
Complexity Analysis of

Real-Time Reinforcement Learning∗

Sven Koenig and Reid G. Simmons

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3891

skoenig@cs.cmu.edu, reids@cs.cmu.edu

Abstract

This paper analyzes the complexity of on-line reinforce-
ment learning algorithms, namely asynchronous real-
time versions of Q-learning and value-iteration, applied
to the problem of reaching a goal state in deterministic
domains. Previous work had concluded that, in many
cases, tabula rasa reinforcement learning was exponen-
tial for such problems, or was tractable only if the learn-
ing algorithm was augmented. We show that, to the
contrary, the algorithms are tractable with only a sim-
ple change in the task representation or initialization.
We provide tight bounds on the worst-case complexity,
and show how the complexity is even smaller if the re-
inforcement learning algorithms have initial knowledge
of the topology of the state space or the domain has
certain special properties. We also present a novel bi-
directional Q-learning algorithm to find optimal paths
from all states to a goal state and show that it is no
more complex than the other algorithms.

Introduction

Consider the problem for an agent of finding its way
to one of a set of goal locations, where actions consist
of moving from one intersection (state) to another (see
Figure 1). Initially, the agent has no knowledge of the
topology of the state space. We consider two different
tasks: reaching any goal state and determining shortest
paths from every state to a goal state.

Off-line search methods, which first derive a plan that
is then executed, cannot be used to solve the path plan-
ning tasks, since the topology of the state space is ini-
tially unknown to the agent and can only be discovered
by exploring: executing actions and observing their ef-
fects. Thus, the path planning tasks have to be solved
on-line. On-line search methods, also called real-time

∗This research was supported in part by NASA under
contract NAGW-1175. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the sponsoring organizations or the
U.S. government.

one way
goal

one way

one way

one way

on
e

w
ay

Figure 1: Navigating on a map

search methods [Korf, 1990], interleave search with ac-
tion execution. The algorithms we describe here per-
form minimal computation between action executions,
choosing only which action to execute next, and basing
this decision only on information local to the current
state of the agent (and perhaps its immediate successor
states).

In particular, we will investigate a class of algorithms
which perform reinforcement learning. The application
of reinforcement learning to on-line path planning prob-
lems has been studied by [Barto et al., 1991], [Ben-
son and Prieditis, 1992], [Pemberton and Korf, 1992],
[Moore and Atkeson, 1992], and others. [Whitehead,
1991] showed that reaching a goal state with reinforce-
ment learning methods can require a number of action
executions that is exponential in the size of the state
space. [Thrun, 1992] has shown that by augmenting
reinforcement learning algorithms, the problem can be
made tractable. In fact, we will show that, contrary
to prior belief, reinforcement learning algorithms are
tractable without any need for augmentation, i.e. their
run-time is a small polynomial in the size of the state
space. All that is necessary is a change in the way the
state space (task) is represented.

In this paper, we use the following notation. S de-
notes a finite set of states, and G ⊆ S is the non-
empty set of goal states. A(s) is the finite set of ac-
tions that can be executed in s ∈ S. The size of the
state space is n := |S|, and the total number of ac-
tions is e :=

∑

s∈S |A(s)|. All actions are determinis-
tic. succ(s, a) is the uniquely determined successor state
when a ∈ A(s) is executed in state s. The state space is
strongly connected, i.e. every state can be reached from
every other state. gd(s) denotes the goal distance of s,
i.e. the smallest number of action executions required
to reach a goal state from s. We assume that the state
space is totally observable1, i.e. the agent can deter-
mine its current state with certainty, including whether
it is currently in a goal state.

Formally, the results of the paper are as follows. If a
good task representation or suitable initialization is cho-
sen, the worst-case complexity of reaching a goal state
has a tight bound of O(n3) action executions for Q-
learning and O(n2) action executions for value-iteration.
If the agent has initial knowledge of the topology of the
state space or the state space has additional properties,
the O(n3) bound can be decreased further. In addition,
we show that reinforcement learning methods for find-
ing shortest paths from every state to a goal state are
no more complex than reinforcement learning methods
that simply reach a goal state from a single state. This
demonstrates that one does not need to augment rein-
forcement learning algorithms to make them tractable.

