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ABSTRACT
We study task-allocation problems where one wants to minimize the team
cost subject to the constraint that each task must be executed by a given
number of cooperative agents simultaneously, called the coalition for this
task. We use the same principle to develop several efficient and effective
(greedy) hillclimbing strategies for determining both which agents belong
to the coalition for each task and when the coalition should execute the task.
We analyze their complexities and compare them experimentally with each
other and a previous algorithm on multi-agent routing problems.

1. INTRODUCTION
We study task-allocation problems where one wants to minimize

the team cost subject to the constraint that each task must beex-
ecuted by a given number of cooperative agents simultaneously,
called the coalition for this task. Each agent can participate in coali-
tions for different tasks. Each task requires a number of different
capabilities, and each coalition for the task needs to provide the
required capabilities. We use the same principle to developsev-
eral efficient and effective (greedy) hillclimbing strategies for de-
termining both which agents belong to the coalition for eachtask
(= assigning tasks, sometimes also called coalition formation) and
when the coalition should execute the task (= scheduling tasks). We
analyze the complexities of our strategies and compare themexper-
imentally with each other and a previous algorithm on multi-agent
routing problems.

2. RELATED WORK
Task-allocation problems are typically studied in a competitive

setting, often in the context of strategies from game theory[2, 7] or
negotiation protocols for coalition formation [5]. We, on the other
hand, study task-allocation problems in a cooperative setting. Lau
and Zhang classified coalition formation problems for thesekinds
of task-allocation problems and explored the runtime complexity of
each category [6]. Shehory and Kraus developed several iterative
distributed greedy algorithms for coalition formation [8,9]. Yong
et al. studied a similar problem in the context of grid computing
[11]. Abdallah and Lesser explored how organization structures
of agents can guide the coalition formation process and usedre-
inforcement learning to optimize the decisions of each agent [1].
Soh and Li used multilevel learning for coalition formation, mostly
without considering the team cost [10]. Most of this work suffers
from two limitations that we relax in this paper, namely thateach
agent can participate in a coalition for at most one task [1, 8, 11]
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and that the contribution of a given coalition to the team cost is ei-
ther pre-defined [1, 6] or can be calculated quickly [8, 9, 11]. We,
on the other hand, study task-allocation problems where each agent
can participate in coalitions for different tasks and needsto solve
a complex scheduling problem to calculate the contributionof a
given coalition to the team cost. The most closely related existing
work is our work on ARF (= Approach with Reaction Functions),
that allocates one unallocated task per round until all tasks have
been allocated [12]. The agents submit so-called reaction functions
for each unallocated task, and the central planner basically allo-
cates one unallocated task per round to one qualified coalition next
so that the team cost increases the least.

3. MULTI-AGENT ROUTING
Our motivating problems are multi-agent routing problems

where agents have to visit targets in the plane. The terrain and
the locations of the agent and targets are known. An example is
fire fighting, where several fires need to get fought (both simulta-
neously and one after the other) so that the fires are extinguished
as quickly as possible. Multi-agent routing problems whereeach
target needs to get visited by only one agent are standard test do-
mains in robotics [3]. Here, however, we extend them to the case
where some targets need to get visited simultaneously by several
agents. An example is again fire fighting, where large fires canbe
extinguished only by several fire engines simultaneously. We for-
malize multi-agent routing problems as follows: The finite set of
targets isX = {x1, . . . , xm}. The finite set of agents isA =
{a1, . . . , an}. The finite set of capabilities isB = {b1, . . . , br}.
Each agenta ∈ A is characterized by a vector of capabilities
Ba = 〈ba

1 , . . . , ba
r 〉 that it provides, where eachba

i is a non-negative
integer. Each targetx ∈ X is characterized by a vector of capa-
bilities Bx = 〈bx

1 , . . . , bx
r 〉 that it requires, where eachbx

i is a non-
negative integer. A coalitionO ⊆ A of agents is qualified for target
x ∈ X iff it satisfies

P

a∈O
Ba ≥ Bx. All agents in the coalition

need to visit the target at the same visit timet. An allocation of
agenta ∈ A consists of the pair(Xa, Ca), whereXa ⊆ X is the
set of targets assigned to it andCa is the set of its visit times for the
targets inXa, in the formx ← t. The agent costcagent

a (Xa, Ca)
is the largest visit time of all targets inXa if the agent can visit
all targets inXa at the visit times inCa (and infinity if it cannot).
We want to assign and schedule targets so that the team cost is
small. We consider two different ways of defining the team cost.
The team cost is

