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Abstract

Anytime multi-agent path finding (MAPF) is a promising
approach to scalable path optimization in large-scale multi-
agent systems. State-of-the-art anytime MAPF is based on
Large Neighborhood Search (LNS), where a fast initial so-
lution is iteratively optimized by destroying and repairing a
fixed number of parts, i.e., the neighborhood of the solution,
using randomized destroy heuristics and prioritized planning.
Despite their recent success in various MAPF instances, cur-
rent LNS-based approaches lack exploration and flexibility
due to greedy optimization with a fixed neighborhood size
which can lead to low-quality solutions in general. So far,
these limitations have been addressed with extensive prior ef-
fort in tuning or offline machine learning beyond actual plan-
ning. In this paper, we focus on online learning in LNS and
propose Bandit-based Adaptive LArge Neighborhood search
Combined with Exploration (BALANCE). BALANCE uses a
bi-level multi-armed bandit scheme to adapt the selection of
destroy heuristics and neighborhood sizes on the fly during
search. We evaluate BALANCE on multiple maps from the
MAPF benchmark set and empirically demonstrate perfor-
mance improvements of at least 50% compared to state-of-
the-art anytime MAPF in large-scale scenarios. We find that
Thompson Sampling performs particularly well compared to
alternative multi-armed bandit algorithms.

1 Introduction
A wide range of real-world applications like goods trans-
portation in warehouses, search and rescue missions, and
traffic management can be formulated as Multi-Agent Path
Finding (MAPF) problem, where the goal is to find collision-
free paths for multiple agents with each having an assigned
start and goal location. Finding optimal solutions, w.r.t. min-
imal flowtime or makespan is NP-hard, which limits scal-
ability of most state-of-the-art MAPF solvers (Ratner and
Warmuth 1986; Yu and LaValle 2013; Sharon et al. 2012).

Anytime MAPF based on Large Neighborhood Search
(LNS) is a popular approach to finding fast and near-optimal
solutions to the MAPF problem within a fixed time budget
(Li et al. 2021). Given an initial feasible solution and a set
of destroy heuristics, LNS iteratively destroys and replans
so-called neighborhoods of the solution, i.e., a fixed number
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of paths, until the time budget runs out. MAPF-LNS rep-
resents the current state-of-the-art in anytime MAPF and
has been experimentally shown to scale up to large-scale
scenarios with hundreds of agents (Li et al. 2021). Due to
its increasing popularity, several extensions have been re-
cently proposed like fast local repairing, integration of pri-
mal heuristics, or machine learning-guided neighborhood
selection (Huang et al. 2022; Li et al. 2022; Lam et al. 2023).

However, MAPF-LNS and its variants currently suffer
from two limitations that can lead to low-quality solutions
in general:
1. The neighborhood size is typically fixed, which limits the

flexibility of the optimization process, thus possibly af-
fecting the solution quality, especially for a large number
of agents (Li et al. 2021). Therefore, prior tuning is re-
quired – in addition to the actual LNS procedure – to
obtain good solutions.

2. Roulette wheel selection is commonly used to execute
and adapt the destroy heuristic selection to determine the
neighborhood (Mara et al. 2022; Li et al. 2021). Dur-
ing optimization, roulette wheel selection could greedily
converge to poor choices due to the lack of exploration.
Offline machine learning can guide the selection with so-
lution score prediction but requires sufficient data acqui-
sition and feature engineering (Huang et al. 2022).

In this paper, we address these limitations by proposing
Bandit-based Adaptive LArge Neighborhood search Com-
bined with Exploration (BALANCE). BALANCE uses a bi-
level multi-armed bandit scheme to adapt the selection of
destroy heuristics and neighborhood sizes on the fly during
search. Our contributions are as follows:
• We formulate BALANCE as a simple but effective

MAPF-LNS framework with an adaptive selection of de-
stroy heuristics and neighborhood sizes during search.

• We propose and discuss three concrete instantiations of
BALANCE based on roulette wheel selection, UCB1,
and Thompson Sampling, respectively.

