1,j ̸=i (w · lbj(N)− cj(N)).
The low-level focal threshold of agent at in
CT node N

τi(N) FOCALL consists of all v-t nodes n in CLEANUPL/OPENL with
f̂(n) ≤ τi(N) during the low-level search for agent ai in CT node
N . For EECBS, τi(N) = wfmin,i(N). For FEECBS, τi(N) =
wfmin,i(N) + ∆i(N).

The path cost of agent ai in CT node N ci(N) The number of timesteps for agent ai to move from its start vertex si to
its goal vertex gi in CT node N .

The minimum path cost of agent ai in CT
node N

c∗i (N) The minimum number of timesteps for agent ai to move from its start
vertex si to its goal vertex gi in CT node N .

The g-value of CT node N g(N)
∑k

i=1 lbi(N).
The admissible h-value of CT node N h(N) An underestimate of the difference between the minimum cost of all CT

nodes with solutions in the subtree of CT node N and g(N).
The inadmissible ĥ-value of CT node N ĥ(N) An estimate of the difference between the minimum cost of all CT nodes

with solutions in the subtree of CT node N and g(N).
The admissible f -value of CT node N f(N) g(N) + h(N).
The inadmissible f̂ -value of CT node N f̂(N) g(N) + ĥ(N).
The cost of CT node N , that is, the sum of
costs of the paths of CT node N

c(N)
∑k

i=1 ci(N).

The sum of costs of the paths of an optimal
solution

C∗

The flex of CT node N ∆(N) w · g(N)− c(N) =
∑k

j=1 (w · lbj(N)− cj(N)).
The top CT node in CLEANUPH Nf The CT node with the minimum f -value in CLEANUPH /OPENH .
The lower bound on the sum of costs of the
paths of an optimal solution

LB f(Nf ).

The top CT node in OPENH Nf̂ The CT node with the minimum f̂ -value in CLEANUPH /OPENH .
The top CT node in FOCALH Nhc The CT node with the minimum hc-value in FOCALH .
The limit on the number of CT nodes selected
for expansion by Rule (E3)

TN If FEECBS selects more than TN CT nodes for expansion with Rule (E3),
then we restart the high-level search with EECBS.

The number of generated v-t nodes during the
low-level search for agent ai in CT node N

ηi(N)

The limit on the number of generated v-t
nodes during the low-level search for agent ai

in CT node N

Ti(N) If a low-level focal search of FEECBS generates more than Ti(N) v-t
nodes, then we switch to an A* search for the remainder of the low-level
search. In this paper, Ti(N) = κ ·ηi(Ñ), where κ ≥ 1 is a user-specified
constant and Ñ is the closest ancestor CT node of CT node N where
FEECBS found a path for agent ai.

Table 1: The glossary with terms, notations, and definitions.

While replanning the path of agent ai in CT node N , we
define the flex over the other k − 1 agents (that is, the flex

over all agents other than agent ai) as

∆i(N) = w ·
k∑

j=1,j ̸=i

lbj(N)−
k∑

j=1,j ̸=i

cj(N)

= w · (g(N)− lbi(N))− (c(N)− ci(N)).

(6)



According to Equations (5) and (6), we know that
∆i(N) = ∆(N)− w · lbi(N) + ci(N). (7)

We need to ensure that Inequality (4) holds for all CT nodes
N . Thus, we need to ensure that

∆(N)
(5)

≥ 0, (8)
which, in turn, indicates that we need to ensure that
∆i(N) ≥ −w · lbi(N) + ci(N) (see Equation (7)). There-
fore, after replanning the path of agent ai in CT node N , we
need to ensure that

ci(N) ≤ w · lbi(N) + ∆i(N). (9)
EECBS uses τi(N) = w · fmin,i(N) during the low-level
search and sets lbi(N) to fmin,i(N) after the low-level
search finishes. By using flex during the low-level search,
FEECBS can use a relaxed τi(N) = w ·fmin,i(N)+∆i(N)
and continue to set lbi(N) to fmin,i(N) after the low-level
search finishes to ensure that Inequality (9) holds. Further-
more, since constraints(N̂) ⊊ constraints(N) ensures
that c∗i (N̂) ≤ c∗i (N), lbi(N̂) is, like lbi(N), a lower bound
on c∗i (N). We can redefine τi(N) and lbi(N) in the fol-
lowing way to ensure that lbi(N) is non-decreasing along
any branch in the CT, which results in larger low-level lower
bounds on the path costs on the low level and thus also larger
g-values on the high level, which speeds up the searches on
both levels. We let FEECBS use