Reinforcement Learning

Reinforcement learning is learning from (positive
and negative) rewards. Every action a ∈ A(s) has an
immediate reward r(s, a) ∈ R, that is obtained when
the agent executes the action. If the agent starts in
s ∈ S and executes actions for which it receives imme-
diate reward rt at step t ∈ N0, then the total reward
that the agent receives over its lifetime for this particu-
lar behavior is

U(s) :=

∞
∑

t=0

γtrt (1)

where γ ∈ (0, 1] is called the discount factor. If γ < 1,
we say that discounting is used, otherwise no discount-
ing is used.

Reinforcement learning algorithms find a behavior
for the agent that maximizes the total reward for ev-
ery possible start state. We analyze two reinforcement
learning algorithms that are widely used, namely Q-
learning [Watkins, 1989] and value-iteration [Bellman,

1[Papadimitriou and Tsitsiklis, 1987] state results about
the worst-case complexity of every algorithm for cases where
the states are partially observable or unobservable.

1. Set s := the current state.

2. If s ∈ G, then stop.

3. Select an action a ∈ A(s).

4. Execute action a.
/* As a consequence, the agent receives reward
r(s, a) and is in state succ(s, a). Increment the num-
ber of steps taken, i.e. set t := t + 1. */

5. Set Q(s, a) := r(s, a) + γU(succ(s, a)).

6. Go to 1.

where U(s) := maxa∈A(s) Q(s, a) at every point in time.

Figure 2: The (1-step) Q-learning algorithm

1957]. One can interleave them with action execution
to construct asynchronous real-time forms that use ac-
tual state transitions rather than systematic or asyn-
chronous sweeps over the state space. In the following,
we investigate these on-line versions: 1-step Q-learning
and 1-step value-iteration.

Q-Learning

The 1-step Q-learning algorithm2 [Whitehead, 1991]

(Figure 2) stores information about the relative good-
ness of the actions in the states. This is done by
maintaining a value Q(s, a) in state s for every action
a ∈ A(s). Q(s, a) approximates the optimal total re-
ward received if the agent starts in s, executes a, and
then behaves optimally.

The action selection step (line 3) implements the ex-
ploration rule (which state to go to next). It is allowed
to look only at information local to the current state
s. This includes the Q-values for all a ∈ A(s). The
actual selection strategy is left open: It could, for ex-
ample, select an action randomly, select the action that
it has executed the least number of times, or select the
action with the largest Q-value. Exploration is termed
undirected [Thrun, 1992] if it uses only the Q-values,
otherwise it is termed directed.

After the action execution step (line 4) has executed
the selected action a, the value update step (line 5)
adjusts Q(s, a) (and, if needed, other information lo-
cal to the former state). The 1-step look-ahead value
r(s, a)+γU(succ(s, a)) is more accurate than, and there-
fore replaces, Q(s, a).

Value-Iteration

The 1-step value-iteration algorithm is similar to the
1-step Q-learning algorithm. The difference is that the
action selection step can access r(s, a) and U(succ(s, a))
for every action a ∈ A(s) in the current state s,

2Since the actions have deterministic outcomes, we state
the Q-learning algorithm with the learning rate α set to one.

whereas Q-learning has to estimate them with the Q-
values. The value update step becomes “Set U(s) :=
maxa∈A(s)(r(s, a) + γU(succ(s, a)))”.

Whereas Q-learning does not know the effect of an
action before it has executed it at least once, value-
iteration only needs to enter a state at least once to
discover all of its successor states. Since value-iteration
is more powerful than Q-learning, we expect it to have
a smaller complexity.

Task Representation

To represent the task of finding shortest paths as a re-
inforcement learning problem, we have to specify the
reward function r. We let the lifetime of the agent in
formula (1) end when it reaches a goal state. Then, the
only constraint on r is that it must guarantee that a
state with a smaller goal distance has a larger optimal
total reward and vice versa. We consider two possible
reward functions with this property.

