
Easy and Hard Testbeds for Real-Time Search Algorithms∗

Sven Koenig Reid G. Simmons
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891

{ skoenig, reids }@cs.cmu.edu

Abstract

Although researchers have studied which factors influ-
ence the behavior of traditional search algorithms, cur-
rently not much is known about how domain proper-
ties influence the performance of real-time search algo-
rithms. In this paper we demonstrate, both theoreti-
cally and experimentally, that Eulerian state spaces (a
superset of undirected state spaces) are very easy for
some existing real-time search algorithms to solve: even
real-time search algorithms that can be intractable, in
general, are efficient for Eulerian state spaces. Because
traditional real-time search testbeds (such as the eight
puzzle and gridworlds) are Eulerian, they cannot be
used to distinguish between efficient and inefficient real-
time search algorithms. It follows that one has to use
non-Eulerian domains to demonstrate the general supe-
riority of a given algorithm. To this end, we present two
classes of hard-to-search state spaces and demonstrate
the performance of various real-time search algorithms
on them.

Introduction

Real-time heuristic search algorithms interleave search
with action execution by limiting the amount of deliber-
ation performed between actions. (Korf 1990) and (Korf
1993) demonstrated the power of real-time search algo-
rithms, which often outperform more traditional search
techniques. Empirical results for real-time search algo-
rithms have typically been reported for domains such
as

• sliding tile puzzles (such as the 8-puzzle) (Korf 1987;
1988; 1990; Russell & Wefald 1991; Knight 1993; Korf
1993; Ishida 1995) and

• gridworlds (Korf 1990; Ishida & Korf 1991; Ishida
1992; Pemberton & Korf 1992; Pirzadeh & Sny-
der 1990; Thrun 1992; Matsubara & Ishida 1994;
Stentz 1995; Ishida 1995).

Such test domains permit comparisons between search
algorithms. It is therefore important that the perfor-
mance of real-time search algorithms in test domains

∗This research is sponsored in part by the Wright Labora-
tory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency
(ARPA) under grant number F33615-93-1-1330.

be representative of their performance in the domains
of interest: test domains should either reflect the prop-
erties of the domains that one is interested in or, at
least, be representative of a wide range of domains. To
this end, one has to understand how properties of state
spaces affect the performance of real-time search algo-
rithms.

Although researchers have studied which factors influ-
ence the performance of traditional search algorithms,
such as A*, (Pearl 1985), not much is known about real-
time search algorithms. We investigate two classes of
state spaces: a state space is considered easy to search
(Type 1) if no real-time search algorithm has a signifi-
cant performance advantage over other (reasonable) al-
gorithms, otherwise the state space is hard to search
(Type 2). Our analysis of several uninformed real-time
search algorithms with minimal lookahead that solve
suboptimal search problems shows that Eulerian state
spaces (each state has an equal number of actions that
leave and enter the state) are all Type 1 – even real-
time search algorithms that are inefficient, in general,
can perform well in Eulerian state spaces. Since slid-
ing tile puzzles and gridworlds are typically Eulerian,
these domains are not appropriate for demonstrating
how well real-time search algorithms perform, in gen-
eral (note that the Eulerian property has no effect on
the performance of traditional search algorithms). To
remedy this, we propose two classes of non-Eulerian
testbeds (“reset” and “quicksand” state spaces) that are
of Type 2 and, thus, hard to search. Our empirical re-
sults on these testbeds demonstrate that they clearly
distinguish efficient and inefficient real-time search al-
gorithms.

Real-Time Search Algorithms

We use the following notation to describe state spaces
formally: S denotes the finite set of states of the state
space, G with ∅ 6= G ⊆ S the non-empty set of goal
states, and sstart ∈ S the start state. A(s) is the fi-
nite set of actions that can be executed in s ∈ S, and
succ(s, a) denotes the successor state that results from
the execution of a ∈ A(s) in s ∈ S. The size of the state
space is n := |S|, and the total number of state-action
pairs (loosely called actions) is e :=

∑
s∈S |A(s)|. gd(s)

denotes the goal distance of s ∈ S (measured in action
executions).

