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Abstract

Real-time search methods have successfully been used to
solve a large variety of search problems but their properties
are largely unknown. In this paper, we study how existing
real-time search methods scale up. We compare two real-
time search methods that have been used successfully in the
literature and differ only in the update rules of their values:
Node Counting, a real-time search method that always moves
to the successor state that it has visited the least number of
times so far, and Learning Real-Time A*, a similar real-time
search method. Both real-time search methods seemed to
perform equally well in many standard domains from artifi-
cial intelligence. Our formal analysis is therefore surprising.
We show that the performance of Node Counting can be
exponential in the number of states even in undirected do-
mains. This solves an open problem and shows that the two
real-time search methods do not always perform similarly in
undirected domains since the performance of Learning Real-
Time A* is known to be polynomial in the number of states
at worst.

Traditional search methods from artificial intelligence,
such as the A* method (Nilsson 1971),first plan and then ex-
ecute the resulting plan. Real-time (heuristic) search meth-
ods (Korf 1987), on the other hand, interleave planning and
plan execution, and allow for fine-grained control over how
much planning to perform between plan executions. Plan-
ning is done via local searches, that is, searches that are
restricted to the part of the domain around the current state
of the agent. The idea behind this search methodology is
not to attempt to find plans with minimal plan-execution
time but rather to attempt to decrease the planning time
or the sum of planning and plan-execution time over that
of traditional search methods. (Ishida 1997) gives a good
overview of real-time search methods. Experimental evi-
dence indicates that real-time search methods are efficient
domain-independent search methods that outperform tradi-
tional search methods on a variety of search problems. Real-
time search methods have, for example, successfully been
applied to traditional search problems (Korf 1990), moving-
target search problems (Ishida and Korf 1991), STRIPS-type
planning problems (Bonet et al. 1997), robot navigation and
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localization problems with initial pose uncertainty (Koenig
and Simmons 1998), totally observable Markov decision
process problems (Barto et al. 1995), and partially observ-
able Markov decision process problems (Geffner and Bonet
1998), among others. Despite this success of real-time
search methods, not much is known about their properties.
They differ in this respect from traditional search methods,
whose properties have been researched extensively. For ex-
ample, real-time search methods associate values with the
states that are updated as the search progresses and used
to determine which actions to execute. Different real-time
search methods update these values differently, and no con-
sensus has been reached so far on which value-update rule is
best. Both (Russell and Wefald 1991) and (Pemberton and
Korf 1992), for example, studied several value-update rules
experimentally but arrived at different conclusions about
which one outperformed the others. This demonstrates the
need to understand better how the value-update rules in-
fluence the behavior of real-time search methods. In this
paper, we investigate how two value-update rules scale up
in undirected domains: one that interprets the values as ap-
proximations of the goal distances of the states (resulting in
a real-time search method called Learning Real-Time A*)
and one that interprets the values as the number of times
the states have been visited (resulting in a real-time search
method called Node Counting). The principle behind Node
Counting is simple: always move to the neighboring state
that has been visited the least number of times. This ap-
pears to be an intuitive exploration principle since, when
exploring unknown environments, one wants to get to states
that one has visited smaller and smaller number of times
with the goal to get as fast as possible to states that one
has not visited yet. This explains why Node Counting has
been used repeatedly in artificial intelligence. Experimen-
tal results indicate that both Node Counting and uninformed
Learning Real-Time A* need about the same number of ac-
tion executions on average to reach a goal state in many
standard domains from artificial intelligence. However, to
the best of our knowledge, our paper analyzes the perfor-
mance of Node Counting in undirected domains for the
first time, which is not surprising since the field of real-
time search is a rather experimental one. We show that
Node Counting reaches a goal state in undirected domains
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Figure 1: Real-Time Search

sometimes only after a number of action executions that is
exponential in the number of states, whereas uninformed
LRTA* is known to always reach a goal state after at most
a polynomial number of action executions. Thus, although
many standard domains from artificial intelligence (such
as sliding-tile puzzles, blocksworlds, and gridworlds) are
undirected, this property alone is not sufficient to explain
why Node Counting performs well on them. This result
solves an open problem described in (Koenig and Simmons
1996). We also describe a non-trivial domain property that
guarantees a polynomial performance of Node Counting
and study a probabilistic variant of Node Counting. In
general, our results show that experimental comparisons of
real-time search methods are often insufficient to evaluate
how well they scale up because the performance of two
similar real-time search methods can be very different even
if experimental results seem to indicate otherwise. A for-
mal analysis of real-time search methods can help to detect
these problems and prevent surprises later on, as well as
provide a solid theoretical foundation for interleaving plan-
ning and plan execution. We believe that it is important
that more real-time search methods be analyzed similarly,
especially since most work on real-time search has been of
an experimental nature so far.