P

a∈A
cagent
a (Xa, Ca) for the MiniSum team ob-

jective (which is roughly proportional to the energy neededby all
agents for waiting and moving) andmaxa∈A cagent

a (Xa, Ca) for
the MiniMax team objective (which is equal to the task-completion
time).
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Figure 1: Multi-Agent Routing Problem on the Real Line

Function AssignTarget(STRATEGY, {Xa}a∈A, k)
Input:

STRATEGY: the strategy for assigning targets;
{Xa}a∈A: the current partial assignments;
k : the parameter for the simplified systematic strategy.

Output:
{(Xa, Ca)}a∈A: the allocations;
lowestevaluation: the team cost of the allocations.

{01} While (|X \ ∪a∈AXa| > k)
{02} lowestevaluation:=∞;
{03} Foreachx ∈ X \ ∪a∈AXa

{04} ForeachO ⊆ A qualified forx
{05} Foreacha ∈ A
{06} If a ∈ O
{07} X′

a
:= Xa ∪ {x};

{08} Else
{09} X′

a
:= Xa;

{10} If STRATEGY= GREEDY
{11} ({(Xa, Ca)}a∈A, evaluation) := ScheduleTargets({X′

a
}a∈A);

{12} Else
{13} ({(X′′

a
, C′′

a
)}a∈A, evaluation) :=

AssignTarget(GREEDY, {X′

a
}a∈A, 0);

{14} If evaluation< lowestevaluation
{15} lowestevaluation:= evaluation;
{16} x∗ := x;
{17} O∗ := O;
{18} Foreacha ∈ A
{19} If a ∈ O∗

{20} Xa := Xa ∪ {x
∗};

{21} If (|X \ ∪a∈AXa| > 0)
{22} ({(Xa, Ca)}a∈A, lowestevaluation) :=

AssignTarget(GREEDY, {Xa}a∈A, 0);
{23} Else
{24} ({(Xa, Ca)}a∈A, lowestevaluation) := ScheduleTargets({Xa}a∈A);
{25} Return ({(Xa, Ca)}a∈A, lowestevaluation);

Figure 2: Pseudo Code for Assigning Targets

4. EXAMPLE PROBLEM
Consider the multi-agent routing problem in Figure 1, whichwe

use throughout this paper. The agents and targets are located on the
real line. There exists only one capability. Agentsa1 anda2 pro-
vide one unit of this capability each. Targetsx1 andx2 require one
unit of this capability each, while targetx3 requires two units. In
other words, targetsx1 andx2 need to be visited by one agent each,
while targetx3 needs to be visited by both agents simultaneously.
The agents can move one unit of distance in one unit of time. The
complete assignments with the minimal team cost for the MiniMax
team objective are as follows: Agenta1 first visits targetx1 at time
2 + ǫ and then targetx3 at time5. Agenta2 first visits targetx2 at
time 2 and then targetx3 at time5. Agenta1 can reach targetx3

already at time3 but then has to wait there until agenta2 arrives at
time5. Thus, the minimal team cost is5.

5. ASSIGNING TARGETS
Our strategies assign one unassigned target per round untilall

targets have been assigned, as shown in Figure 2. Assigning one
unassigned target per round keeps the runtime small, yet allows
them to take into account the positive and negative synergies be-
tween the targets that still need to be assigned and the targets that
have already been assigned. Consider an arbitrary round. Let
the partial assignments of targets at the end of the previousround
be{Xa}a∈A. The assignments{Xa}a∈A are called complete iff
X = ∪a∈AXa. Otherwise, they are called partial.

5.1 Greedy Strategy
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Figure 3: Greedy Strategy for Assigning Targets

The greedy strategy assigns one unassigned target per round
to a qualified coalition so that the resulting partial assign-
ments have the smallest team cost. The function call
AssignTarget(GREEDY, {∅}a∈A, 0) in Figure 2 executes the
greedy strategy. For each unassigned targetx ∈ X and each quali-
fied coalitionO ⊆ A, it sets

X ′

a :=



Xa ∪ {x} if a ∈ O
Xa if a /∈ O

(Lines 05-09). The greedy strategy calls
ScheduleTargets({X ′

a}a∈A) to schedule the assigned
targets and obtain the resulting team cost (Line 11). (We define this
function later.) Assume that the partial assignments resulting from
assigning targetx∗ to coalition O∗ have the smallest team cost
(Lines 14-17). Then, the greedy strategy setsXa := Xa ∪ {x