• We evaluate BALANCE on multiple maps from the
MAPF benchmark set and empirically demonstrate cost
improvements of at least 50% compared to state-of-the-
art anytime MAPF in large-scale scenarios. We find that
Thompson Sampling performs particularly well com-
pared to alternative multi-armed bandit algorithms.



2 Background
2.1 Multi-Agent Path Finding (MAPF)
We focus on maps as undirected unweighted graphs G =
⟨V, E⟩, where vertex set V contains all possible locations and
edge set E contains all possible transitions or movements
between adjacent locations. An instance I consists of a map
G and a set of agents A = {a1, ..., am} with each agent ai
having a start location si ∈ V and a goal location gi ∈ V .

MAPF aims to find a collision-free plan for all agents.
A plan P = {p1, ..., pm} consists of individual paths
pi = ⟨pi,1, ..., pi,l(pi)⟩ per agent ai, where ⟨pi,t, pi,t+1⟩ =
⟨pi,t+1, pi,t⟩ ∈ E , pi,1 = si, pi,l(pi) = gi, and l(pi) is the
length or travel distance of path pi. The delay del(pi) of
path pi is defined by the difference of path length l(pi) and
the length of the shortest path from si to gi w.r.t. map G.

In this paper, we consider vertex conflicts ⟨ai, aj , v, t⟩ that
occur when two agents ai and aj occupy the same location
v ∈ V at time step t and edge conflicts ⟨ai, aj , u, v, t⟩ that
occur when two agents ai and aj traverse the same edge
⟨u, v⟩ ∈ E in opposite directions at time step t (Stern et al.
2019). A plan P is a solution, i.e., feasible, when it does not
have any vertex or edge conflicts. Our goal is to find a solu-
tion that minimizes the flowtime

∑
p∈P l(p) which is equiv-

alent to minimizing the sum of delays
∑

p∈P del(p). We use
the sum of delays or (total) cost c(P ) =

∑
p∈P del(p) as the

primary performance measure in our evaluations.

2.2 Anytime MAPF with LNS
Anytime MAPF searches for solutions within a given time
budget. The solution quality monotonically improves with
increasing time budget (Cohen et al. 2018; Li et al. 2021).

MAPF-LNS based on Large Neighborhood Search (LNS)
is the current state-of-the-art approach to anytime MAPF
and is shown to scale up to large-scale scenarios with hun-
dreds of agents (Huang et al. 2022; Li et al. 2021). Starting
with an initial feasible plan P , e.g., found via prioritized
planning (PP) from (Silver 2005), MAPF-LNS iteratively
modifies P by destroying N < m paths, i.e., the neighbor-
hood P− ⊂ P . The destroyed neighborhood is then repaired
or replanned using PP to quickly generate a new solution
P+. If the new cost c(P+) is lower than the previous cost
c(P ), then P is replaced by P+, and the search continues
until the time budget runs out. The result of MAPF-LNS is
the last accepted solution P with the lowest cost so far.

MAPF-LNS uses a set H of three destroy heuristics H ∈
H, namely a random uniform selection of N paths, an agent-
based heuristic, and a map-based heuristic (Li et al. 2021).
The agent-based heuristic generates the neighborhood, in-
cluding the path of agent ai with the current maximum delay
and other paths (determined via random walks) that prevent
ai from achieving a lower delay. The map-based heuristic
randomly chooses a vertex v ∈ V with a degree greater than
2 and generates a neighborhood of paths containing v.

MAPF-LNS uses a selection algorithm π like roulette
wheel selection to choose destroy heuristics H ∈ H by
maintaining updatable weights or some statistics for all de-
stroy heuristics (Ropke and Pisinger 2006; Li et al. 2021).

All weights or statistics used by π to select a destroy heuris-
tic H are denoted by ∆, which could represent, e.g., the av-
erage cost improvement or the selection count per destroy
heuristic H . The statistics ∆ will be further explained in
Section 4.2 as the concrete definition depends on π.