Notation
We use the following notation in this paper: " denotes the
finite set of states of the domain, #�$�%�&(')%+*," the start state,
and -/.02143 " the set of goal states. The number of
states is 5 := 6 "76 . 8:9;#=<>.0 - is the finite, nonempty set
of actions that can be executed in state #?*@" . #=A�B�B�9;#�C�DE<
denotes the successor state that results from the execution
of action DF*G8H9�#�< in state #I*G" . To simplify matters,
we measure the plan-execution times and goal distances in
action executions throughout this paper, which is justified if
the execution times of all actions are roughly the same. We
also use two operators with the following semantics: Given
a set J , the expression “one-of J ” returns an element ofJ according to an arbitrary rule. A subsequent invocation
of “one-of J ” can return the same or a different element.
The expression “arg min K�L�M,NO9�P�< ” returns the elements PQ*J that minimize NO9�P�< , that is, the set R!PS*SJ>6 NO9�P�< 0
min K�T�L�M NU9;PWV�<�X .

Node Counting and LRTA*
We study two similar real-time search methods, namely

uninformed variants of Node Counting and Learning Real-

Time A* that have a lookahead of only one action execution
and fit the algorithmic skeleton shown in Figure 1. (Some
researchers feel more comfortable referring to these meth-
ods as “agent-centered search methods” (Koenig 1995) and
reserving the term “real-time search methods” for agent-
centered search methods whose values approximate the
goal-distances of the states.) We chose to study uninformed
real-time search methods because one of the methods we
study has traditionally been used for exploring unknown
environments in the absence of heuristic information (often
in the context of robot navigation). Both real-time search
methods associate a u-value AU9;#=< with each state #Y*Z" .
The semantics of the u-values depend on the real-time search
method but all u-values are initializedwith zeroes, reflecting
that the real-time search methods are initially uninformed
and thus do not have any a-priori information as to where
the goal states are. The search task is to find any path from
the start state to a goal state, not necessarily a shortest one.
Both real-time search methods first check whether they have
already reached a goal state and thus can terminate success-
fully (Line 2). If not, they decide on which action to execute
in the current state (Line 3). They look one action execu-
tion ahead and always greedily choose an action that leads
to a successor state with a minimal u-value (ties are broken
arbitrarily). Then, they update the u-value of their current
state using a value-update rule that depends on the seman-
tics of the u-values and thus the real-time search method
(Line 4). Finally, they execute the selected action (Line 5),
update the current state (Line 6), and iterate the procedure
(Line 7). Many real-time search methods from the liter-
ature fit this algorithmic skeleton. We chose to compare
Node Counting and Learning Real-Time A* because both
of them implement simple, intuitive rules of thumb for how
to interleave planning and plan execution. Node Counting
can be described as follows:

Node Counting: A u-value AU9;#=< of Node Counting
corresponds to the number of times Node Counting has
already been in state # . Node Counting always moves
to a successor state with a minimal u-value because
it wants to get to states which it has visited a smaller
number of times to eventually reach a state that it has
not yet visited at all, that is, a potential goal state.