τi(N) = w ·max{fmin,i(N), lbi(N̂)}+∆i(N) (10)

and set lbi(N) to max{fmin,i(N), lbi(N̂)} after the low-
level search finishes. More importantly, this new definition
guarantees FOCALL to be non-empty during the low-level
search, while the old one does not. More specifically, the
paths of the other agents do not change during the low-level
search for agent ai, so

∆i(N) = ∆i(N̂)

(7)
= ∆(N̂)− w · lbi(N̂) + ci(N̂)

(8)

≥ −w · lbi(N̂) + lbi(N̂),

(11)

where we use ci(N̂) ≥ lbi(N̂) in the derivation of the last
inequality since lbi(N̂) is the low-level lower bound on the
path cost ci(N̂). Therefore,

τi(N) = w ·max{fmin,i(N), lbi(N̂)}+∆i(N)

(11)

≥ w ·max{fmin,i(N), lbi(N̂)} − w · lbi(N̂) + lbi(N̂)

= w ·max{fmin,i(N)− lbi(N̂), 0}+ lbi(N̂)

≥ max{fmin,i(N)− lbi(N̂), 0}+ lbi(N̂) (12)
≥ fmin,i(N).

Thus, τi(N) ≥ fmin,i(N), which indicates that the first
node in OPENL during the low-level search is always in
FOCALL, that is, FOCALL is always non-empty and the
low-level search is thus guaranteed to find a path for agent
ai if one exists.

Figure 1 shows an illustrative example of the variable rela-
tions when using positive flex to increase the low-level focal
threshold of the replanned agent.

Figure 1: An illustrative example of how positive flex in-
creases the low-level focal threshold. Suppose FEECBS
generates CT node N and replans the path of agent a3 with
positive flex over agents a1 and a2. The green bars are the
low-level lower bounds, the blue bars are the path costs, and
the red bars are the low-level focal thresholds.

w 1.01 1.02 1.05 1.10
EECBS 66.7 54.2 30.4 13.0

FEECBS 43.0 27.0 10.9 8.96

Table 2: The sums of the LB improvements of EECBS and
FEECBS over 7,000 MAPF instances on 8 different maps
for suboptimality factors w = {1.01, 1.02, 1.05, 1.10},
which show that EECBS has higher LB improvements than
FEECBS.

Rule (E1) Rule (E2) Rule (E3) Sum
EECBS 25 5 16 46

FEECBS 11 10 52 63

Table 3: The numbers of CT nodes selected by Rules (E1),
(E2), and (E3) for expansion in Figure 2.

Bypassing Conflicts with Flex Distribution
When EECBS expands CT node N̂ and generates its child
CT node N , Condition (C2) guarantees that the cost ci(N)

of each new path is still no larger than w · lbi(N̂). For
FEECBS, since we relax the low-level focal threshold of the
path of each agent ai by using flex distribution, the path cost
does not need to satisfy this inequality as long as ∆(N) ≥ 0
(see Inequality (5)). Thus, to bypass conflicts with flex dis-
tribution, we maintain Conditions (C1), (C3), and (C4) and
relax Condition (C2) to

c(N) ≤ w · g(N̂). (13)

We compare FEECBS with and without bypassing conflicts
over 7,000 MAPF instances on 8 different maps using the
setup described in the Empirical Evaluation section. We add
all other speed-up techniques to both algorithms, namely pri-
oritizing conflicts, symmetry reasoning, and using the WDG
heuristic. The result shows that FEECBS solves 50 addi-
tional MAPF instances when using bypassing conflicts.

Limitations of Flex Distribution
When finding a path for agent ai in a CT node N whose
parent CT node is N̂ , FEECBS reduces the number of con-



(a) CT of EECBS (b) CT of FEECBS

Figure 2: The CTs of EECBS and FEECBS for the same
MAPF instance. The blue, orange, and green circles are the
CT nodes selected by Rules (E1), (E2), and (E3) for expan-
sion, respectively. The white circles are the CT nodes that
have not (yet) been expanded. The arrows are the directed
edges connecting CT nodes with their child CT nodes, where
the red arrows indicate a path that finds a solution.

flicts by relaxing the low-level focal threshold. However, the
relaxed low-level focal threshold has two limitations.