∗}
for all agentsa ∈ O∗ (Lines 18-20), which terminates the current
round.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. The greedy strategyas-
signs the targets in three rounds, as shown in Figure 3. Each box in
the figure represents (partial or complete) assignments. The num-
ber below it is the corresponding team cost. There are five possible
ways of assigning targets in the first round: targetx1 to agenta1,
targetx2 to agenta1, targetx1 to agenta2, targetx2 to agenta2

and targetx3 to agentsa1 anda2. Targetx1 is assigned to agent
a2 in the first round since the resulting partial assignments have the
smallest team cost, namely2− ǫ, shown by the thick border of the
corresponding box. Similarly, targetx3 is assigned to agentsa1 and
a2 in the second round, and targetx2 is assigned to agenta2 in the
third round. The minimal team cost of the resulting assignments is
6− ǫ and thus not the minimal team cost.

5.2 Systematic Strategy
The greedy strategy assigns one unassigned target per round

to a qualified coalition so that the resulting partial assignments
have the smallest team cost. The team costs of these partial
assignments can be calculated quickly but often do not predict
the team costs of their completions well. The systematic strat-
egy therefore assigns one unassigned target per round to a quali-
fied coalition so that the greedy completions of the resulting par-
tial assignments have the smallest team cost. The function call
AssignTarget(SYSTEMATIC, {∅}a∈A, 0) in Figure 2 executes the
systematic strategy. For each unassigned targetx ∈ X and each
qualified coalitionO ⊆ A, it sets
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Figure 4: Simplified Systematic Strategy withk = 2 (= First
Round of Systematic Strategy) for Assigning Targets

X ′

a :=



Xa ∪ {x} if a ∈ O
Xa if a /∈ O

and then uses the greedy strategy to complete these partial assign-
ments to complete assignments (Line 13). It then determinesthe
team costs of these complete assignments. Assume that the greedy
completions of the partial assignments resulting from assigning tar-
getx∗ to coalitionO∗ have the smallest team cost. Then, the sys-
tematic strategy setsXa := Xa ∪ {x

∗} for all agentsa ∈ O∗,
which terminates the current round.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. The systematic strategy
assigned the targets in three rounds, as shown in Figure 4 forthe
first round only. Targetx1 is assigned to agenta1 in the first round
since the greedy completions of the resulting partial assignments
have the smallest team cost (tied with two other ways of assigning
targets), namely5. Similarly, targetx2 is assigned to agenta2 in
the second round, and targetx3 is assigned to agentsa1 anda2 in
the third round. The minimal team cost of the resulting assignments
is 5 and thus the minimal team cost.

5.3 Simplified Systematic Strategy
The systematic strategy assigns one unassigned target per round

to a qualified coalition so that the greedy completions of there-
sulting partial assignments have the smallest team cost, which is
more runtime intensive than the greedy strategy but has the po-
tential to result in smaller team costs. In earlier rounds, the par-
tial assignments that are evaluated by the greedy strategy are not
very predictive for their greedy completions that are evaluated by
the systematic strategy. The simplified systematic strategy there-
fore uses the systematic strategy in the first rounds but the greedy
strategy in the lastk rounds, wherek is a parameter. Thus, it is
identical to the greedy strategy ifk = ∞ and identical to the
systematic strategy ifk = 0. The simplified systematic strat-
egy is more runtime intensive than the greedy strategy but less
runtime intensive than the systematic strategy. It has the poten-
tial to result in smaller team costs than the greedy strategyand
almost as small team costs as the systematic strategy. The func-
tion callAssignTarget(SIMPLIFIEDSYSTEMATIC, {∅}a∈A, k) in
Figure 2 executes the simplified systematic strategy.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. The simplified system-
atic strategy withk = 2 assigns the targets in three rounds, as
shown in Figure 4. The target assigned in the first round is deter-
mined as by the systematic strategy. Thus, targetx1 is assigned to

agenta1 in the first round. The targets assigned in the next two
rounds are determined as by the greedy strategy. Thus, target x2 is
assigned to agenta2 in the second round, and targetx3 is assigned
to agentsa1 anda2 in the third round. The minimal team cost of
the resulting assignments is5 and thus the minimal team cost.