Value-Update Rule of Node Counting (Line 4 in Figure 1)[E\ $^] : _ 1 ` [E\ $)] .
To the best of our knowledge, the term “Node Count-

ing” was first used in (Thrun 1992b). Variants of Node
Counting have been used in the literature to explore un-
known grid-worlds, either on their own (Pirzadeh and Sny-
der 1990) or to accelerate reinforcement-learning methods
(Thrun 1992b). Node Counting is also the foundation of
“Avoiding the Past: A Simple but Effective Strategy for Re-
active [Robot] Navigation” (Balch and Arkin 1993), except
that “Avoiding the Past” is part of a schemata-based naviga-
tion architecture and thus sums over vectors that point away
from adjacent locations with a magnitude that depends on
how often that location has been visited. Finally, it has been
suggested that variants of Node Counting approximate the



exploration behavior of ants, that use pheromone traces to
guide their exploration (Wagner et al. 1997). We compare
Node Counting to Learning Real-Time A* (Korf 1990), that
can be described as follows:

Learning Real-Time A* (LRTA*): A u-value AO9�#�<
of LRTA* approximates the goal distance of state # .
LRTA* always moves to a successor state with a min-
imal u-value because it wants to get to states with
smaller goal distances to eventually reach a state with
goal distance zero, that is, a goal state.

Value-Update Rule of LRTA* (Line 4 in Figure 1)[E\ $^] : _ 1 ` [E\ $ [�����\ $�� &�] ] .
LRTA* is probably the most popular real-time search

method, and thus provides a good baseline for evaluating
the performance of other real-time search methods.

Assumptions
We assume that one can reach a goal state from every state
that can be reached from the start state. Domains with this
property are called safely explorable and guarantee that real-
time search methods such as Node Counting or LRTA* reach
a goal state eventually. This can be shown by assuming that
they cycle infinitely without reaching a goal state. The u-
values of all states in the cycle then increase beyond every
bound since both methods increase the smallest u-value
of the states in the cycle by at least one every time the
cycle is traversed. But then the u-values of all states in the
cycle increase above the u-values of all states that border the
cycle. Such states exist since the domain is safely explorable
and one can thus reach a goal state from every state in
the cycle. Then, however, Node Counting and LRTA* are
forced to move to this state and leave the cycle, which is a
contradiction.

Performance of Node Counting
The performance of search methods for search tasks that
are to be solved only once is best measured using the sum
of planning and plan-execution time. We measure the per-
formance of real-time search methods using the number
of actions that they execute until they reach a goal state.
This is motived by the fact that, for sufficiently fast mov-
ing agents, the sum of planning and plan execution time is
determined by the planning time, which is roughly propor-
tional to the number of action executions since the real-time
search methods perform roughly a constant amount of com-
putations between action executions. For sufficiently slowly
moving agents, on the other hand, the sum of planning and
plan-execution time is determined by the plan-execution
time, which is roughly proportional to the number of action
executions if every action can be executed in about the same
amount of time.

The performance of LRTA* is known to be at worst
quadratic in the number of states in both directed and undi-
rected domains (Koenig and Simmons 1995). The perfor-
mance of Node Counting is known to be at least exponential
in the number of states in directed domains (Koenig and

Simmons 1996) but many domains of artificial intelligence
are undirected, including sliding-tile puzzles, blocksworlds,
and gridworlds. To the best of our knowledge, the perfor-
mance of Node Counting in undirected domains has not been
analyzed so far. However, it has been speculated, based on
the good experimental results reported by the researchers
who used Node Counting, that Node Counting was efficient
in undirected domains, see (Koenig and Simmons 1996) and
the references contained therein for experimental results.

In the following, we present an example (our main result)
that shows that the performance of Node Counting in undi-
rected domains can be at least exponential in the number
of states. Despite its elegance, this example proved to be
rather difficult to construct. It refutes the hypothesis that
the performance of Node Counting in undirected domains
is at most polynomial in the number of states. Our exam-
ples are undirected trees (and thus planar graphs). Figure 2
shows an instance of this example. In general, the trees have��� 1 levels (for �	� 2). The levels consist of vertices of
three different kinds: g-subroots, r-subroots, and leafs that
are connected to the subroots. g-subroots and r-subroots
alternate. At level 
 0 0, there is one subroot, namely a
g-subroot � 0. At levels 
 0 1 �
��� � , there are two subroots,
namely an r-subroot ��� and a g-subroot ��� . Subroot ��� has�	� 
 leafs connected to it, and subroot � � has one leaf
connected to it. Finally, subroot ��� is connected to two ad-
ditional vertices, namely the start vertex and the only goal
vertex. The trees have 5 0 3 � 2 � 2 � 9 � 2 ��� 3 vertices.
Node Counting proceeds in a series of passes through the
trees. Each pass traverses the subroots in the opposite order
than the previous pass. We call a pass that traverses the
subroots in descending order a down pass, and a pass that
traverses them in ascending order an up pass. We number
passes from zero on upward, so even passes are down passes
and odd passes are up passes. A pass ends immediately be-
fore it switches directions. We break ties as follows: During
pass zero, ties among successor states are broken in favor of
leaf vertices of g-subroots (with highest priority) and then
subroots. Pass zero ends when the leafs of subroot � 0 have
been visited once each. As a result, at the end of pass zero
the subroots ��� have been visited ��� 
 � 1 times each, and
their leafs have been visited once each. The subroots ��� have
been visited once each, and their leafs have not been visited
at all. During all subsequent passes, ties among successor
states are broken in favor of subroots whenever possible.
A tie between two r-subroots (when Node Counting is at a
g-subroot) is resolved by continuing with the current pass.
A tie between two g-subroots (when Node Counting is at an
r-subroot) is resolved by terminating the current pass and
starting a new one in the opposite direction. In the follow-
ing, we provide a sketch of the proof that Node Counting
executes (at least)