FEECBS sometimes raises LB more slowly than EECBS.
Suppose that w · lbi(N̂) < c∗i (N) ≤ w · lbi(N̂) + ∆i(N).
For EECBS, we have

w · lbi(N̂) < c∗i (N) ≤ ci(N)
(3)

≤ w · lbi(N), (14)

which results in lbi(N̂) < lbi(N), meaning that the low-
level lower bound on the path cost of agent ai increases from
CT node N̂ to N . For FEECBS, it is possible to find a path
with cost ci(N) ≤ w·lbi(N̂)+∆i(N), in which case lbi(N̂)
may be equal to lbi(N) and the low-level lower bound on
the path cost of agent ai remains the same from CT node N̂
to N . Thus, FEECBS results in a smaller LB improvement
than EECBS, as shown in Table 2, where the LB improve-
ment is defined as the difference in the beginning and at the
end of the high-level search. Since FEECBS uses flex, c(N)
may be larger for FEECBS than that for EECBS. The com-
bination of the poor LB improvement and the large c(N)
may result in fewer CT nodes that satisfy c(N) ≤ w · LB
for FEECBS than for EECBS. Thus, the first limitation (L1)
is that FEECBS tends to select CT nodes by Rule (E3) for
expansion more frequently than EECBS on the high level
since c(Nhc) and c(Nf̂ ) may be larger than w · LB due to
the lower LB improvement. For instance, Figure 2 and Ta-
ble 3 show the CTs and the numbers of CT nodes selected
for expansion by EECBS and FEECBS with w = 1.05 and
all speed-up techniques while solving the same MAPF in-
stance (the “room” map in the Empirical Evaluation section
with 40 agents), where FEECBS selects more CT nodes by
Rule (E3) for expansion.

On the low level, if all paths satisfying constraints(N)
contain at least m conflicts, then both EECBS and FEECBS
have to expand all v-t nodes n in FOCALL that satisfy
d(n) < m. Since FEECBS typically contains more v-t nodes
in FOCALL than EECBS due to the relaxed τi(N), the sec-
ond limitation (L2) is that FEECBS likely expands more v-
t nodes n that satisfy d(n) < m. As shown in Figure 3,

Figure 3: Average number of v-t nodes in FOCALL per low-
level search of EECBS+ (EECBS with all speed-up tech-
niques) and FEECBS+ (FEECBS with all speed-up tech-
niques) over 200 MAPF instances on two maps.

FEECBS+ (FEECBS with all speed-up techniques) has in-
deed a higher average number of v-t nodes in FOCALL per
low-level search than EECBS+ (EECBS with all speed-up
techniques) over 200 MAPF instances on two different maps
(namely, the “den520d” and “brc202d” maps in the Empir-
ical Evaluation section) with the number of agents ranging
from 200 to 800 in increments of 200.

To alleviate the limitations, we add flex restrictions to
FEECBS such that it does not always distribute flex among
the agents and restarts the high-level search with EECBS if
the number of CT nodes selected for expansion by Rule (E3)
becomes large. Also, we use low-level focal-A* search, that
switches the low-level search from a focal search to an A*
search if the number of expanded v-t nodes becomes large.
We provide details on these approaches in the next two sec-
tions.

Flex Restrictions and Restart with EECBS
When finding a path for agent ai in CT node N whose par-
ent CT node is N̂ , if ∆i(N̂) < 0, then we have to use flex
distribution in CT node N in order to satisfy Inequality (4).
Otherwise, we set up restrictions on using flex distribution
to make it more likely that lbi(N) > lbi(N̂). In particular,
we prohibit FEECBS from distributing the flex and ask it to
use the original focal search instead if at least one of the fol-
lowing restriction conditions holds: (R1) CT node N̂ is the
root CT node, (R2) CT node N̂ is selected by Rule (E3) for
expansion, or (R3) the resolved conflict is cardinal, that is,
all combinations of the minimum-cost paths of the two con-
flicting agents lead to this conflict.2 We use Restriction (R1)
to avoid that the low-level search distributes the entire flex to
one agent in the beginning of the high-level search. We use
Restrictions (R2) and (R3) since both selecting CT nodes
by Rule (E3) for expansion and resolving cardinal conflicts
make it more likely that lbi(N) > lbi(N̂).