There exist state spaces in which all of our real-time
search algorithms can get trapped in a part of the state
space that does not contain a goal state. To exclude
these state spaces, we assume that the state spaces are
strongly connected. In this paper, for purposes of clar-
ity, we also assume that e ≤ n2 (an extremely realistic
assumption), since this allows us to state all complexity
results in terms of n only.

We study suboptimal search – the task that real-time
search algorithms can perform very well. Suboptimal
search means looking for any path (i.e., sequence of
actions) from the start state to a goal state. In real-
time search, the search time is (roughly) proportional
to the length of the solution path. Thus, we use the
path length to evaluate the performance of real-time
search algorithms. When we refer to the complexity of
a real-time search algorithm, we mean an upper bound
on the total number of actions that it executes until
it reaches a goal state, in big-O notation. This bound
must hold for all possible topologies of state spaces of a
given size, start and goal states, and tie breaking rules
among indistinguishable actions.

To make meaningful comparisons, we study algo-
rithms that make similar assumptions and restrict our
attention to uninformed real-time search algorithms
with minimal lookahead and greedy action selection.1

Such algorithms maintain information in the form of
integer values, V (s, a), which are associated with ev-
ery state-action pair (s, a). An additional integer value
is maintained across action executions in the variable
memory. The semantics of these values depend on the
specific real-time search algorithm used, but all values
are zero-initialized, reflecting that the algorithms are
initially uninformed. At no point in time can these
values contain much information, since the algorithms
must be able to decide quickly which actions to execute,
and their decisions are based on these values. This re-
quirement prevents the algorithms, for example, from
encoding significant portions of the state space in these
values.

The algorithms that we consider all fit the skeleton
shown in Figure 1. They consist of a termination check-
ing step (line 2), an action selection step (line 3), a value
update step (line 4), and an action execution step (line

1A note of caution: While this restriction is convenient
for studying properties of state spaces, it would be unfair to
compare real-time search algorithms with each other solely
on the basis of our study, since some algorithms are better in
incorporating initial knowledge of the state space or allowing
for larger lookaheads. We relax some of these assumptions
in the penultimate section of the paper, where we discuss
real-time search algorithms with larger lookaheads.

The real-time search algorithm starts in state sstart. Initially,
memory = 0 and V (s, a) = 0 for all s ∈ S and a ∈ A(s).

1. s := the current state.

2. If s ∈ G, then stop successfully.

3. Choose an a from A(s) possibly using memory and V (s, a′) for
a′

∈ A(s).

4. Update memory and V (s, a) possibly using memory, V (s, a), and
V (succ(s, a), a′) for a′

∈ A(succ(s, a)).

5. Execute action a, i.e. change the current state to succ(s, a).

6. Go to 1.

Figure 1: Skeleton of the studied algorithms

5). First, they check whether they have already reached
a goal state and thus can terminate successfully (line 2).
If not, they decide on the action to execute next (line 3).
For this decision, they can consult the value stored in
their memory and the values V (s, a) associated with the
actions in their current state s. Then, they update the
value of this action and their memory, possibly also us-
ing the values associated with the actions in their new
state (line 4). Finally, they execute the selected action
(line 5) and iterate this procedure (line 6).

Theoretical Analysis

We first study the complexity of real-time search al-
gorithms over all state spaces. In this case, one can
freely choose the state space that maximizes the num-
ber of action executions of a given real-time search al-
gorithm from all state spaces with the same number
of states. Later, we restrict the possible choices and
study the search complexity over a subset of all state
spaces. In both cases, we are interested in the com-
plexity of efficient and inefficient real-time search algo-
rithms. The smaller the difference in the two complexi-
ties, the stronger the indication that search problems in
such domains are of Type 1. (All proofs can be found
in (Koenig & Simmons 1996b).)

General State Spaces

In this section, we introduce a particular search algo-
rithm (min-LRTA*) and compare its complexity in gen-
eral state spaces to the most efficient and less efficient
real-time search algorithms.

LRTA*-Type Search Korf’s Learning Real-Time
A* (LRTA*) algorithm (Korf 1990) is probably the
most popular real-time search algorithm (Ishida 1995;
Knight 1993; Koenig & Simmons 1995). The version we
use here is closely related to Q-learning, a widely-used
reinforcement learning method, see (Koenig & Simmons
1996a). We call it LRTA* with minimalistic lookahead

(min-LRTA*), because the search horizon of its action
selection step is even smaller than that of LRTA* with
lookahead one. (We analyze Korf’s original version of
LRTA* with lookahead one in the section on “Larger
Lookaheads.”)