Ω
����� ( 1

6 ��� ) � �
actions in this case, where 5 is the number of states and 0  !  1 � 6 is an arbitrarily small constant. The actual proofs
are by induction, and are omitted here because they are long
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Figure 2: Node Counting has Exponential Runtime in Undirected Domains ( � 0 2 C�5 0 18)

and tedious (Szymanski and Koenig 1998). To convince the
reader of the correctness of our proofs, however, we provide
experimental results from a simulation study that confirm
our analytical results.

As part of the proof sketch, we study a tree with ��� 1
levels. Let A�� � � 9;#=< denote the total number of times that
subroot # has been entered at the end of pass � for a tree
with � � 1 levels. By definition, A � � �:9;#=< is a nondecreasing
function of � . Our tie breaking rules guarantee that all leafs
of a subroot have been entered the same number of times at
the end of each pass, so we let � � � �	9;#=< denote the number
of times each of the leafs of subroot # has been entered at
the end of pass � for a tree with �	� 1 levels. Finally,
let P�� � � 9�#�< denote the total number of times subroot # has
been entered from non-leafs at the end of pass � for a tree
with � � 1 levels. These values relate as follows: The
total number of times that a subroot was entered at the end
of pass � is equal to the product of the number of its leafs
and the total number of times that it was entered from each
of its leafs at the end of pass � (which equals the total
number of times that each of its leafs was entered at the end
of pass � ) plus the total number of times the subroot was
entered from non-leafs at the end of pass � . For example,A�� � � 9 � � < 0 9 ��� 
;<���� � � 9 � � < � P�� � � 9 � � < .
Lemma 1 Assume that Node Counting visits subroot # (with#?.0 � � ) during pass � , where 0  ��  2 � � 2. The valuesA�� � � 9;#=< can then be calculated as follows, for 
	� 0:

[
2 
�� 1 ��
 \�� 0 ] _ � [

2 
���
 \ ' 1 ] ` K 2 
���
 \�� 0 ][
2 
���
 \�� 0 ] _ � [

2 
���
 \ ' 1 ] ` K 2 
���
 \�� 0 ]
[

2 
���
 \���� ] _ \ � ` ��] min \ [ 2 
�� 1 ��
 \ ' � ] � [ 2 
���
 \ ' � � 1
]�] ` K 2 
���
 \���� ][

2 
�� 1 ��
 \�� � ] _ \ � ` ��] min \ [ 2 
���
 \ ' � � 1
] � [

2 
�� 1 ��
 \ ' � ] ] ` K
2 
�� 1 ��
 \�� � ][

2 
���
 \ ' � ] _ min \ [ 2 
�� 1 ��
 \�� � � 1 ] � [ 2 
���
 \�� � ]�] ` K 2 
���
 \ ' � ][
2 
�� 1 ��
 \ ' � ] _ min \ [ 2 
���
 \���� ] � [ 2 
�� 1 ��
 \���� � 1 ]�] ` K

2 
�� 1 ��
 \ ' � ]

Proof: by induction on the number of passes � .