2.3 Multi-Armed Bandits
Multi-armed bandits (MABs) or simply bandits are funda-
mental decision-making problems, where an MAB or selec-
tion algorithm π repeatedly chooses an arm k among a given
set of arms or options {1, ...,K} to maximize an expected
reward of a stochastic reward function R(k) := Xk, where
Xk is a random variable with an unknown distribution fXk

.
To solve an MAB, one has to determine an optimal arm k∗,
which maximizes the expected reward E

[
Xk

]
. The MAB al-

gorithm π has to balance between sufficiently exploring all
arms k to accurately estimate E

[
Xk

]
via statistics ∆ and to

exploit its current estimates by greedily selecting the arm k
with the currently highest estimate of E

[
Xk

]
. This is known

as the exploration-exploitation dilemma, where exploration
can find arms with higher rewards but requires more time
for trying them out, while exploitation can lead to fast con-
vergence but possibly gets stuck in a poor local optimum.
In this paper, we will cover roulette wheel selection, UCB1,
and Thompson Sampling as concrete MAB algorithms and
further explain them in Section 4.2.

3 Related Work
3.1 Multi-Armed Bandits for LNS
In recent years, MABs have been used as adaptive meta-
controllers to tune learning and optimization algorithms on
the fly (Schaul et al. 2019; Badia et al. 2020; Hendel 2022).
Besides roulette wheel selection, UCB1 and ϵ-greedy are
commonly used for destroy heuristic selection in LNS in
the context of mixed integer programming, vehicle rout-
ing, and scheduling problems with fixed neighborhood sizes
(Chen et al. 2016; Chen and Bai 2018; Chmiela et al. 2023).
(Hendel 2022) adapts the neighborhood size for mixed in-
teger programming using a mutation-based approach in-
spired by evolutionary algorithms (Rothberg 2007). Most
works use rather complex rewards that are composed of
multiple weighted terms with several tunable hyperparam-
eters. We focus on MAPF problems and propose a bi-level
MAB scheme to adapt the selection of destroy heuristics and
neighborhood sizes, which is simple to use without any addi-
tional mechanisms like mutation. Our approach uses the cost
improvement as a reward, which simply represents the cost
difference between two solutions w.r.t. the original objec-
tive of MAPF without depending on any additional weighted
term that requires prior tuning. To the best of our knowl-
edge, our work first effectively applies Thompson Sampling
to anytime MAPF in addition to more common MAB algo-
rithms like UCB1 and roulette wheel selection.

3.2 Multi-Armed Bandits in Anytime Planning
MABs are popular in anytime planning algorithms, espe-
cially in single-agent Monte Carlo planning (Kocsis and
Szepesvári 2006; Silver and Veness 2010). Monte-Carlo



Tree Search (MCTS) is the state-of-the-art framework of cur-
rent Monte Carlo planning algorithms which uses MABs to
traverse a search tree within a limited time budget (Koc-
sis and Szepesvári 2006; Silver and Veness 2010). UCB1
is most commonly used, but Thompson Sampling has also
gained attention in the last few years due to its effectiveness
in domains of high uncertainty (Bai, Wu, and Chen 2013;
Bai et al. 2014; Phan et al. 2019a,b). As MABs have been
shown to converge to good decisions within short-time bud-
gets, we use MABs in our adaptive multi-agent path finding
setting. Inspired by the latest progress in Monte Carlo plan-
ning (Świechowski et al. 2023), we intend to employ more
sophisticated MAB algorithms like Thompson Sampling to
anytime MAPF to improve exploration and performance.