In the goal-reward representation, the agent is
rewarded for entering a goal state, but not rewarded
or penalized otherwise. This representation has been
used by [Whitehead, 1991], [Thrun, 1992], [Peng and
Williams, 1992], and [Sutton, 1990], among others.

r(s, a) =

{

1 if succ(s, a) ∈ G
0 otherwise

The optimal total discounted reward of s ∈ S −G :=
{s ∈ S : s 6∈ G} is γgd(s)−1. If no discounting is used,
then the optimal total reward is 1 for every s ∈ S − G,
independent of its goal distance. Thus, discounting is
necessary so that larger optimal total rewards equate
with shorter goal distances.

In the action-penalty representation, the agent is
penalized for every action that it executes, i.e. r(s, a) =
−1. This representation has a more dense reward struc-
ture than the goal-reward representation (i.e. the agent
receives non-zero rewards more often) if goals are rela-
tively sparse. It has been used by [Barto et al., 1989],
[Barto et al., 1991], and [Koenig, 1991], among others.

The optimal total discounted reward of s ∈ S is (1−
γgd(s))/(γ − 1). Its optimal total undiscounted reward
is −gd(s). Note that discounting can be used with the
action-penalty representation, but is not necessary.

Complexity of Reaching a Goal State

We can now analyze the complexity of reinforcement
learning algorithms for the path planning tasks. We
first analyze the complexity of reaching a goal state for
the first time.

The worst-case complexity of reaching a goal state
with reinforcement learning (and stopping there) pro-
vides a lower bound on the complexity of finding all

shortest paths, since this cannot be done without know-
ing where the goal states are. By “worst case” we mean
an upper bound on the total number of steps for a tab-
ula rasa (initially uninformed) algorithm that holds for
all possible topologies of the state space, start and goal
states, and tie-breaking rules among actions that have
the same Q-values. Clearly, in order to have a worst-
case complexity smaller than infinity, an initially un-
informed search algorithm must learn something about
the effects of action executions.

Assume that a Q-learning algorithm is zero-

initialized (all Q-values are zero initially) and operates
on the goal-reward representation. Note that the first
Q-value that changes is the Q-value of the action that
leads the agent to a goal state. For all other actions,
no information about the topology of the state space is
remembered and all Q-values remain zero. Since the ac-
tion selection step has no information on which to base
its decision if it performs undirected exploration, the
agent has to choose actions according to a uniform dis-
tribution and thus performs a random walk. Then, the
agent reaches a goal state eventually, but the average
number of steps required can be exponential in n, the
number of states [Whitehead, 1991].

This observation motivated [Whitehead, 1991] to ex-
plore cooperative reinforcement learning algorithms in
order to decrease the worst-case complexity. [Thrun,
1992] showed that even non-cooperative algorithms
have polynomial worst-case complexity if reinforcement
learning is augmented with a directed exploration mech-
anism (“counter-based Q-learning”). We will show that
one does not need to augment Q-learning: it is tractable
if one uses either the action-penalty representation or
different initial Q-values.

Using a Different Task Representation

Assume we are still using a zero-initialized Q-learning
algorithm, but let it now operate on the action-penalty
representation. Although the algorithm is still tabula
rasa, the Q-values change immediately, starting with
the first action execution, since the reward structure
is dense. In this way, the agent remembers the effects
of previous action executions. We address the case in
which no discounting is used, but the theorems can eas-
ily be adapted to the discounted case. [Koenig and Sim-
mons, 1992] contains the proofs, additional theoretical
and empirical results, and examples.

Definition 1 Q-values are called consistent iff, for all
s ∈ G and a ∈ A(s), Q(s, a) = 0, and, for all s ∈ S −G
and a ∈ A(s), −1 + U(succ(s, a)) ≤ Q(s, a) ≤ 0.