Theorem 1 If � 0 2 � for 0 ����� � , then the down pass
ends at subroot � 0 and it holds that

[
2 
���
 \���� ] _

� � \ [
2 
�� 2 ��
 \���� ] ` 2 � ] `�� ` 1\ � ` ��] \ [ 2 
�� 2 ��
 \���� ] ` 2 �� 2 �` 1 ] ` 2 �� 2 � ` 1� ` � ` 1

for � _ 0 !"�
for 0 ! � !#�
otherwise[

2 
���
 \ ' � ] _%$ [
2 
�� 1 ��
 \�� � � 1 ] ` 2 �� 2 � ` 2

1
for 0 ! �'& �
otherwise

K 2 
���
 \�� � ] _)( � ` 1
2 �� 2 � ` 1
1

for � _ 0
for 0 ! � !#�
otherwise

K 2 
���
 \ ' � ] _ $ 2 �* 2 � ` 2
1

for 0 ! �'& �
otherwise

[
2 
���
 \ ' � ],+ [

2 
�� 1 ��
 \ ' � � 1 ] for 1 ! �'& �[
2 
���
 \���� ],- [

2 
�� 1 ��
 \���� � 1 ] for 0 ! � !#�
If � 0 2 � � 1 for 0 �.�/� � , then the up pass ends

at subroot � �!` 1 (with the exception of up pass 2 ��� 1 that
ends at the goal state) and it holds that

[
2 
�� 1 ��
 \���� ] _1023

24
[

2 
���
 \���� ]\ � ` � ] \ [ 2 
�� 1 ��
 \�� � ] ` 2 � 2 � ] ` 2 �� 2 � ` 2� ` � ` 2� ` � ` 1

for � _ 0

for 0 ! � !"�
for 0 ! � _"�
otherwise

[
2 
�� 1 ��
 \ ' � ] _5( [

2 
���
 \�� � ] ` 2 �6 2 � ` 3[
2 
�� 1 ��
 \�� � � 1 ] ` 2

1

for 0 ! �7& �
for � _"� ` 1 & �
otherwise

K
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2 �6 2 � ` 2
1

for � _ 0
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otherwise
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otherwise
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] for 0 ! �7& �[
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�� 1 ��
 \���� ]8- [
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���
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] for 0 & � !"�



Proof: by induction on the number of executed actions,
using Lemma 1.

Thus, there are 2 �	� 2 passes before Node Counting
reaches the goal vertex. Each down pass ends at subroot
� 0. The final up pass ends at the goal state. All other up
passes � end at subroot � \ � ` 1 ]�� 2. In the following, we need
two inequalities. First, according Theorem 1, it holds for
0 � � � � that

[
2 
���
 \�� 0 ] _ $ � ` 1 for � _ 0� \ [

2 
�� 2 ��
 \��
0 ] ` 2 � ] `#�U` 1 otherwise.

Solving the recursion yields

[
2 
���
 \�� 0 ] _ � 
�� 3 ` � 
�� 2 ` � 
�� 1  \ 2 �U` 2 ] � 2 ` \ �6 2 ] � `�� ` 1� 2  2 � ` 1 �
Setting � 0 � in this formula results in

[
2 
 ��
 \��

0 ] _ � 
 � 3 ` � 
 � 2 ` � 
 � 1  2 � 3  � 2  � ` 1� 2  2 � ` 1 �
This implies that A 2 � ` 1 � �H9 � 0 < 0 A 2 � � �:9 � 0 < � � � .

Second, consider an arbitrary constant 0  !  1 � 6 and

assume that � � max

�
1��� 4 C�� 3

2  8
�
	 1 � ��� � 2. Note that

5 � � for our trees. Then,


 _ 3
2
� 2 ` 9

2
� ` 3! 3

2 � 1 ` 4
�� � 2 since �/- 2! 3
2 � 1 ` 4 �

1 � 4 � � � 2 since �/- 1�  4

_ 3
2

 2

1 � 4 �
and thus � ��� 2

3 5 (1 � 4 ! ) � 1 (A). In the following,

we also utilize that ( DE5 ) � � 5 (1  � )� for 5%� � 1& � 1 � �
and

arbitrary constants D � 0 and ��� 0 (B). Then,
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 (1  4