6. SCHEDULING TARGETS
The strategies for assigning targets call

ScheduleTargets({X ′

a}a∈A) to schedule the assigned
targets and obtain the resulting team cost, which is an NP-hard
problem (similar to the traveling salesperson problem). Wenow
explain how this function can be implemented. Clearly, there
always exists a way of scheduling targets since the strategies
for assigning targets assign targets only to qualified coalitions.
Our strategies for scheduling targets first determine the order in
which the agents should visit the targets assigned to them, called
their schedules, and only then the visit times of the targets. Our
strategies determine the schedules using the same principles as our
strategies for assigning targets. They callSchedule({ ~Xa}a∈A)
in Figure 5 to determine the earliest visit times of the targets that
are consistent with the schedules and obtain the resulting team
cost.1

6.1 Naive Strategy
The naive strategy makes the agents visit the targets in the order

in which they were assigned to them, which is completely deter-
mined since the strategies for assigning targets assign onetarget
per round. In other words, each agent inserts the target at the end
of its schedule whenever it is assigned a target.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. Assume that some strat-
egy assigns targetx3 to agenta1 and targetsx1, x3 andx2 to agent
a2 (in this order). The minimal team cost of the resulting assign-
ments is6 − ǫ. The naive strategy thus results in the schedules
where agenta1 visits targetx3 and agenta2 visits targetsx1, x3

andx2 (in this order). Agenta1 visits targetx3 at time3. Agent
a2 first visits targetx1 at time2 − ǫ, then targeta2 at time3 and
finally targetx2 at time6. Thus, the team cost is6 and thus not the
minimal team cost of these assignments.

6.2 Greedy Strategy
Our other strategies for scheduling targets schedule one unsched-

uled target per round until all targets have been scheduled,as shown
in Figure 5. Consider an arbitrary round. Let the schedules at
the end of the previous round be{ ~Xa}a∈A. The greedy strat-
egy schedules one unscheduled target per round so that the result-
ing partial schedules have the smallest team cost. The function
call ScheduleTargets(GREEDY, {∅}a∈A, {Xa}a∈A, 0) in Figure
5 executes the greedy strategy and can be used in Figure 2 if one
adds the remaining arguments. We do not explain its pseudo code
since it as similar to the one in Figure 2.

1We write the schedule of agenta ∈ A as ~Xa. The pseudo code
uses the function~X + {x} to insert targetx ∈ X at the end of
schedule~X and the functiond(x, x′) to compute the distance from
targetx to targetx′. The pseudo code uses the variablex̄a to store
the last target in the current partial schedule of agenta and variable
ta to store the visit time of the target. The pseudo code repeatedly
adds the agentsa to the coalitionsOxa

of the targetsxa that they
visit next (Lines 35-36). Once a coalition is qualified for a target,
the pseudo code calculates the smallest visit time of the target, re-
moves it from the schedules of the agents for its coalition (Line
37-44), and repeats the process.



Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. Assume that some strat-
egy assigns targetx3 to agenta1 and targetsx1, x3 andx2 to agent
a2. The greedy strategy then schedules the targets in three rounds.
Targetx1 is scheduled in the first round since the team costs of the
partial schedules that result from scheduling targetsx1, x2 andx3

are2− ǫ, 2 and3, respectively. Similarly, targetx3 is scheduled in
the second round, and targetx2 is scheduled in the third round. The
team cost of the resulting schedules is6 and thus not the minimal
team cost of these assignments.

6.3 Systematic Strategy
The systematic strategy schedules one unscheduled target per

round so that the greedy completions of the resulting par-
tial schedules have the smallest team cost. The function call
ScheduleTargets(SYSTEMATIC, {∅}a∈A, {Xa}a∈A, 0) in Figure
5 executes the systematic strategy and can be used in Figure 2if
one adds the remaining arguments.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. Assume that some strat-
egy assigns targetx3 to agenta1 and targetsx1, x3 andx2 to agent
a2. The systematic strategy then schedules the targets in three
rounds. Targetx2 is scheduled in the first round since the team
costs of the greedily completions of the partial schedules that result
from scheduling targetsx1, x2 andx3 are6, 6 − ǫ and8 − 2ǫ,
respectively. Similarly, targetx3 is scheduled in the second round,
and targetx1 is scheduled in the third round. The team cost of the
resulting schedules is6− ǫ and thus the minimal team cost of these
assignments.