Definition 2 An undiscounted Q–learning
algorithm with action–penalty representation is called

admissible3 iff its initial Q–values are consistent and
its action selection step is “a := argmax a′∈A(s)Q(s, a′)”.

If a Q-learning algorithm is admissible, then its Q-
values remain consistent and are monotonically decreas-
ing. Lemma 1 contains the central invariant for all
proofs. It states that the number of steps executed so
far is always bounded by an expression that depends
only on the initial and current Q-values and, more over,
“that the sum of all Q-values decreases (on average)
by one for every step taken” (this paraphrase is grossly
simplified). A time superscript of t in Lemmas 1 and 2
refers to the values of the variables immediately before
executing the action during step t.

Lemma 1 For all steps t ∈ N0 (until termination) of
an undiscounted, admissible Q-learning algorithm with
action-penalty representation,

U t(st) +
∑

s∈S

∑

a∈A(s)

Q0(s, a) − t ≥

∑

s∈S

∑

a∈A(s)

Qt(s, a) + U0(s0) − loopt

and

loopt ≤
∑

s∈S

∑

a∈A(s)(Q
0(s, a) − Qt(s, a)),

where loopt := |{t′ ∈ {0, . . . , t − 1} : st′ = st′+1}| (the
number of actions executed before t that do not change
the state).

Lemma 2 An undiscounted, admissible Q-learning al-
gorithm with action–penalty representation reaches a
goal state and terminates after at most

2
∑

s∈S−G

∑

a∈A(s)

(Q0(s, a) + gd(succ(s, a)) + 1) − U 0(s0)

steps.

Theorem 1 An admissible Q-learning algorithm with
action-penalty representation reaches a goal state and
terminates after at most O(en) steps.

Lemma 2 utilizes the invariant and the fact that each
of the e different Q-values is bounded by an expres-
sion that depends only on the goal distances to de-
rive a bound on t. Since the sum of the Q-values de-
creases with every step, but is bounded from below, the

3If the value update step is changed to “Set Q(s, a) :=
min(Q(s, a),−1+γU(succ(s, a)))”, then the initial Q-values
need only to satisfy that, for all s ∈ G and a ∈ A(s),
Q(s, a) = 0, and, for all s ∈ S − G and a ∈ A(s),
−1 − gd(succ(s, a)) ≤ Q(s, a) ≤ 0. Note that Q(s, a) =
−1 − h(succ(s, a)) has this property, where h is an admissi-
ble heuristic for the goal distance.

...

start goal

1 2 3 4 n

Figure 3: A worst-case example

algorithm must terminate. Because the shortest dis-
tance between any two different states (in a strongly
connected graph) is bounded by n − 1, the result of
Theorem 1 follows directly. Note that Lemma 2 also
shows how prior knowledge of the topology of the state
space (in form of suitable initial Q-values) makes the
Q-learning algorithm better informed and decreases its
run-time.

If a state space has no duplicate actions, then e ≤ n2

and the worst-case complexity becomes O(n3). This
provides an upper bound on the complexity of the Q-
learning algorithm. To demonstrate that this bound
is tight for a zero-initialized Q-learning algorithm, we
show that O(n3) is also a lower bound: Figure 3 shows
a state space where at least 1/6n3 − 1/6n steps may
be needed to reach the goal state. To summarize, al-
though Q-learning performs undirected exploration, its
worst-case complexity is polynomial in n. Note that
Figure 3 also shows that every algorithm that does not
know the effect of an action before it has executed it at
least once has the same big-O worst-case complexity as
zero-initialized Q-learning.

Using Different Initial Q-values

We now analyze Q-learning algorithms that operate on
the goal-reward representation, but where all Q-values
are initially set to one. A similar initialization has been
used before in experiments conducted by [Kaelbling,
1990].