3.3 Machine Learning in Anytime MAPF
Machine learning has been used in MAPF to directly learn
collision-free path finding, to guide node selection in search
trees, or to select appropriate MAPF algorithms for certain
maps (Sartoretti et al. 2019; Kaduri, Boyarski, and Stern
2020; Huang, Dilkina, and Koenig 2021). MAPF-ML-LNS
is an anytime MAPF approach that extends MAPF-LNS
with a learned score predictor for neighborhood selection
as well as a random uniform selection of the neighborhood
size N . The predictor is trained offline on pre-collected
data from previous MAPF runs (Huang et al. 2022). The
score predictor generalizes to some degree but is fixed af-
ter training; therefore, not being able to adapt during search,
which limits flexibility. MAPF-ML-LNS depends on exten-
sive prior effort like data acquisition, model training, and
feature engineering for meaningful score learning. We pro-
pose an online learning approach to adaptive MAPF-LNS
using MABs. The MABs can be trained on the fly with data
directly obtained from the LNS without any prior data acqui-
sition. Since MABs only learn from scalar rewards, there is
no need for expensive feature engineering, simplifying our
approach and easing application to other domains.

4 Bandit-Based Adaptive MAPF-LNS
We now introduce Bandit-based Adaptive LArge Neighbor-
hood search Combined with Exploration (BALANCE) as a
simple but effective LNS framework for adaptive MAPF.

4.1 Formulation
BALANCE uses a bi-level MAB scheme to adapt the se-
lection of destroy heuristics and neighborhood sizes on the
fly during search. The first level consists of a single MAB,
called H-Bandit with K = |H| arms, which selects a de-
stroy heuristic H ∈ H. The second level consists of |H| so-
called N -Bandits with K = E arms. Each N -Bandit con-
ditions on a destroy heuristic choice H ∈ H and determines
the corresponding neighborhood size N ∈ N = {2e|e ∈
{1, ..., E}}1 based on an exponent selection e ∈ {1, ..., E}.
The bi-level MAB scheme is shown in Figure 1.

BALANCE first selects a destroy heuristic H with the
top-level H-Bandit based on its current statistics ∆H. The

1The set of neighborhood size options N can be defined arbi-
trarily. For simplicity, we focus on sets consisting of powers of two.

...

... ...
Figure 1: Bi-level multi-armed bandit scheme of BAL-
ANCE. The top-level H-Bandit selects a destroy heuristic
H ∈ H. Each bottom-level N -Bandit corresponds to a de-
stroy heuristic choice and selects an exponent e ∈ N =
{1, ..., E} to determine the neighborhood size N = 2e.

selected destroy heuristic H determines the corresponding
bottom-level N -Bandit, which is used to select an exponent
e based on its current conditional statistics ∆N

H . The neigh-
borhood size is then determined by N = 2e. After evaluat-
ing the total cost c(P+) of the new solution P+, i.e. the sum
of delays, the statistics of the top-level H-Bandit and corre-
sponding bottom-levelN -Bandit are updated incrementally.
The MAB reward xk = x⟨H,N⟩ = max{0, c(P ) − c(P+)}
for the update is defined by the cost improvement of the new
solution P+ compared to the previous one P (Li et al. 2021).

The full formulation of BALANCE is provided in Algo-
rithm 1, where I represents the instance to be solved, π rep-
resents the MAB algorithm for the bi-level scheme, and E
represents the number of neighborhood size options.

Algorithm 1: BALANCE as MAPF-LNS Framework

1: procedure BALANCE(I, π, E)
2: P = {p1, ..., pm} ← RunInitialSolver(I)
3: Initialize statistics ∆ of MAB algorithm π
4: while runtime limit not exceeded do
5: ⟨H,N⟩ ∼ BiLevelBanditSelection(π,∆, E)
6: A ∼ SampleNeighborhood(I,H,N)
7: P− ← {pi|ai ∈ A}
8: P+ ← RunRepairSolver(I, A, P\P−)
9: x⟨H,N⟩ ← max{0, c(P )− c(P+)}

10: if x⟨H,N⟩ > 0 then ▷ check cost improvement
11: P ← (P\P−) ∪ P+

12: UpdateBandits(∆, H,N, x⟨H,N⟩)
return P

4.2 Instantiations
In the following, we describe three concrete MAB algo-
rithms π to implement the bi-level scheme in Figure 1. The
definition of the statistics ∆ depends on the MAB algorithm.