The following table presents the action selection step
(line 3) and value update step (line 4) of min-LRTA*.
We use two operators with the following semantics:
Given a set X , one-ofX returns one element of X ac-
cording to an arbitrary rule. argminx∈X f(x) returns
the set {x ∈ X : f(x) = minx′∈X f(x′)}.

Min-LRTA*
line 3 a := one-of arg mina′∈A(s) V (s, a′)

line 4 V (s, a) := 1 + mina′∈A(succ(s,a)) V (succ(s, a), a′)

The action selection step selects the state-action pair
with the smallest value. The value update step re-
places V (s, a) with the more accurate lookahead value
1 + mina′∈A(succ(s,a)) V (succ(s, a), a′).

Min-LRTA* always reaches a goal state with a finite
number of action executions. The following complexity
result was proved in (Koenig & Simmons 1996a).

Theorem 1 Min-LRTA* has a tight complexity of
O(n3) action executions.

Efficient Search Algorithms No real-time search
algorithm that fits our framework (Figure 1) can dis-
tinguish between actions that have not been executed,
since it does not look at the successor states of its cur-
rent state when choosing actions (and initially all ac-
tions have the same value). This implies the following
lower bound on their complexity, which follows from a
result in (Koenig & Simmons 1996a).

Theorem 2 The complexity of every real-time search
algorithm that fits our real-time search skeleton is at
least O(n3) action executions.

Thus, no real-time search algorithm can beat min-
LRTA*, since none can have a complexity smaller than
O(n3).

An Inefficient Search Algorithm Particularly bad
search algorithms are ones that do not remember were
they have already searched. Random walks are exam-
ples of such search algorithms. We can easily derive
a real-time search algorithm that shares many prop-
erties with random walks, but has finite complexity –
basically, by “removing the randomness” from random
walks.

Edge Counting
line 3 a := one-of argmina′∈A(s) V (s, a)
line 4 V (s, a) := 1 + V (s, a)

Random walks execute all actions in a state equally of-
ten in the long run. The action selection step of edge
counting always chooses the action that has been exe-
cuted the least number of times. This achieves the same

...

start state goal state

1 2 3 4 n

Figure 2: A reset state space

...

start state goal state

1 2 3 4 n......

Figure 3: A quicksand state space

result as random walks, but in a deterministic way. One
particular tie breaking rule, for example, is to execute all
actions in turn. Shannon used this algorithm as early as
in the late 1940’s to implement an exploration behavior
for an electronic mouse that searched a maze (Suther-
land 1969). To the best of our knowledge, however, its
relationship to random walks has never been pointed
out, nor has its complexity been analyzed.

In (Koenig & Simmons 1996b), we prove that edge
counting always reaches a goal state with a finite num-
ber of action executions, but its complexity can be ex-
ponential in the size of the state space.

Theorem 3 The complexity of edge counting is at least
exponential in n.

To demonstrate this, we present two classes of state
spaces for which edge counting needs a number of action
executions in the worst case that is exponential in n.
These are Type 2 spaces since, by Theorem 1, in these
domains min-LRTA* needs only a polynomial number
of action executions.

• Reset State Spaces: A reset state space is one in
which all states (but the start state) have an action
that leads back to the start state (in general, the prob-
lem occurs if the “reset” actions are beyond the search
horizon of the algorithm). For the reset state space in
Figure 2, edge counting executes 3× 2n−2 − 2 actions
before it reaches the goal state (for n ≥ 2) if ties
are broken in favor of successor states with smaller
numbers.

• Quicksand State Spaces: In every state of a quick-
sand state space, there are more actions that move the
agent away from the goal than move it towards it.
Quicksand state spaces differ from reset state spaces
in the effort that is necessary to recover from mis-
takes: It is possible to recover in only one step in

state of the robot

possible successor state

Figure 4: Racetrack domain

quicksand state spaces. Nevertheless, quicksand state
spaces can be hard to search. For the quicksand state
space in Figure 3, edge counting executes 2n+1−3n−1
actions before it reaches the goal state (for n ≥ 1)
if ties are broken in favor of successor states with
smaller numbers.