If the action selection strategy is to execute the ac-
tion with the largest Q-value, then a discounted, one-
initialized Q-learning algorithm with goal-reward rep-
resentation behaves identically to a zero-initialized Q-
learning algorithm with action-penalty representation
if all ties are broken in the same way.4 Thus, the com-
plexity result of the previous section applies and a dis-
counted, one-initialized Q-learning algorithm with goal-
reward representation reaches a goal state and termi-

4This is true only for the task of reaching a goal state.
In general, a discounted, “one-initialized” Q-learning algo-
rithm with goal-reward representation behaves identically
to a “(minus one)-initialized” Q-learning algorithm with
action-penalty representation if in both cases the Q-values
of actions in goal states are initialized to zero.

nates after at most O(en) steps.

Gridworlds

We have seen that we can decrease the complexity of
Q-learning dramatically by choosing a good task rep-
resentation or suitable initial Q-values. Many domains
studied in the context of reinforcement learning have
additional properties that can decrease the worst-case
complexity even further. For example, a state space
topology has a linear upper action bound b ∈ N0 iff
e ≤ bn for all n ∈ N0. Then, the worst case complexity
becomes O(bn2) = O(n2).

Gridworlds, which have often been used in studying
reinforcement learning [Barto et al., 1989] [Sutton, 1990]
[Peng and Williams, 1992] [Thrun, 1992] have this prop-
erty. Therefore, exploration in unknown gridworlds ac-
tually has very low complexity. Gridworlds often have
another special property. A state space is called 1-step

invertible [Whitehead, 1991] iff it has no duplicate ac-
tions and, for all s ∈ S and a ∈ A(s), there exists an
a′ ∈ A(succ(s, a)) such that succ(succ(s, a), a′) = s.
(We do not assume that the agent knows that the state
space is 1-step invertible.) Even a zero-initialized Q-
learning algorithm with goal-reward representation (i.e.
a random walk) is tractable for 1-step invertible state
spaces, as the following theorem states.

Theorem 2 A zero-initialized Q-learning algorithm
with goal-reward representation reaches a goal state and
terminates in at most O(en) steps on average if the state
space is 1-step invertible.

This theorem is an immediate corollary to [Aleliunas
et al., 1979]. If the state space has no duplicate actions,
then the worst-case complexity becomes O(n3). This
bound is tight. Thus, the average-case complexity of a
random walk in 1-step invertible state spaces is poly-
nomial (and no longer exponential) in n. For 1-step
invertible state spaces, however, there are tabula rasa
on-line algorithms that have a smaller big-O worst-case
complexity than Q-learning [Deng and Papadimitriou,
1990].

Determining Optimal Policies

We now consider the problem of finding shortest paths
from all states to a goal state. We present a novel
extension of the Q-learning algorithm that determines
the goal distance of every state and has the same big-
O worst-case complexity as the algorithm for finding a
single path to a goal state. This produces an optimal
deterministic policy in which the optimal behavior is
obtained by always executing the action that decreases
the goal distance.

The algorithm, which we term the bi-directional Q-

learning algorithm, is presented in Figure 4. While

Initially, Qf (s, a) = Qb(s, a) = 0 and done(s, a) = false
for all s ∈ S and a ∈ A(s).

1. Set s := the current state.

2. If s ∈ G, then set done(s, a) := true for all a ∈ A(s).

3. If done(s) = true , then go to 8.

4. /* forward step */
Set a := argmaxa′∈A(s)Qf (s, a′).

5. Execute action a. (As a consequence, the agent re-
ceives reward −1 and is in state succ(s, a).)

6. Set Qf (s, a) := −1+Uf (succ(s, a)) and done(s, a) :=
done(succ(s, a)).

7. Go to 1.

8. /* backward step */
Set a := argmaxa′∈A(s)Qb(s, a

′).

9. Execute action a. (As a consequence, the agent re-
ceives reward −1 and is in state succ(s, a).)

10. Set Qb(s, a) := −1 + Ub(succ(s, a)).

11. If Ub(s) ≤ −n, then stop.

12. Go to 1.

where, at every point in time,
Uf (s) := maxa∈A(s) Qf (s, a),
Ub(s) := maxa∈A(s) Qb(s, a), and
done(s) := ∃a∈A(s)(Qf (s, a) = Uf (s) ∧ done(s, a)).