Roulette Wheel Selection π selects an arm k with a prob-
ability of wk∑K

j=1 wj
, where wk =

∑Tk

c=1 x
(c)
k is the sum of

rewards or weight and Tk is the selection count of arm k.
Statistics ∆ consists of all weights wk, which can be up-
dated incrementally after each iteration (Goldberg 1988).



UCB1 π selects arms by maximizing the upper confidence

bound of rewards UCB1(k) = xk + ξ
√

log(T )
Tk

, where xk is
the average reward of arm k, ξ is an exploration constant,
T is the total number of arm selections, and Tk is the se-
lection count of arm k. The second term represents the ex-
ploration bonus, which becomes smaller with increasing Tk

(Auer, Cesa-Bianchi, and Fischer 2002). Statistics ∆ con-
sists of all average rewards xk and selection counts Tk.

Thompson Sampling π uses a Bayesian approach to bal-
ance between exploration and exploitation of arms (Thomp-
son 1933). We focus on a generalized variant of Thompson
Sampling, which works for arbitrary reward distributions
fXk

by assuming that Xk follows a Normal distribution
N (µk,

1
τk
) with unknown mean µk and precision τk = 1

σ2
k

,

where σ2
k is the variance (Bai, Wu, and Chen 2013; Bai

et al. 2014). ⟨µk, τk⟩ follows a Normal Gamma distribution
NG(µ0, λk, αk, βk) with λk > 0, αk ≥ 1, and βk ≥ 0.
The distribution over τk is a Gamma distribution τk ∼
Gamma(αk, βk) and the conditional distribution over µk

given τk is a Normal distribution µk ∼ N (µ0,
1

λkτk
). Given

a prior distribution P (θ) = NG(µ0, λ0, α0, β0) and n ob-
served rewards Dk = {x(1)

1 , ..., x
(Tk)
k }, the posterior distri-

bution is defined by P (θ|Dk) = NG(µk,1, λk,1, αk,1, βk,1),
where µk,1 = λ0µ0+Tkxk

λ0+Tk
, λk,1 = λ0+Tk, αk,1 = α0+

Tk

2 ,

and βk,1 = β0+
1
2 (Tkσ

2
k+

λ0Tk(xk−µ0)
2

λ0+Tk
). xk is the observed

average reward in Dk and σ2
k = 1

Tk

∑Tk

c=1(x
(c)
k − xk)

2 is
the variance. The posterior is inferred for each arm k to
sample an estimate µk of the expected reward E

[
Xk

]
. The

arm with the highest estimate is selected. Statistics ∆ con-
sists of all average rewards xk, average of squared rewards
1
Tk

∑Tk

c=1(x
(c)
k )2, and selection counts Tk.

4.3 Conceptual Discussion
As MAB algorithms balance between exploration and ex-
ploitation to quickly find optimal choices, we believe that
they are naturally suited to enhance MAPF-LNS with
self-adaptive capabilities. According to previous works on
MAB-based tree search, BALANCE can provably converge
to an optimal destroy heuristic and neighborhood size choice
with sufficient exploration if there is a stationary optimum
(Kocsis and Szepesvári 2006; Bai et al. 2014). Otherwise,
non-stationary MAB techniques are required, which we de-
fer to as future work (Garivier and Moulines 2008). Depend-
ing on the choice of E, BALANCE maintains E + 1 MABs
in total. Since ∆ can be updated incrementally for any quan-
tity like arm selection counts Tk or average rewards xk, the
bi-level MAB scheme can be updated in constant time thus
introducing negligible overhead to the LNS (as replanning
of neighborhoods requires significantly more compute).