Undirected and Eulerian State Spaces

In this section, we consider the complexity of real-time
search algorithms in both undirected and Eulerian state
spaces and show that they are all of Type 1.2

Definition 1 A state space is Eulerian iff |A(s)| =
|{(s′, a′) : s′ ∈ S ∧ a′ ∈ A(s′) ∧ succ(s′, a′) = s}| for all
s ∈ S, i.e. there are as many actions that leave a state
as there are actions that enter the (same) state.

Since an undirected edge is equivalent to one incom-
ing and one outgoing edge, all undirected state spaces
are Eulerian. Many domains typically used to test AI
search algorithms are undirected (and thus Eulerian).
Examples include sliding tile puzzles and gridworlds,
where space is discretized into squares and movement is
restricted to immediately adjacent squares. There also
exist domains that are Eulerian, but not undirected,
for example racetrack domains (Gardner 1973). They
correspond to gridworlds, but are a bit more realistic
robot navigation domains (Figure 4). A state of the
state space is characterized not only by the X-Y square
that the robot occupies, but also by its speed in both
the X and Y directions. Actions correspond to adjusting
both X and Y speed components by -1, 0, or 1 (within
bounds). Given an action (speed change) the successor
state is determined by computing the new speed com-
ponents and determining the location of the robot by
adding each speed component to its corresponding lo-
cation component. Racetrack domains are Eulerian ex-

2Eulerian state spaces correspond to directed Euler(ian)
graphs as defined by the Swiss mathematician Leonhard Eu-
ler when he considered whether the seven Königsberg bridges
could be traversed without recrossing any of them (Newman
1953).

start state goal state

1
n 1+

2
n 3+

2 n...

...

...

this part of the state space is totally connected

Figure 5: An undirected state space

cept around obstacles or at boundaries. In particular,
an obstacle free racetrack domain on a torus is truly Eu-
lerian. Race track domains have been used as testbeds
for real-time search algorithms by (Barto, Bradtke, &
Singh 1995).

We now show that Eulerian state spaces are easier
to search with real-time search algorithms than state
spaces in general, but undirected state spaces do not
simplify the search any further.

LRTA*-Type Search The complexity of min-
LRTA* does not decrease in undirected or Eulerian
state spaces.

Theorem 4 Min-LRTA* has a tight complexity of
O(n3) action executions in undirected or Eulerian state
spaces.

Figure 5 shows an example of an undirected (and thus
Eulerian) state space for which min-LRTA* needs at
least O(n3) action executions in the worst case in order
to reach the goal state – it executes (n3+6n2−3n−4)/16
actions before it reaches the goal state (for n ≥ 1 with
n mod 4 = 1) if ties are broken in favor of successor
states with smaller numbers (Koenig & Simmons 1992).

An Efficient Search Algorithm For Eulerian state
spaces, real-time search algorithms do exist with lower
complexity. One example, called BETA3 (“Building a
Eulerian Tour” Algorithm), informally acts as follows:
“Take unexplored edges whenever possible. If all actions
in the current state have been executed at least once,
retrace the closed walk of unexplored edges just com-
pleted, stopping at nodes that have unexplored edges,
and apply this algorithm recursively from each such
node.” This algorithm is similar to depth-first search,
with the following difference: Since chronological back-

3The exact origin of the algorithm is unclear. (Deng &
Papadimitriou 1990) and (Korach, Kutten, & Moran 1990)
stated it explicitly as a search algorithm, but it has been used
earlier as part of proofs about Eulerian tours (Hierholzer
1873).

tracking is not always possible in directed graphs, BETA
repeats its first actions when it gets stuck instead of
backtracking its latest actions.

BETA fits our real-time search skeleton if we interpret
each integer value V (s, a) as a triple: the first compo-
nent of the triple (the “cycle number”) corresponds to
the level of recursion. The second component counts the
number of times the action has already been executed,
and the third component remembers when the action
was executed first (using a counter that is incremented
after every action execution). The variable memory is
also treated as a triple: its first two components remem-
ber the first two components of the previously executed
action and its third component is the counter. All val-
ues are initialized to (0, 0, 0).