Figure 4: The bi-directional Q-learning algorithm

the complexity results presented here are for the undis-
counted, zero-initialized version with action-penalty
representation, we have derived similar results for all
of the previously described alternatives.

The bi-directional Q-learning algorithm iterates over
two independent Q-learning searches: a forward phase
that uses Qf -values to search a state s with done(s) =
true from a state s′ with done(s′) = false , followed
by a backward phase that uses Qb-values to search
a state s with done(s) = false from a state s′ with
done(s′) = true. The forward and backward phases are
implemented using the Q-learning algorithm from Fig-
ure 2.

The variables done(s) have the following semantics: If
done(s) = true, then Uf (s) = −gd(s) (but not necessar-
ily the other way around). Similarly for the variables
done(s, a) for s ∈ S − G: If done(s, a) = true, then
Qf (s, a) = −1− gd(succ(s, a)).

If the agent executes a in s and done(succ(s, a)) =
true, then it can set done(s, a) to true. Every forward
phase sets at least one additional done(s, a) value to
true and then transfers control to the backward phase,
which continues until a state s with done(s) = false
is reached, so that the next forward phase can start.
After at most e forward phases, done(s) = true for all
s ∈ S. Then, the backward phase can no longer find a
state s with done(s) = false and decreases the Ub-values

beyond every limit. When a Ub-value reaches or drops
below −n, the agent can infer that an optimal policy
has been found and may terminate. See [Koenig and
Simmons, 1992] for a longer description and a similar
algorithm that does not need to know n in advance,
always terminates no later than the algorithm stated
here, and usually terminates shortly after done(s) =
true for all s ∈ S.

Theorem 3 The bi-directional Q-learning algorithm
finds an optimal policy and terminates after at most
O(en) steps.

The proof of Theorem 3 is similar to that of Theo-
rem 1. The theorem states that the bi-directional Q-
learning algorithm has exactly the same big-O worst-
case complexity as the Q-learning algorithm for finding
a path to a goal state. The complexity becomes O(n3)
if the state space has no duplicate actions.5 That this
bound is tight follows from Figure 3, since determining
an optimal policy cannot be easier than reaching a goal
state for the first time. It is surprising, however, that
the big-O worst-case complexities for both tasks are the
same.

Empirical Results

Figures 5 and 6 show the run-times of various reinforce-
ment learning algorithms in reset state spaces (i.e. state
spaces in which all states have an action that leads back
to the start state) and one-dimensional gridworlds of
sizes n ∈ [2, 50], in both cases averaged over 5000 runs.

The x-axes show the complexity of the state space
(measured as en) and the y-axes the number of steps
needed to complete the tasks. We use zero-initialized
algorithms with action-penalty representation, with ties
broken randomly. For determining optimal policies, we
distinguish two performance measures: the number of
steps until an optimal policy is found (i.e. until U(s) =
−gd(s) for every state s), and the number of steps until
the algorithm realizes that and terminates.

These graphs confirm our expectation about the var-
ious algorithms. For each algorithm, Q-learning and
value-iteration, we expect its run-time (i.e. number of
steps needed) for reaching a goal state to be smaller
than the run-time for finding an optimal policy which
we expect, in turn, to be smaller than the run-time for
terminating with an optimal policy. We also expect the
run-time of the efficient6 value-iteration algorithm to
be smaller than the run-time of the efficient Q-learning

5The bi-directional Q-learning algorithm can be made
more efficient, for example by breaking ties intelligently, but
this does not change its big-O worst-case complexity.

6“Efficient” means to use either the action-penalty rep-
resentation or one-initialized Q-values (U -values).