Roulette wheel selection is the simplest method to imple-
ment because it only uses the weights wk as the sum of re-
wards. However, it could lack exploration in the long run
since arms with small weights are likely to be neglected or
forgotten over time. UCB1 accommodates this issue by in-
troducing an exploration bonus that explicitly considers the

selection count of arms Tk. Arms that are selected less over
time will have a larger exploration bonus and are therefore
more incentivized for selection, depending on the choice of
exploration constant ξ. Thompson Sampling is a randomized
algorithm whose initial exploration depends on prior param-
eters, i.e., µ0, λ0, α0, and β0 thus being more complex than
the other MAB approaches. However, previous works report
that using prior distributions that are close to a uniform dis-
tribution is sufficient in most cases without requiring exten-
sive tuning (Bai, Wu, and Chen 2013; Bai et al. 2014).

Adaptation in MAPF-LNS can be regarded as stochas-
tic optimization problem, since all destroy heuristics defined
by (Li et al. 2021) are randomized. Therefore, uncertainty-
based methods like Thompson Sampling seem promising for
this setting as reported in (Chapelle and Li 2011; Kaufmann,
Korda, and Munos 2012; Bai et al. 2014).

Alternatively to the proposed bi-level MAB scheme, a sin-
gle MAB can be employed to directly search the joint arm
space ofH×N . While this approach would basically solve
the same problem, the joint arm space scales quadratically,
which could lead to low-quality solutions, if the time budget
is very restricted. The bi-level scheme mitigates the scalabil-
ity issue by first selecting a destroy heuristic H (Section 5.3
indicates that performance is more sensitive to H) before de-
ciding on the neighborhood size N (whose quality depends
on the choice of H).

5 Experiments
5.1 Setup
Maps We evaluate BALANCE on five maps from the
MAPF benchmark set of (Stern et al. 2019), namely (1) a
random map (random-32-32-10), (2) a warehouse map
(warehouse-10-20-10-2-1), (3) two gamemaps ost003d and
(4) den520d as well as (5) a city map (Paris 1 256). All
maps have different sizes and structures and are the same as
used in (Huang et al. 2022) for comparability with state-of-
the-art anytime MAPF as presented below. We conduct all
experiments on the available 25 random scenarios per map.

Anytime MAPF Algorithms We implemented2 different
variants of BALANCE using Thompson Sampling (with
µ0 = 0, λ0 = 0.01, α0 = 1, β0 = 100), UCB1 (with
ξ = 1, 000), and roulette wheel selection. Each BALANCE
variant is denoted by BALANCE (X), where X is the concrete
MAB algorithm (or just random uniform sampling) used for
our bi-level scheme in Figure 1. Unless stated otherwise, we
always use the |H| = 3 destroy heuristics from (Li et al.
2021) and set E = 5 such that the neighborhood size is
chosen fromN = {2, 4, 8, 16, 32}3. Our BALANCE imple-
mentation is based on the public code of (Li et al. 2022) and
uses its default configuration unless stated otherwise.

We determine the Empirically Best Choice, where we run
a grid search over all |H| = 3 destroy heuristics and |N | =

2Code available at github.com/thomyphan/anytime-mapf.
3Even though previous works (Li et al. 2021, 2022) already in-

dicate good values for fixed neighborhood sizes N , we keep opti-
mizing our MABs on a broader set of options to confirm conver-
gence to adequate choices without assuming any prior knowledge.



Figure 2: Sum of delays for different BALANCE variants
with different time budgets compared with the respective
empirically best choices. Shaded areas show the 95% confi-
dence interval. The legend at the top applies across all plots.

E = 5 neighborhood size options N = {2, 4, 8, 16, 32} to
compare with a pre-tuned LNS without any adaptation.

To directly compare BALANCE with MAPF-LNS and
MAPF-ML-LNS, as state-of-the-art approaches, we take the
performance values reported in (Huang et al. 2022), running
our experiments on the same hardware specification. We also
compare with a single-MAB approach that optimizes over
theH×N Joint Arm Space using Thompson Sampling.

Compute Infrastructure All experiments were run on a
x86 64 GNU/Linux (Ubuntu 18.04.5 LTS) machine with i7
@ 2.4 GHz CPU and 16 GB RAM, as in (Huang et al. 2022).