BETA
line 3 a :=

one-of argmina′∈X V (s, a′)[3]
where
X = argmaxa′∈Y V (s, a′)[1]
and
Y = arg mina′∈A(s) V (s, a′)[2]

line 4 if V(s,a)[2] = 0 then
V(s,a)[3] := memory[3]+1
if memory[2] = 1 then

V(s,a)[1] := memory[1]
else then

V(s,a)[1] := memory[1]+1
V(s,a)[2] := V(s,a)[2] + 1
memory[1] := V(s,a)[1]
memory[2] := V(s,a)[2]
memory[3] := memory[3] + 1

BETA always reaches a goal state with a finite num-
ber of action executions and, moreover, executes every
action at most twice. The following theorem follows.

Theorem 5 BETA has a tight complexity of O(n2) ac-
tion executions in undirected or Eulerian state spaces.

Furthermore, no real-time search algorithm that fits our
real-time search skeleton can do better in Eulerian or
undirected state spaces in the worst case (Koenig &
Smirnov 1996).

An Inefficient Search Algorithm Although edge-
counting is exponential, in general, its worst-case com-
plexity decreases in undirected and Eulerian state
spaces.

Theorem 6 Edge counting has a tight complexity of
O(n3) action executions in undirected or Eulerian state
spaces.

To be precise: We can prove that the complexity of edge
counting is tight at e×gd(sstart)−gd(sstart)

2 action exe-
cutions in undirected or Eulerian state spaces. Figure 5
shows an example of an undirected (and thus Eulerian)
state space for which edge counting needs at least O(n3)
action executions in the worst case in order to reach the
goal state – it executes e × gd(sstart) − gd(sstart)

2 =
(n3 + n2 − 5n + 3)/8 actions before it reaches the goal

start state

...

goal state

1 2 3 n-3 n-2 n-1 n

Figure 6: A linear state space

in general:

min-LRTA*

edge counting

O(n2)

O(n3)

difference in complexity
of the studied efficient

and inefficient real-time
search algorithms over

all state spaces

difference in complexity
of the studied efficient

and inefficient real-time
search algorithms in

Eulerian or undirected
state spaces

at least exponential in n

min-LRTA* and
edge counting

BETA

in Eulerian state spaces:
in undirected state spaces:

co
m

pl
ex

ity
 in

cr
ea

se
s

no smaller
complexity
possible

no smaller
complexity
possible

Figure 7: Diagram of worst-case performance results

state (for odd n ≥ 1) if ties are broken in favor of suc-
cessor states with smaller numbers.

Edge counting can have a better worst-case perfor-
mance for a given search problem than min-LRTA*. An
example is shown in Figure 6. Min-LRTA* executes
n2 −3n+4 actions in this undirected state space before
it reaches the goal state (for n ≥ 3) if ties are broken
in favor of successor states with smaller numbers except
for the first action execution in which the tie is broken
in the opposite way. On the other hand, we have shown
that edge counting is guaranteed not to need more than
e × gd(sstart) − gd(sstart)

2 = 4n − 8 action executions
in order to reach a goal state, which beats min-LRTA*
for n > 4.
Summary When comparing the complexity of min-
LRTA* with the complexities of efficient and inefficient
real-time search algorithms, we derived the following
results (Figure 7). In general, no real-time search algo-
rithm can beat the complexity of min-LRTA*, which is
a small polynomial in n. In contrast, the determinis-
tic real-time search algorithm (edge counting) that we
derived from random walks has a complexity that is at
least exponential in n. The picture changes in Eulerian
state spaces. The complexity of edge counting decreases
dramatically and equals the complexity of min-LRTA*,
which remains unchanged (it even beats min-LRTA* in
certain specific domains). In addition, there exists a
dedicated real-time search algorithm for Eulerian state
spaces (BETA) that has a smaller complexity. All com-
plexities remain the same in undirected state spaces, a
subset of Eulerian state spaces.

start configuration (assuming four blocks) goal configuration

Figure 8: A simple blocksworld problem

start state
stack size = 0 stack size = 1 stack size = 2 stack size = x

goal state

...

Figure 9: Domain 1

start state
stack size = 0 stack size = 1 stack size = 2 stack size = x

goal state

...