6.4 Simplified Systematic Strategy
The simplified systematic strategy uses the systematic

strategy in the first rounds but the greedy strategy in the
last k rounds, wherek is a parameter. The function call
ScheduleTargets(SIMPLIFIEDSYSTEMATIC, {∅}a∈A, {Xa}a∈A, k)
in Figure 5 executes the simplified systematic strategy and can be
used in Figure 2 if one adds the remaining arguments.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. Assume that some strat-
egy assigns targetx3 to agenta1 and targetsx1, x3 andx2 to agent
a2. The simplified systematic strategy withk = 2 then schedules
the targets in three rounds. The target scheduled in the firstround is
determined as by the systematic strategy. Thus, targetx2 is sched-
uled in the first round. The targets scheduled in the next two rounds
are determined as by the greedy strategy. Thus, targetx3 is sched-
uled in the second round, and targetx1 is scheduled in the third
round. The team cost of the resulting schedules is6 − ǫ and thus
the minimal team cost of these assignments.

7. COMPLEXITY ANALYSIS
We now analyze the runtime complexity of our strategies. Re-

member thatm is the number of targets,n is the number of agents
andk is the parameter for the simplified systematic strategy.c is
the largest possible coalition size for any target and thus bounded
by maxx∈X

Pr

i=1
bx
i from above.

We first consider the strategies for assigning targets. The strate-
gies haveO(m) rounds. In each round, a strategy evaluates all
combinations ofO(m) unassigned targets andO(nc) coalitions for
the targets. Thus, they evaluateO(m2nc) partial assignments. The
greedy strategy schedules targets for each assignment once, for a
total of O(m2nc) schedule determinations. The systematic strat-
egy and the simplified systematic strategy greedily complete each
partial assignment (in the firstO(m − k) rounds for the simpli-

Function Schedule({ ~Xa}a∈A)
Input:

{ ~Xa}a∈A : the current partial schedules.
Output:

{(Xa, Ca)}a∈A : the allocations;
lowestevaluation: the team cost of the allocations.

{26} Foreacha ∈ A
{27} Xa := ∅;
{28} Ca := ∅;
{29} x̄a := the current location of agenta;
{30} ta = 0;
{31} Foreachx ∈ X
{32} Ox = ∅;
{33} While ({ ~Xa}a∈A 6= {∅}a∈A)
{34} Foreacha ∈ A With ~Xa 6= ∅
{35} xa := the first target in~Xa;
{36} Oxa

:= Oxa
∪ {a};

{37} If Oxa
is qualified forxa

{38} t′ := arg maxa′∈Oxa
(ta′ + d(x̄a′ , xa));

{39} Foreacha′ ∈ Oxa

{40} ta′ := t′;
{41} Xa′ := Xa′ ∪ {xa};
{42} Ca′ := Ca′ ∪ {xa ← ta′};
{43} x̄a′ := xa;

{44} removexa from ~Xa′ ;
{45} If the team objective is MiniMax
{46} lowestevaluation:= arg maxa∈A ta;
{47} Else/* the team objective is MiniSum */
{48} lowestevaluation:=

P

a∈A
ta;

{49} Return ({(Xa, Ca)}a∈A, lowestevaluation)

Function ScheduleTargets(STRATEGY, { ~Xa}a∈A, {Xa}a∈A, k)
Input:

STRATEGY: the strategy for scheduling targets;
{ ~Xa}a∈A : the current partial schedules;
{Xa}a∈A : the current assignments;
k : the parameter for the simplified systematic strategy.

Output:
{(Xa, Ca)}a∈A : the final complete allocations;
lowestevaluation: the team cost of the final complete allocations.

{50} While (| ∪a∈A Xa| > k)
{51} lowestevaluation:=∞;
{52} Foreachx ∈ ∪a∈AXa

{53} Foreacha ∈ A
{54} If x ∈ Xa

{55} ~X′

a
:= ~Xa + x;

{56} X′

a
:= Xa \ {x};

{57} Else
{58} ~X′

a
:= ~Xa;

{59} X′

a
:= Xa;

{60} If STRATEGY= GREEDY
{61} ({(Xa, Ca)}a∈A, evaluation) := Schedule({ ~X′

a
}a∈A);

{62} Else
{63} ({(Xa, Ca)}a∈A, evaluation) :=

ScheduleTargets(GREEDY, { ~X′

a
}a∈A, {X′

a
}a∈A, 0);