5.2 Experiment – BALANCE Convergence
Setting To assess convergence w.r.t. time budget, we
run BALANCE (Thompson), BALANCE (UCB1), BALANCE
(Roulette), and BALANCE (Random) on the random and
city map with m = 200 and 350 agents respectively.

Results The results are shown in Figure 2. With increas-
ing time budget, all BALANCE variants converge to an av-
erage sum of delays close to the empirically best choice.
All MAB-enhanced variants converge faster than BALANCE
(Random). BALANCE (Thompson) performs best in both
maps, especially when the time budget is low.

Discussion The results show that any version of BAL-
ANCE is able to perform well with an increasing time bud-
get. Given a sufficient time budget, all versions are able
to keep up with the empirically best choice through online
learning without running a prior grid search that requires
roughly |H| · |N | = 3E = 15 times the compute of any
BALANCE variant in total. Thompson Sampling performs
particularly well, presumably due to the inherent uncertainty
exhibited by the randomized destroy heuristics.

5.3 Experiment – BALANCE Exploration
Setting Next, we evaluate the explorative behavior of
BALANCE (Thompson), BALANCE (UCB1), and BALANCE
(Roulette) on the random, ost003d, and city map after
128 seconds of LNS runtime. We also evaluate the progress
of MAB choice over time for BALANCE (Thompson) and
BALANCE (Roulette) in the ost003d map.

Results The final relative frequencies of MAB choices are
displayed as heatmaps in Figure 3. The empirically best
destroy heuristics and neighborhood sizes are highlighted
by magenta dashed boxes. BALANCE (UCB1) and BAL-
ANCE (Roulette) strongly prefer the random destroy heuris-
tic, while the preferred neighborhood size depends on the
actual map. BALANCE (Thompson) also prefers the ran-
dom destroy heuristic to some degree but still explores other
heuristics, mainly with neighborhood sizes N ≥ 8. Com-
pared to the other variants, BALANCE (Thompson) explores
more regions where either the destroy heuristic H or the
neighborhood size N is empirically best, at least.

Figure 4 shows the average progress of the chosen de-
stroy heuristic H and neighborhood size N during search
for Thompson Sampling and Roulette in the ost003dmap.
While Roulette quickly converges to the random heuristic,
Thompson Sampling adapts its preferences through contin-
uous exploration. Thompson Sampling mostly prefers the
largest neighborhood size N = 32 over time, whereas
Roulette almost uniformly chooses N ∈ {4, 8, 16, 32} over
time with a slight preference toward N = 8.

Discussion None of the BALANCE variants clearly con-
verges to the empirically best choice, which could be due
to a short time budget, marginal improvement over time, or
potential non-stationarity of the actual optimal choice. Nev-
ertheless, Figure 3 suggests that Thompson Sampling per-
forms more focused exploration than any other MAB.

5.4 Experiment – Neighborhood Size Options
Setting We run BALANCE (Thompson), BALANCE
(UCB1), BALANCE (Roulette), and BALANCE (Random)
with different neighborhood size options by varying E, i.e.,
the number of exponents e to determine the neighborhood
size N = 2e. The same maps and number of agents m as
above are used with a time budget of 128 seconds. We addi-
tionally evaluate with a doubled number of agents per map.

Results The results are shown in Figure 5. All approaches
significantly improve when the number of options is in-
creased to E = 3 with marginal to no improvement af-
terward. BALANCE (Thompson) and BALANCE (Random)
benefit the most from the increase of E except in the city
map with 700 agents, where BALANCE (UCB1) keeps up
with BALANCE (Thompson).

Discussion Since Thompson Sampling and random uni-
form explore more than UCB1 and Roulette, they can better
leverage the neighborhood size options. The results indicate
that neighborhood size adaptation and the sufficient avail-
ability of options can significantly affect performance. How-
ever, the neighborhood size also affects the amount of com-
pute for replanning, which explains why BALANCE (Ran-
dom) performs worse in ost003d when E = 5.