Figure 10: Domain 2

Experimental Analysis

Although the theoretical analyses provide worst-case
performance guarantees, they do not necessarily reflect
average case performance. To show that the average-
case performance follows a similar trend, we ran trials
in two blocksworld domains, in which the start state
consists of a set of x indistinguishable blocks on a ta-
ble, and the goal state has all the blocks stacked on top
of one another on a platform (Figure 8). Domain 1 has
four operators: “pickup block from table,” “put block
on stack,” “pickup block from stack,” and “put block
on table.” A block picked up from the table is always
followed by a “put on stack,” and a block picked up
from the stack is always subsequently placed on the ta-
ble. Domain 1 is Eulerian (Figure 9). Domain 2 has the
same two pickup operators and the same “put block on
stack” operator, but the “put block on table” opera-
tor (which always follows a “pickup block from stack”
operator) knocks down the whole stack onto the table.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25 30 35 40 45 50

ac
tio

n
ex

ec
ut

io
ns

number of blocks

[1]

[2]

[3]

[4]

edge counting (Domain 2) [1]
min-LRTA* (Domain 2) [2]

edge counting (Domain 1) [3]
min-LRTA* (Domain 1) [4]

BETA (Domain 1) [5]

Figure 11: Performance results (blocksworld problem)

Domain 2 is a reset state space (Figure 10).

The experiments show that the relationship of the
average-case performances are similar to those in the
worst case. Figure 11 shows how many actions the real-
time search algorithms execute in the two blocksworld
domains. Note that the search algorithms are unin-
formed – in particular, they initially have no knowl-
edge that putting blocks on the stack is the best way
to achieve the goal state. The horizontal axis shows
the size of the state space (measured by the number
of blocks) and the vertical axis measures the number
of actions executed until a goal state is reached from
the start state. We averaged this over 5000 runs with
randomly broken ties.

Every algorithm does better in Domain 1 than in Do-
main 2. Edge counting quickly becomes intractable in
Domain 2. With 50 blocks, for example, edge count-
ing needs about 1.7 × 1015 (estimated) action execu-
tions, on average, in order to reach the goal state and
thus performs about 250 billion times worse than min-
LRTA*. On the other hand, all algorithms do quite well
in Domain 1. With 50 blocks, for example, min-LRTA*
performs 2.2 times worse than BETA and edge count-
ing performs only 8.7 times worse. Thus, the interval
spanned by the average-case complexity of efficient and
inefficient real-time search algorithms is much smaller
in Domain 1 than in Domain 2. This difference is to
be expected, since Domain 1 is Eulerian (and thus of
Type 1), whereas Domain 2 resembles a reset state space
of Type 2.

If we change the start state in both domains so that
all but four blocks are already stacked initially, then
both domains become easier to solve. However, the
performance relationships in Domain 2 remain simi-

lar, whereas the performance relationships in Domain 1
change dramatically. With 50 blocks, for example, min-
LRTA* now performs 1.3 times worse than BETA, but
edge counting performs 3.8 times better than BETA.
Thus, for this search problem in a Eulerian state space,
edge-counting (a real-time search algorithm that can
be intractable) outperforms min-LRTA* (a real-time
search algorithm that is always efficient).

Larger Lookaheads

Some of our results also transfer to real-time search al-
gorithms with larger lookaheads. In the following, we
discuss node counting, a variant of edge counting, and
the original 1-step LRTA* algorithm, a variant of min-
LRTA*. Both algorithms have been used in the litera-
ture and have a larger lookahead than their relatives.

Node counting differs from edge counting in that it
looks at the successor states of its current state when
choosing actions.

Node Counting

line 3 a := one-of argmina′∈A(s)

∑
a′′∈A(succ(s,a′))

V (succ(s, a′), a′′)

line 4 V (s, a) := 1 + V (s, a)

The action selection step always executes the action
that leads to the successor state that has been visited
the least number of times. Note that, in an actual im-
plementation, one would maintain only one value V (s)
for each state s with V (s) =

∑
a∈A(s) V (s, a). Initially,

V (s) = 0 for all s ∈ S.
Node Counting

line 3 a := one-of argmina′∈A(s) V (succ(s, a′))
line 4 V (s) := 1 + V (s)

Korf’s original LRTA* algorithm with lookahead one
(1-step LRTA*) is similar to node-counting in that it
looks at the successor states of its current state when
choosing actions, but it has a different value update step
(line 4).