{64} If evaluation< lowestevaluation
{65} lowestevaluation:= evaluation;
{66} x∗ := x;
{67} Foreacha ∈ A
{68} If x∗ ∈ Xa

{69} ~Xa := ~Xa + x∗;
{70} Xa := Xa \ {x

∗};
{71} If (| ∪a∈A Xa| > 0)
{72} ({(Xa, Ca)}a∈A, lowestevaluation) :=

ScheduleTargets(GREEDY, { ~Xa}a∈A, {Xa}a∈A, 0);
{73} Else
{74} ({(Xa, Ca)}a∈A, lowestevaluation) := Schedule({ ~Xa}a∈A);
{75} Return ({(Xa, Ca)}a∈A, lowestevaluation);

Figure 5: Pseudo Code for Scheduling Targets

fied systematic strategy) once with the greedy strategy, fora total
of O(m2nc) applications of the greedy strategy andO(m4n2c)
schedule determinations.

We now consider the strategies for scheduling targets, which call
the functionSchedule. The runtime of our simple implementa-
tion of this function isO(mnc). The naive strategy calls it once,
for a total runtime ofO(mnc). The other strategies haveO(m)
rounds. In each round, a strategy evaluatesO(m) targets. Thus,



Greedy Simplified Systematic ARF
Assignment Assignment

Naive Greedy Simplified Naive Greedy
Scheduling Scheduling Systematic Scheduling Scheduling

Scheduling
Agents Targets TC RT TC RT TC RT TC RT TC RT TC RT

4 20 1320.4 0.00 1311.6 0.02 1250.2 0.2 1124.8 0.08 1045.7 1.61 1298.4 1.8
4 30 1616.0 0.08 1616.0 0.09 1587.4 1.7 1460.6 0.42 1428.0 7.64 1524.7 1.8
4 40 2019.4 0.01 2019.4 0.34 2010.9 8.5 1750.6 1.22 1696.3 24.9 1995.8 1.8
6 20 1136.9 0.04 1190.4 0.08 1125.2 1.1 1063.9 1.17 1001.3 24.3 1108.5 0.5
6 30 1471.5 0.02 1471.6 0.45 1451.6 8.7 1329.9 4.92 1272.8 79.09 1451.2 0.5
6 40 1685.5 0.04 1684.4 1.57 1685.4 42.8 1586.4 15.5 1521.2 454.4 1646.7 0.5
8 20 1060.5 0.02 1053.4 0.25 1028.6 3.3 970.1 7.16 917.2 121.3 1022.8 0.2
8 30 1325.4 0.04 1343.3 1.24 1322.0 25.5 1207.2 28.8 1150.4 501.5 1330.9 0.2
8 40 1580.4 0.08 1579.8 4.45 1570.6 84.5 1483.5 93.9 — — 1556.4 0.2

10 20 963.6 0.03 963.6 0.54 960.6 7.0 907.8 25.5 890.4 415.0 936.7 0.2
10 30 1229.6 0.08 1229.6 2.96 1193.7 56.5 1135.7 104.2 — — 1215.6 0.2
10 40 1489.1 0.16 1485.0 9.68 1480.2 164.1 1307.5 340.2 — — 1489.6 0.2

Table 1: Experimental Results for Multi-Agent Routing Problems with the MiniSum Team Objective

Greedy Simplified Systematic ARF
Assignment Assignment

Naive Greedy Simplified Naive Greedy
Scheduling Scheduling Systematic Scheduling Scheduling

Scheduling
Agents Targets TC RT TC RT TC RT TC RT TC RT TC RT

4 20 367.3 0.00 367.3 0.02 345.8 0.2 320.4 0.09 316.6 1.82 385.3 0.4
4 30 425.1 0.01 421.4 0.11 398.8 2.1 372.9 0.45 366.0 5.32 447.1 0.4
4 40 529.4 0.02 528.8 0.35 492.5 8.0 455.1 1.40 452.9 15.5 545.7 0.4
6 20 207.4 0.04 213.6 0.08 210.2 1.1 182.4 1.08 186.3 23.9 217.4 0.1
6 30 259.6 0.02 261.6 0.44 251.0 8.8 224.4 4.27 215.1 81.2 268.1 0.1
6 40 303.4 0.03 313.9 1.60 308.6 40.5 263.9 15.3 256.5 400.4 319.4 0.1
8 20 175.4 0.01 175.3 0.24 165.6 3.2 150.1 6.44 143.1 100.2 176.7 0.1
8 30 202.8 0.03 203.3 1.18 192.2 20.7 172.4 26.1 165.2 433.4 213.4 0.1
8 40 247.4 0.08 247.4 4.27 236.1 68.9 205.1 85.9 — — 253.1 0.1