5.5 Experiment – State-of-the-Art Comparison
Setting We run BALANCE (Thompson), BALANCE
(UCB1), BALANCE (Roulette), and Joint Arm Space
(Thompson) on the random, warehouse, ost003d,
den520d, and city map with different numbers of agents
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Figure 3: Relative frequencies of selected destroy heuristic and neighborhood size combinations ⟨H,N⟩ per BALANCE variant
after 128 seconds of planning. Magenta dashed boxes indicate the empirically best destroy heuristic and neighborhood size.

Figure 4: MAB choices over time for ost003d.

m. For direct comparability with MAPF-LNS and MAPF-
ML-LNS, we set the time budget to 60 seconds (Huang
et al. 2022). Since no error or deviation bars are reported in
(Huang et al. 2022), we only show the average performance
of MAPF-LNS and MAPF-ML-LNS as dashed lines.

Results The results are shown in Figure 6. All BALANCE
variants and Joint Arm Space (Thompson) significantly out-
perform MAPF-LNS and MAPF-ML-LNS by at least 50%
when m ≥ 350. In the random, ost003d, and citymap,
BALANCE (Thompson) slightly outperforms the other BAL-
ANCE variants. Joint Arm Space (Thompson) is consistently
outperformed by the BALANCE variants.

Discussion The experiment demonstrates that BALANCE
effectively mitigates the limitations of state-of-the-art any-
time MAPF regarding fixed neighborhood sizes and the lack
of exploration in roulette wheel selection, especially in in-
stances with a large number of agents m. While Thomp-
son Sampling seemingly performs best in most cases, using
BALANCE with any MAB algorithm is generally benefi-
cial to improve performance. As discussed in Section 4.3,
our bi-level MAB scheme can outperform joint arm space
alternatives when the time budget is very restricted due to
meaningful decomposition, which is confirmed in all tested
maps. However, since Joint Arm Space (Thompson) also out-
performs the state-of-the-art, we suggest that bandit-based
adaptation in MAPF-LNS is generally promising.

6 Conclusion
We presented BALANCE, an LNS framework using a bi-
level multi-armed bandit scheme to adapt the selection of
destroy heuristics and neighborhood sizes during search.

Our experiments show that BALANCE offers a simple
but effective framework for adaptive anytime MAPF, which
is able to significantly outperform state-of-the-art anytime
MAPF without requiring extensive prior efforts like neigh-
borhood size tuning, data acquisition, or feature engineer-
ing. Sufficient availability of neighborhood size options is
important to provide enough room for adaptation at the po-
tential cost of runtime due to increasing replanning effort.
Thompson Sampling is a promising choice for most scenar-
ios due to the inherent uncertainty of the randomized destroy
heuristics and its ability to explore promising choices.

Future work includes the investigation of non-stationary
MAB approaches and online learnable destroy heuristics.



Figure 5: Sum of delays for different BALANCE variants with different neighborhood size options E and numbers of agents
m. The time budget is 128 seconds. Shaded areas show the 95% confidence interval. The legend at the top applies across all
plots.

Figure 6: Sum of delays for different variants of BALANCE compared with state-of-the-art anytime MAPF-LNS and MAPF-
ML-LNS for different numbers of agents m. The performance values of MAPF-LNS and MAPF-ML-LNS are taken from
(Huang et al. 2022) without any error or deviation bars. Our experiments are run on the same hardware specification with a time
budget of 60 seconds. Shaded areas show the 95% confidence interval. The legend at the top applies across all plots.
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Mańdziuk, J. 2023. Monte Carlo Tree Search: A Review
of Recent Modifications and Applications. Artificial Intelli-
gence Review, 56(3): 2497–2562.
Thompson, W. R. 1933. On the Likelihood that One Un-
known Probability exceeds Another in View of the Evidence
of Two Samples. Biometrika, 25(3/4): 285–294.
Yu, J.; and LaValle, S. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 27(1):
1443–1449.