1-Step LRTA*
line 3 a := one-of argmina′∈A(s) V (succ(s, a′))
line 4 V (s) := 1 + V (succ(s, a))

Korf showed that 1-step LRTA* always reaches a goal
state with a finite number of action executions. (Koenig
& Simmons 1995) showed that its complexity is tight at
n2 − n and remains tight at O(n2) for undirected or
Eulerian state spaces.

We can show that node counting is similar to edge
counting in that there are state spaces for which its com-
plexity is at least exponential in n. In particular, in our
blocksworld domains, the appearance of the intermedi-
ate “pickup” operators makes it so that a 1-step looka-
head is insufficient to avoid the reset traps. Further-
more, in these domains node counting and edge count-
ing behave identically: they are efficient in Domain 1,
but are both exponential in Domain 2, if ties are bro-
ken appropriately. Although we are not aware of any

complexity analysis for node counting in undirected or
Eulerian state spaces, variations of node counting have
been used independently in (Pirzadeh & Snyder 1990)
and (Thrun 1992) for exploring unknown gridworlds, in
both cases with great success. Our experiments confirm
these results. In one experiment, we compared node
counting and 1-step LRTA* on an empty gridworld of
size 50 times 50. We averaged their run-times (mea-
sured in action executions needed to get from the start
state to the upper left square) over 25000 runs with ran-
domly broken ties. The same 25000 randomly selected
start states were used in both cases. Node counting
needed, on average, 2874 action executions to reach the
goal state, compared to 2830 action executions needed
by 1-step LRTA*. Out of the 25000 runs, node counting
outperformed 1-step LRTA* 12345 times, was beaten
12621 times, and tied 34 times. Nearly similar results
were obtained in experiments with the eight-puzzle –
the average performance of both algorithms was nearly
identical, and each beat the other about the same num-
ber of times.

Thus, 1-step LRTA* and node counting were almost
equally efficient on both gridworlds and sliding tile puz-
zles, but reset and quicksand state spaces are able to
differentiate between them. Similar reset and quick-
sand state spaces can also be constructed for real-time
search algorithms with even larger look-aheads.

Conclusion

This paper presented properties of state spaces that
make them easy, or hard, to search with real-time search
algorithms. The goal was to separate the inherent com-
plexity of a given search problem from the performance
of individual real-time search algorithms. Our approach
was to compare several uninformed real-time search al-
gorithms with minimal lookahead that solve subopti-
mal search problems – all algorithms had previously
been used by different researchers in different contexts.
More precisely, we compared versions of LRTA* to ef-
ficient real-time search algorithms (such as BETA) and
– equally importantly – inefficient real-time search al-
gorithms (such as edge counting). We demonstrated,
both theoretically and experimentally, that the perfor-
mance characteristics of the studied real-time search al-
gorithms can differ significantly in Eulerian and non-
Eulerian state spaces (real-time search algorithms dif-
fer in this respect from traditional search algorithms
such as A*). We have shown that real-time search al-
gorithms that can be intractable in non-Eulerian state
spaces (such as edge counting) have a small complex-
ity in Eulerian and undirected state spaces. This result
helps explain why the reported performance of real-time
search algorithms have been so good: They tended to

be tested in Eulerian (usually undirected) domains.

Many state spaces, however, are not undirected or
Eulerian. One way to avoid uncritical generalizations of
performance figures for real-time search algorithms by
non-experts is to report experimental results not only
for Eulerian state spaces (such as sliding tile puzzles
and gridworlds), but also for non-Eulerian state spaces.
In particular, one has to use non-Eulerian state spaces
to show the superiority of a particular real-time search
algorithm across a wide range of domains. To this end,
we presented two classes of hard-to-search state spaces
(“reset” and “quicksand” state spaces) that do not suf-
fer from (all of) the problems of the standard test do-
mains. Minor variations of these state spaces are also
applicable in distinguishing real-time search algorithms
that have larger lookahead. We therefore suggest that
variations of these two state spaces be included in test
suites for real-time search algorithms.