�
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3
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2
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2
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 � � 1
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3 � 2 ���
- 
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Now, let 0  !  1 � 6 be an arbitrarily small

constant. Using the two inequalities above, it holds

that A 2 � ` 1 � � 9 � 0 < � � � � 5�� ( 1
6  � )
 for � �

max

�
1� � 4 C � 3

2  8
��	 1 � � �

and thus also for sufficiently large

5 . A 2 � ` 1 � �:9 � 0 < is the u-value of � 0 after Node Counting
terminates on a tree with � � 1 levels. This value equals
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the number of times Node Counting has visited � 0, which
is a lower bound on the number of actions it has executed.
Consequently, Node Counting executes (at least)

Ω
��� � ( 1

6 ��� ) � �
actions, and the performance of Node Counting can be

exponential in the number of states even in undirected do-
mains. To confirm this analytical result, we performed a
simulation study of Node Countingon our trees, see Table 1.
We stopped the simulation when � reached eight because
the number of action executions and thus the simulation
time became large. The simulation confirmed our formulas
for how the number of states 5 , the number of passes until
termination, and the u-value of � 0 after termination depend
on � . The simulation also provided us with the number
of action executions until termination, for which we do not
have a formula in closed form, only a lower bound in form
of the u-value of � 0 after termination. How the number of
action executions and its lower bound relate is shown in
Figure 3, that plots the natural logarithms of these values.

So far, we have shown that the performance of Node
Counting is not guaranteed to be polynomial in the number
of states in undirected domains. We are also able to de-
scribe a domain property that guarantees a polynomial per-
formance of Node Counting. A Eulerian graph is a directed
graph, each of whose vertices have an equal number of in-
coming and outgoing directed edges. (Undirected domains



� number of states number of passes u-value of � 0
u-value of � 0

number of states action executions action executions
number of states
 [

2 
 � 1 ��
 \�� 0 ]
until termination after termination after termination until termination until termination

2 18 6 35 1.9 190 10.6
3 30 8 247 8.2 1380 46.0
4 45 10 2373 52.7 12330 274.0
5 63 12 30256 480.3 142318 2259.0
6 84 14 481471 5731.8 2063734 24568.3
7 108 16 9127581 84514.6 36135760 334590.4
8 135 18 199957001 1481163.0 740474450 5484995.9

Table 1: Simulation Results for Node Counting

start state goal state

s1s2

s3

s4

s5

0.9 0.1

Figure 5: Node Counting does not Terminate

are a special case of Eulerian domains if one considers an
undirected edge to be equivalent to a pair of directed edges
with opposite directions.) Consider an arbitrary Eulerian
graph whose number of edges is at most polynomial in the
number of its states (for example, because no two edges
connect the same states), and a graph that is derived from
the Eulerian graph by replacing each of the directed edges
of the Eulerian graph with two directed edges that are con-
nected with a (unique) intermediate vertex. Figure 4 shows
an example. Using results from (Koenig and Simmons
1996), we can show that the performance of Node Counting
on the converted graph is guaranteed to be polynomial in
its number of states. This is so because the behavior of
Node Counting on the converted graph is the same as the
behavior of Edge Counting on the original graph (Koenig
and Simmons 1996) and the performance of Edge Count-
ing on Eulerian graphs is polynomial in the product of the
number of its edges and the number of its states (Koenig
and Simmons 1996). To the best of our knowledge, this
is currently the only known (non-trivial) domain property
that guarantees a polynomial performance of Node Count-
ing. We are currently investigating whether there are more
realistic domain properties that also guarantee a polynomial
performance of Node Counting.

Comparison of Node Counting with LRTA*
We have shown that the performance of Node Counting can
be exponential in the number of states even in undirected
domains. This is interesting because the value-update rule
of LRTA* is similar to that of Node Counting but guaran-
tees polynomial performance. There exist also other value-
update rules that have this property in directed or undirected
domains (perhaps with the restriction that every action has
to result in a state change). The following table shows some

of these variants of Node Counting. The real-time search
methods by (Wagner et al. 1997) and (Thrun 1992a) resem-
ble Node Counting even more closely than LRTA* resem-
bles Node Counting since their value-update rules contain
the term 1 � AU9;#=< just like Node Counting. While their
complexity was analyzed by their authors, it has been un-
known so far how their performance compares to that of
Node Counting in undirected domains. Our results demon-
strate that modifications of Node Counting are necessary to
guarantee polynomial performance and the resulting vari-
ants of Node Counting have a huge performance advantage
over Node Counting itself.