10 20 132.4 0.02 132.2 0.49 130.4 6.3 114.3 26.0 108.2 412.5 144.4 0.2
10 30 159.5 0.07 158.5 2.46 158.9 50.9 140.3 101.9 — — 163.1 0.2
10 40 188.9 0.18 187.4 9.17 180.7 149.7 186.9 321.4 — — 202.1 0.2

Table 2: Experimental Results for Multi-Agent Routing Problems with the MiniMax Team Objective

they evaluateO(m2) partial schedules. The greedy strategy calls
the functionSchedulefor the partial schedules once, for a total
runtime ofO(m3nc). The systematic strategy and the simplified
systematic strategy greedily complete each partial schedule (in the
first O(m− k) rounds for the simplified systematic strategy) once
with the greedy strategy, for a total runtime ofO(m5nc).

The runtime of combinations of strategies for assigning and
scheduling targets is their product. Ifr is constant, then the re-
sulting runtimes are polynomial. However, they can be large, es-
pecially if the systematic strategy or simplified systematic strategy
are used for either assigning or scheduling targets.

8. EXPERIMENTAL RESULTS
We now evaluate our strategies using multi-agent routing prob-

lems on known four-neighbor planar grids of size51 × 51 with
square cells that are either blocked or unblocked. The gridsresem-
ble office environments with randomly closed doors [4]. We vary
the number of agents from 4, 6, 8 to 10 and the number of targets
from 10, 20, 30 to 40. There exists only one capability. Each agent
provides one unit of this capability, and each target requires one,

two or three units of this capability. For each of these scenarios,
we average over 50 runs with randomly generated cells for thelo-
cations of the agents and targets and randomly chosen quantities of
the capability required by the targets. We introduced threestrate-
gies for assigning targets and four strategies for scheduling targets
in this paper. We pick the five combinations with the smallestrun-
time and let the simplified systematic strategy perform the system-
atic strategy only in the first round, both for assigning targets and
for scheduling targets. We compare these combinations (that use
optimized versions of the pseudo code presented earlier) against
the most closely related existing work, namely ARF (= Approach
with Reaction Functions) [12].

Tables 1 and 2 present the resulting average runtimes (RT) insec-
onds and the resulting average team costs (TC). We terminated each
multi-agent routing algorithm after 1000 seconds if it had not ter-
minated by then. The results show that there is a trade-off between
the runtime of a combination and the resulting team cost. Therun-
time increases only slowly with the number of agents or targets
if the simplified systematic strategy is used neither for assigning
nor scheduling targets, otherwise it increases quickly. Using the



simplified systematic strategy rather than the greedy strategy for
assigning targets reduces the team costs on average by about9-13
percent for the MiniSum team objective and 13-15 percent forthe
MiniMax team objective (everything else being equal). Using the
simplified systematic strategy rather than the naive or greedy strat-
egy for scheduling targets reduces the team costs on averageby
about 1-2 percent for the MiniSum team objective and 4 percent for
the MiniMax team objective (everything else being equal). Over-
all, using the simplified systematic strategy for assigningtargets
results in smaller team costs but larger runtimes than ARF for the
MiniSum team objective. All of our combinations result in smaller
team costs than ARF for the MiniMax team objective even those
that have smaller runtimes than ARF.

9. CONCLUSIONS
We studied task-allocation problems where one wants to mini-

mize the team cost subject to the constraint that each task must be
executed by a given number of cooperative agents simultaneously.
We use the same principle to develop several efficient and effective
(greedy) hillclimbing strategies for both assigning and scheduling
targets, namely the greedy strategy, the systematic strategy and the
simplified systematic strategy. We analyzed their complexities and
showed experimentally that our strategies result in smaller team
costs than a previous algorithm on multi-agent routing problems
with the MiniMax team objective, even those that have smaller run-
times than the previous algorithm. It is future work to make our
strategies decentralized to distribute their computations among the
agents and thus reduce their runtime.
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