Our study provides a first step in the direction of
understanding what makes domains easy to solve with
real-time search algorithms. In this paper, we reported
results for one particular property: being Eulerian. Our
current work concentrates on identifying and studying
additional properties that occur in more realistic appli-
cations, such as real-time control.

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-
ligence 73(1):81–138.

Deng, X., and Papadimitriou, C. 1990. Exploring an un-
known graph. In Proceedings of the Symposium on Foun-
dations of Computer Science, 355–361.

Gardner, M. 1973. Mathematical games. Scientific Amer-
ican 228(1):108–115.

Hierholzer, C. 1873. Über die Möglichkeit, einen Linienzug
ohne Wiederholung und ohne Unterbrechung zu umfahren.
Mathematische Annalen 6:30–32.

Ishida, T., and Korf, R. 1991. Moving target search. In
Proceedings of the IJCAI, 204–210.

Ishida, T. 1992. Moving target search with intelligence. In
Proceedings of the AAAI, 525–532.

Ishida, T. 1995. Two is not always better than one: Ex-
periences in real-time bidirectional search. In Proceedings
of the International Conference on Multi-Agent Systems,
185–192.

Knight, K. 1993. Are many reactive agents better than a
few deliberative ones? In Proceedings of the IJCAI, 432–
437.

Koenig, S., and Simmons, R. 1992. Complexity analysis of
real-time reinforcement learning applied to finding shortest
paths in deterministic domains. Technical Report CMU–
CS–93–106, School of Computer Science, Carnegie Mellon
University.

Koenig, S., and Simmons, R. 1995. Real-time search in
non-deterministic domains. In Proceedings of the IJCAI,
1660–1667.

Koenig, S., and Simmons, R. 1996a. The effect of repre-
sentation and knowledge on goal-directed exploration with
reinforcement learning algorithms. Machine Learning Jour-
nal 22:227–250.

Koenig, S., and Simmons, R. 1996b. The influence of
domain properties on the performance of real-time search
algorithms. Technical Report CMU-CS-96-115, School of
Computer Science, Carnegie Mellon University.

Koenig, S., and Smirnov, Y. 1996. Graph learning with a
nearest neighbor approach. In Proceedings of the Confer-
ence on Computational Learning Theory.

Korach, E.; Kutten, S.; and Moran, S. 1990. A modu-
lar technique for the design of efficient distributed leader
finding algorithms. ACM Transactions on Programming
Languages and Systems 12(1):84–101.

Korf, R. 1987. Real-time heuristic search: First results. In
Proceedings of the AAAI, 133–138.

Korf, R. 1988. Real-time heuristic search: New results. In
Proceedings of the AAAI, 139–144.

Korf, R. 1990. Real-time heuristic search. Artificial Intel-
ligence 42(2-3):189–211.

Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.

Matsubara, S., and Ishida, T. 1994. Real-time planning
by interleaving real-time search with subgoaling. In Pro-
ceedings of the International Conference on Artificial In-
telligence Planning Systems, 122–127.

Newman, J. 1953. Leonhard Euler and the Königsberg
bridges. Scientific American 188(6):66–70.

Pearl, J. 1985. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Menlo Park, California:
Addison-Wesley.

Pemberton, J., and Korf, R. 1992. Incremental path plan-
ning on graphs with cycles. In Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, 179–188.

Pirzadeh, A., and Snyder, W. 1990. A unified solution
to coverage and search in explored and unexplored ter-
rains using indirect control. In International Conference
on Robotics and Automation, volume 3, 2113–2119.

Russell, S., and Wefald, E. 1991. Do the Right Thing –
Studies in Limited Rationality. Cambridge, Massachusetts:
The MIT Press.

Stentz, A. 1995. The focussed D* algorithm for real-time
replanning. In Proceedings of the IJCAI, 1652–1659.

Sutherland, I. 1969. A method for solving arbitrary-wall
mazes by computer. IEEE Transactions on Computers C–
18(12):1092–1097.

Thrun, S. 1992. The role of exploration in learning con-
trol with neural networks. In White, D., and Sofge, D.,
eds., Handbook of Intelligent Control: Neural, Fuzzy and
Adaptive Approaches. Florence, Kentucky: Van Nostrand
Reinhold. 527–559.