Although we set up restrictions on using flex distribution,
EECBS can still increase LB faster than FEECBS. Thus,
when using FEECBS, we will restart the search with EECBS

2We reuse the technique for prioritizing conflicts described in
(Li, Ruml, and Koenig 2021) to identify cardinal conflicts.



Algorithm 1: Low-level focal-A* search

Input: CT node N , parent CT node N̂ , agent ai with
start vertex si and goal vertex gi

1 Compute ∆i(N) and Ti(N)
2 root v-t node r ←− (si, 0)
3 ηi(N)←− 1
4 fmin,i(N)←− f(r)
5 if use flex restrictions and ∆i(N) ≥ 0 then δ ←− 0
6 else δ ←− ∆i(N)

7 τi(N)←− w ·max{fmin,i(N), lbi(N̂)}+ δ
8 OPENL ←− ϕ, FOCALL ←− ϕ
9 INSERTNODE(r)

10 while OPENL is not empty do
11 if ηi(N) ≤ Ti(N) then
12 n←− Pop the top v-t node from FOCALL

13 Delete n from OPENL

14 else n←− Pop the top v-t node from OPENL

15 if ISGOAL(n) then return EXTRACTPATH(n)
16 neighbors←− EXPANDNODE(n)
17 for n′ ∈ neighbors do
18 if n′ satisfies constraints(N) then
19 ηi(N)←− ηi(N) + 1
20 INSERTNODE(n)

21 if fmin,i(N) < f(top v-t node in OPENL) then
22 fmin,i(N)←− f(top v-t node in OPENL)
23 if ηi(N) ≤ Ti(N) then
24 τ ′i ←− w ·max{fmin,i(N), lbi(N̂)}+ δ
25 UPDATEFOCAL(τi(N), τ ′i)
26 τi(N)←− τ ′i

27 return “No path satisfies constraints(N).”

if the number of CT nodes that are continuously selected by
Rule (E3) for expansion exceeds a user-specified CT node
limit TN ≥ 0.

Low-Level Focal-A* Search
To alleviate the limitations of FEECBS, we switch from fo-
cal search to A* search during the low-level search for a
path of agent ai in CT node N when the number of gen-
erated v-t nodes exceeds the v-t node limit Ti(N). That is,
we then select the v-t node n with the minimum fi(n) in
OPENL for expansion and ignore FOCALL, which tends to
raise fmin,i(N) faster than focal search and thus alleviates
Limitation (L1). Since we ignore FOCALL, it also alleviates
Limitation (L2). We can also use low-level focal-A* search
for EECBS since switching to A* search does not depend on
flex.

However, determining a good value for Ti(N) is instance-
dependent and thus difficult. Here, we provide an intuitive
guideline that works empirically. Suppose that FEECBS
found a path for agent ai at the ancestor CT node Ñ of CT
node N and did not replan this path until CT node N . We de-
note the number of generated v-t nodes when planning the

path for agent ai in CT node Ñ as ηi(Ñ). The number of
generated v-t nodes for CT node Ñ can be used to estimate
the number of generated v-t nodes for CT node N . We thus
define the v-t node limit Ti(N) as

Ti(N) = κ · ηi(Ñ), (15)
where κ ≥ 1 is a user-specified constant. That is, the v-t
node limit increases as the number of generated v-t nodes in
the ancestor CT node increases.

Algorithm 1 shows the pseudo-code of the low-level
focal-A* search with flex distribution and flex restrictions.
We first compute ∆i(N) and Ti(N) and initialize the root
v-t node (si, 0), the number of generated v-t nodes ηi(N),
and fmin,i(N) [Lines 1 to 4]. If the flex restrictions are trig-
gered and the flex over all other agents is non-negative, then
we ignore ∆i(N) [Lines 5 to 7]. If ηi(N) ≤ Ti(N), then
we use focal search [Lines 11 to 13] and update FOCALL