...

start goal

1 2 3 4 n

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

s
t
e
p
s

en

Reset State Space

[1] [2] [3] [4] [5] [6]

[7]

random walk, goal state reached [1]
Q-learning, optimal policy (terminated) [2]
Q-learning, optimal policy (identified) [3]

value-iteration, optimal policy (terminated) [4]
Q-learning, goal state reached [5]

value-iteration, optimal policy (identified) [6]
value-iteration, goal state reached [7]

Figure 5: Reset state space

algorithm which we expect to be smaller than the run-
time of a random walk, given the same task to be solved.
In addition to these relationships, the graphs show that
random walks are inefficient in reset state spaces (where
they need 3 × 2n−2 − 2 steps on average to reach a
goal state), but perform much better in one-dimensional
gridworlds (where they only need (n−1)2 steps on aver-
age), since the latter are 1-step invertible. But even for
gridworlds, the efficient Q-learning algorithms continue
to perform better than random walks, since only the
former algorithms immediately remember information
about the topology of the state space.

Extensions

The complexities presented here can also be stated in
terms of e and the depth of the state space d (instead
of n), allowing one to take advantage of the fact that
the depth often grows sublinearly in n. The depth of a

state space is the maximum over all pairs of different
states of the length of the shortest path between them.
All of our results can easily be extended to cases where
the actions do not have the same reward. The result
about 1-step invertible state spaces also holds for the
more general case of state spaces that have the following
property: for every state, the number of actions entering
the state equals the number of actions leaving it.

Reinforcement learning algorithms can be used in
state spaces with probabilistic action outcomes. Al-

...1 2 3 4 n

start goal

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

s
t
e
p
s

en

One-Dimensional Gridworld

[1] [2] [3] [4] [5]

[6]

[7]

Q-learning, optimal policy (terminated) [1]
value-iteration, optimal policy (terminated) [2]

Q-learning, optimal policy (identified) [3]
random walk, goal state reached [4]

value-iteration, optimal policy (identified) [5]
Q-learning, goal state reached [6]

value-iteration, goal state reached [7]

Figure 6: One-dimensional gridworld

though the results presented here provide guidance for
modeling probabilistic domains, more research is re-
quired to transfer the results. [Koenig and Simmons,
1992] contains a discussion of additional challenges en-
countered in probabilistic domains.

Conclusion

Many real-world domains have the characteristic of the
task presented here – the agent must reach one of a
number of goal states by taking actions, but the initial
topology of the state space is unknown. Prior results
which indicated that reinforcement learning algorithms
were exponential in n, the size of the state space, seemed
to limit their usefulness for such tasks.

This paper has shown, however, that such algorithms
are tractable when using either the appropriate task rep-
resentation or suitable initial Q-values. Both changes
produce a dense reward structure, which facilitates
learning. In particular, we showed that the task of
reaching a goal state for the first time is reduced from
exponential to O(en), or O(n3) if there are no duplicate
actions. Furthermore, the complexity is further reduced
if the domain has additional properties, such as a linear
upper action bound. In 1-step invertible state spaces,
even the original, inefficient algorithms have a polyno-
mial average-case complexity.

We have introduced the novel bi-directional Q-
learning algorithm for finding shortest paths from all
states to a goal and have shown, somewhat surprisingly,
that its complexity is O(en) as well. This provides an
efficient algorithm to learn optimal policies. While not

Tight bounds on the number of steps required in the worst
case for reaching a goal state using a zero-initialized algo-
rithm with action-penalty representation or a one-initialized
algorithm with goal-reward representation; the same results
apply to determining optimal policies

State Space Q-Learning Value-Iteration
general case O(en) O(n2)
no duplicate actions O(n3) O(n2)
linear upper action bound O(n2) O(n2)

Figure 7: Complexities of Reinforcement Learning

all reinforcement learning tasks can be reformulated as
shortest path problems, the theorems still provide guid-
ance: the run-times can be improved by making the re-
ward structure dense, for instance, by subtracting some
constant from all immediate rewards.

The results derived for Q-learning can be transferred
to value-iteration [Koenig, 1992] [Koenig and Simmons,
1992]. The important results are summarized in Fig-
ure 7. Note that a value-iteration algorithm that al-
ways executes the action that leads to the state with
the largest U-value is equivalent to the LRTA* algo-
rithm [Korf, 1990] with a search horizon of one if the
state space is deterministic and action penalty represen-
tation is used [Barto et al., 1991].