Value-Update Rules WITHOUT Polynomial Performance Guarantee[E\ $)] : _ 1 ` [E\ $)] . Node Counting

Value-Update Rules WITH Polynomial Performance Guarantee[E\ $^] : _ 1 ` [E\ $ [�����\ $���&�]�] . LRTA*
if [E\ $)]'& [E\ $ [�����\ $���&�]�] then [E\ $^] : _ 1 ` [E\ $^] . (Wagner et al. 1997)[E\ $)] : _ max \ 1 ` [E\ $^] � 1 ` [E\ $ [�����\ $ � &�] ]�] . (Thrun 1992a)

LRTA* has other advantages over Node Countingbesides
a better performance guarantee, for example that it can easily
be generalized to probabilistic domains. This can be done
by simply replacing every occurance of the u-value of the
successor state, that is, AO9�#�A B�B�9�#�C DE<^< , with the expected u-
value of the successor state. (Barto et al. 1995) have shown
that this generalization of LRTA* to probabilistic domains
reaches a goal state with probability one provided that one
can reach a goal state with positive probability from every
state that can be reached with positive probability from the
start state. (This is the probabilistic equivalent of safely ex-
plorable domains.) We show, on the other hand, that Node
Counting cannot be generalized to probabilistic domains by
replacing every occurance of the u-value of the successor
state with the expected u-value of the successor state. Fig-
ure 5 shows a (directed) domain that contains one action with
a nondeterministic effect (the other actions are determinis-
tic). In this case, Node Counting traverses the state sequence# 1 C # 2 C # 1 C�# 3 C�# 4 C # 1 C # 2 C�# 1 C�# 3 C�# 4 CW# 1 C�# 2 C�# 1 C�# 3 C�# 4 C��
��� (and
so forth) if ties are broken in favor of successor states with
smaller indices. In particular, whenever Node Counting
is in state # 3, then AO9�# 1 < 0 2 AO9�# 4 < � 2 and consequentlyAO9�# 4 <  0 � 9 AO9�# 1 < 0 0 � 9 AO9�# 1 < � 0 � 1 AO9�# 5 < . Node Counting
then moves to # 4 and never reaches the goal state although
the goal state can be reached with probabilityone by repeat-
edly executing the only nondeterministic action in state # 3.



Two other advantages of LRTA* over Node Counting are
that it is easy to increase its lookahead (beyond looking at
only the successor states of the current state) and to make
use of heuristic knowledge to bias its search towards the
goal.

Conclusion
This paper showed, for the first time, that similar value-
update rules of real-time search methods can result in a
big difference in their performance in undirected domains.
Moreover, we obtained this result for two value-update rules
for which several experimental results in standard domains
from artificial intelligence indicated that both of them per-
formed equally well. Our main result concerned the per-
formance of Node Counting, a real-time search method that
always moves to the neighboring state that it has visited the
least number of times. We showed that its performance can
be exponential in the number of states even in undirected
domains. In particular, we constructed an undirected tree
for which Node Counting executes (at least)

Ω
��� � ( 1

6 ��� ) � �
actions, where 5 is the number of states and 0  !  1 � 6

is an arbitrarily small constant. Thus, although many stan-
dard domains from artificial intelligence (such as sliding-tile
puzzles, blocksworlds, and gridworlds) are undirected, this
property is not sufficient to explain why Node Counting
performs well on them. Our result solved an open problem
described in (Koenig and Simmons 1996) and showed that
a formal analysis of search methods can help one to detect
problems and prevent surprises later on, reinforcing our be-
lief that a formal analysis of real-time search methods can be
as important as experimental work. Our result suggests to
either abandon Node Counting in favor of real-time search
methods whose performance is guaranteed to be polynomial
in the number of states (especially since experimental re-
sults only indicated that Node Counting performed as well
as other real-time search methods but but did not outper-
form them) or study in more detail which domain properties
guarantee a polynomial performance of Node Counting.
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