[Line 25]. Otherwise, we switch to A* by expanding v-t
nodes from OPENL [Line 14] and ignoring FOCALL. Func-
tion INSERTNODE(n) inserts v-t node n into OPENL. If
fi(n) ≤ τi(N), then we insert it into FOCALL as well.
Function ISGOAL(n) checks if vertex v of the v-t node
n = (v, t) is the goal vertex gi. Function EXTRACTPATH(n)
generates a path by starting at v-t node n and repeatedly
moving from a v-t node to its parent until the root v-t node
is reached. Function EXPANDNODE(n) generates the set of
v-t nodes (v′, t′) where v′ is either vertex v or a neighboring
vertex of v and t′ = t+1. To terminate the low-level search
within a finite runtime limit, we avoid any wait action if all
other agents have reached their goal vertices before timestep
t. Function UPDATEFOCAL(τi(N), τ ′i) inserts v-t nodes n
with τi(N) < fi(n) ≤ τ ′i(N) from OPENL into FOCALL.

Empirical Evaluation
We evaluate the algorithms on eight 4-neighbor maps from
the MAPF benchmark suite (Stern et al. 2019). We use 4
large maps, namely a 256×256 grid map (Berlin 1 256,
denoted as “city”), a 256 × 257 grid map and a 530 × 481
grid map from the video game Dragon Age: Origin (DAO)
(den520d and brc202d), and a 321×123 warehouse grid
map (warehouse-20-40-10-2-1, denoted as “ware-
house”). The number of agents ranges from 200 to 800
in increments of 200. We also use 4 small maps of size
32 × 32, namely grid map maze-32-32-2 (denoted as
“maze”), with the number of agents ranging from 10 to 50
in increments of 10, grid map room-32-32-4 (denoted as
“room”), with the number of agents ranging from 10 to 50 in
increments of 10, grid map random-32-32-20 (denoted
as “random”), with the number of agents ranging from 20 to
100 in increments of 20, and grid map empty-32-32 (de-
noted as “empty”), with the number of agents ranging from
100 to 500 in increments of 100. We use the “even” and the
“random” scenarios, which each yields 25 MAPF instances
for each map and number of agents. We use 4 suboptimality
factors w, namely 1.01, 1.02, 1.05, and 1.10. The algorithms
are implemented in C++, and the experiments are conducted
with CentOS Linux on an AMD EPYC 7302 16-Core Pro-
cessor with a memory limit of 16 GB. Our comparison met-
rics are the success rate, which is the percentage of MAPF



Figure 4: Average runtimes on large (top row) and small (bottom row) maps. We include 60 seconds in the average for each
MAPF instance where the runtime limit was reached. The data points in the figures show the average runtimes over all MAPF
instances for the corresponding maps as described in the Empirical Evaluation section, with the bars being the confidence
intervals. We shift the points horizontally to avoid overlaps.

Figure 5: Success rates on large (top row) and small (bottom row) maps for suboptimality factor w = 1.01. The data points are
the success rates over 50 MAPF instances (both “even” and “random” scenarios) for a given number of agents in the map. We
shift the points horizontally to avoid overlaps.

instances solved within the runtime limit of 60 seconds per
MAPF instance, and the runtime.

We evaluate EECBS+ (EECBS with all speed-up tech-
niques), FEECBS+ (FEECBS with all speed-up techniques),

FEECBS+ (FR:50) (FEECBS with all speed-up techniques,
flex restrictions, and restart with EECBS with TN = 50,
which results in the lowest average runtime over all MAPF
instances among TN = {10, 50, 100}), EECBS+ (FA*:20)



(EECBS with all speed-up techniques and low-level focal-
A* search with κ = 20, which results in the lowest
average runtime over all MAPF instances among κ =
{10, 20, 30, 40}), and FEECBS+ (FR:50,FA*:30) (FEECBS
with all speed-up techniques, flex restrictions, restart with
EECBS with TN = 50, and low-level focal-A* search
with κ = 30, which results in the lowest average runtime
over all MAPF instances among κ = {10, 20, 30, 40} with
TN = 50). Figure 4 shows the average runtimes for dif-
ferent suboptimality factors. On large maps, if the subopti-
mality factor is small (that is, w = 1.01), then FEECBS+
outperforms EECBS+ since the flex distribution speeds up
the search by relaxing the low-level focal threshold. How-
ever, as the suboptimality factor increases, more flex can be
distributed, and thus FEECBS+ improves less over EECBS+
due to Limitations (L1) and (L2). However, with flex restric-
tions and restart with EECBS, the success rates of FEECBS+
(FR:50) are competitive with the ones of EECBS+ on small
maps, and, with low-level focal-A* search, both EECBS+
(FA*:20) and FEECBS+ (FR:50,FA*:30) show improve-
ments in runtime. Figure 5 shows the success rates for
suboptimality factor w = 1.01, where FEECBS+ (FR:50,
FA*:30) outperforms EECBS+ and EECBS+ (FA*:20) es-
pecially on the warehouse map.