In summary, reinforcement learning algorithms are
useful for enabling agents to explore unknown state
spaces and learn information relevant to performing
tasks. The results in this paper add to that research
by showing that reinforcement learning is tractable, and
therefore can scale up to handle real-world problems.

Acknowledgements

Avrim Blum, Long-Ji Lin, Michael Littman, Joseph
O’Sullivan, Martha Pollack, Sebastian Thrun, and es-
pecially Lonnie Chrisman (who also commented on the
proofs) provided helpful comments on the ideas pre-
sented in this paper.

References
Aleliunas, R.; Karp, R.M.; Lipton, R.J.; Lovász, L.; and
Rackoff, C. 1979. Random walks, universal traversal se-
quences, and the complexity of maze problems. In 20th
Annual Symposium on Foundation of Computer Science,
San Juan, Puerto Rico. 218–223.

Barto, A.G.; Sutton, R.S.; and Watkins, C.J. 1989. Learn-
ing and sequential decision making. Technical Report 89–
95, Department of Computer Science, University of Mas-
sachusetts at Amherst.

Barto, A.G.; Bradtke, S.J.; and Singh, S.P. 1991. Real-time
learning and control using asynchronous dynamic program-
ming. Technical Report 91–57, Department of Computer
Science, University of Massachusetts at Amherst.

Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press, Princeton.

Benson, G.D. and Prieditis, A. 1992. Learning continuous-
space navigation heuristics in real-time. In Proceedings
of the Second International Conference on Simulation of
Adaptive Behavior: From Animals to Animats.

Deng, X. and Papadimitriou, C.H. 1990. Exploring an un-
known graph. In Proceedings of the FOCS.

Kaelbling, L.P. 1990. Learning in Embedded Systems.
Ph.D. Dissertation, Computer Science Department, Stan-
ford University.

Koenig, S. and Simmons, R.G. 1992. Complexity analy-
sis of real-time reinforcement learning applied to finding
shortest paths in deterministic domains. Technical Report
CMU–CS–93–106, School of Computer Science, Carnegie
Mellon University.

Koenig, S. 1991. Optimal probabilistic and decision-
theoretic planning using Markovian decision theory. Mas-
ter’s thesis, Computer Science Department, University of
California at Berkeley. (Available as Technical Report
UCB/CSD 92/685).

Koenig, S. 1992. The complexity of real-time search. Tech-
nical Report CMU–CS–92–145, School of Computer Sci-
ence, Carnegie Mellon University.

Korf, R.E. 1990. Real-time heuristic search. Artificial In-
telligence 42(2-3):189–211.

Moore, A.W. and Atkeson, C.G. 1992. Memory-based rein-
forcement learning: Efficient computation with prioritized
sweeping. In Proceedings of the NIPS.

Papadimitriou, C.H. and Tsitsiklis, J.N. 1987. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research 12(3):441–450.

Pemberton, J.C. and Korf, R.E. 1992. Incremental path
planning on graphs with cycles. In Proceedings of the First
Annual AI Planning Systems Conference. 179–188.

Peng, J. and Williams, R.J. 1992. Efficient learning and
planning within the Dyna framework. In Proceedings of the
Second International Conference on Simulation of Adaptive
Behavior: From Animals to Animats.

Sutton, R.S. 1990. Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Proceedings of the Seventh International
Conference on Machine Learning.

Thrun, S.B. 1992. The role of exploration in learning
control with neural networks. In White, David A. and
Sofge, Donald A., editors 1992, Handbook of Intelligent
Control: Neural, Fuzzy and Adaptive Approaches. Van Nos-
trand Reinhold, Florence, Kentucky.

Watkins, C.J. 1989. Learning from Delayed Rewards. Ph.D.
Dissertation, King’s College, Cambridge University.

Whitehead, S.D. 1991. A complexity analysis of coopera-
tive mechanisms in reinforcement learning. In Proceedings
of the AAAI. 607–613.