Conclusion
We proposed flex distribution to relax the bounded-
suboptimality restrictions of EECBS while still finding paths
on the low level that result in bounded-suboptimal solutions.
We also proposed flex restrictions, restart with EECBS, and
low-level focal-A* search to avoid limitations of using flex
distribution. Our empirical evaluation of FEECBS, the re-
sulting version of EECBS, showed that flex distribution can
improve the success rate of EECBS for large numbers of
agents on large maps. Future work may include developing
sophisticated distribution policies for flex.

Acknowledgements
The research at the University of Southern California was
supported by the National Science Foundation (NSF) un-
der grants 1409987, 1724392, 1817189, 1837779, 1935712,
and 2112533 as well as a gift from Amazon. The research
at Monash University was supported by the Australian Re-
search Council under Discovery Grants DP190100013 and
DP200100025 as well as a gift from Amazon.

References
Boyarski, E.; Bodic, P. L.; Harabor, D.; Stuckey, P. J.; and
Felner, A. 2020a. F-Cardinal Conflicts in Conflict-Based
Search. In Proceedings of the International Symposium on
Combinatorial Search (SOCS), 123–124.
Boyarski, E.; Felner, A.; Harabor, D.; Stuckey, P. J.; Co-
hen, L.; Li, J.; and Koenig, S. 2020b. Iterative-Deepening
Conflict-Based Search. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 4084–
4090.
Boyarski, E.; Felner, A.; Sharon, G.; and Stern, R. 2015a.
Don’t Split, Try To Work It Out: Bypassing Conflicts in

Multi-Agent Pathfinding. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 47–51.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015b. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 740–746.
Chan, S.-H.; Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.;
and Koenig, S. 2021. ECBS with Flex Distribution for
Bounded-Suboptimal Multi-Agent Path Finding. In Pro-
ceedings of the International Symposium on Combinatorial
Search (SoCS), 159–161.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T.
K. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Path Finding. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS), 83–87.
Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implicit Conflict-Based Search Using Lazy Clause Gener-
ation. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 155–162.
Ho, F.; Salta, A.; Geraldes, R.; Goncalves, A.; Cavazza, M.;
and Prendinger, H. 2019. Multi-Agent Path Finding for UAV
Traffic Management. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 131–139.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved Heuristics for Multi-Agent Path Finding
with Conflict-Based Search. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
442–449.
Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020a. New Techniques for Pairwise Symmetry
Breaking in Multi-Agent Path Finding. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 193–201.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2019b. Disjoint Splitting for Multi-Agent Path Finding
with Conflict-Based Search. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 279–283.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2019c. Symmetry-Breaking Constraints for Grid-Based
Multi-Agent Path Finding. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 6087–6095.
Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: Bounded-
Suboptimal Search for Multi-Agent Path Finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 12353–12362.
Li, J.; Sun, K.; Ma, H.; Felner, A.; Kumar, T. K. S.; and
Koenig, S. 2020b. Moving Agents in Formation in Con-
gested Environments. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 726–734.
Li, J.; Zhang, H.; Gong, M.; Liang, Z.; Liu, W.; Tong, Z.;
Yi, L.; Morris, R.; Pasareanu, C.; and Koenig, S. 2019d.



Scheduling and Airport Taxiway Path Planning under Un-
certainty. In Proceedings of the AIAA Aviation Forum, 1–7.
Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017. Life-
long Multi-Agent Path Finding for Online Pickup and Deliv-
ery Tasks. In Proceedings of the International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
837–845.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 392–399.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 40–66.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Path Find-
ing: Definitions, Variants, and Benchmarks. In Proceedings
of the International Symposium on Combinatorial Search
(SoCS), 151–159.
Thayer, J. T.; and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 674–679.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 1443–1449.


