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ABSTRACT

We study task-allocation problems where one wants to mi@rttie team
cost subject to the constraint that each task must be exkbyta given

number of cooperative agents simultaneously, called tladiticm for this

task. We use the same principle to develop several efficiethiteffective

(greedy) hillclimbing strategies for determining both aHiagents belong
to the coalition for each task and when the coalition shoxétete the task.
We analyze their complexities and compare them experirttentih each

other and a previous algorithm on multi-agent routing peots.

1. INTRODUCTION

We study task-allocation problems where one wants to migemi
the team cost subject to the constraint that each task must-be
ecuted by a given number of cooperative agents simultahgous
called the coalition for this task. Each agent can partteipacoali-
tions for different tasks. Each task requires a number ééint
capabilities, and each coalition for the task needs to geothe
required capabilities. We use the same principle to devetyp
eral efficient and effective (greedy) hillclimbing straiegfor de-
termining both which agents belong to the coalition for etadk
(= assigning tasks, sometimes also called coalition faonaaind
when the coalition should execute the task (= schedulidg)asVe
analyze the complexities of our strategies and compare éxger-
imentally with each other and a previous algorithm on madfent
routing problems.

2. RELATED WORK

Task-allocation problems are typically studied in a coritivet
setting, often in the context of strategies from game théyry] or
negotiation protocols for coalition formation [5]. We, dretother
hand, study task-allocation problems in a cooperativéngett au
and Zhang classified coalition formation problems for thaseds
of task-allocation problems and explored the runtime cexipl of
each category [6]. Shehory and Kraus developed severatiiter
distributed greedy algorithms for coalition formation B3, Yong
et al. studied a similar problem in the context of grid conmt
[11]. Abdallah and Lesser explored how organization stmest
of agents can guide the coalition formation process and tesed
inforcement learning to optimize the decisions of each afHn
Soh and Li used multilevel learning for coalition formatjomostly
without considering the team cost [10]. Most of this workfers
from two limitations that we relax in this paper, namely teath
agent can participate in a coalition for at most one task [1,18

AAMAS 2008 Workshop on Formal Models and Methods for Multiit
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and that the contribution of a given coalition to the teant &si-
ther pre-defined [1, 6] or can be calculated quickly [8, 9, M,
on the other hand, study task-allocation problems where agent
can participate in coalitions for different tasks and netedsolve
a complex scheduling problem to calculate the contributbm
given coalition to the team cost. The most closely relatéstiex
work is our work on ARF (= Approach with Reaction Functions),
that allocates one unallocated task per round until allstdskve
been allocated [12]. The agents submit so-called readtioctions
for each unallocated task, and the central planner bagiatt-
cates one unallocated task per round to one qualified amaligxt
so that the team cost increases the least.

3. MULTI-AGENT ROUTING

Our motivating problems are multi-agent routing problems
where agents have to visit targets in the plane. The termaih a
the locations of the agent and targets are known. An exarsple i
fire fighting, where several fires need to get fought (both &anu
neously and one after the other) so that the fires are extihgdi
as quickly as possible. Multi-agent routing problems whesaieh
target needs to get visited by only one agent are standarddes
mains in robotics [3]. Here, however, we extend them to theeca
where some targets need to get visited simultaneously tsralev
agents. An example is again fire fighting, where large firesbean
extinguished only by several fire engines simultaneouslg. fot-
malize multi-agent routing problems as follows: The finiét of
targets isX = {z1,...,zm}. The finite set of agents id =
{a1,...,an}. The finite set of capabilities i = {b1,...,b,}.
Each agent € A is characterized by a vector of capabilities

B® = (bt,...,b}) thatit provides, where eadlj is a non-negative
integer. Each target € X is characterized by a vector of capa-
bilities B® = (b7, ..., b7) that it requires, where eadfj is a non-

negative integer. A coalitio® C A of agents is qualified for target
x € X iff it satisfies) ., B* > B”. All agents in the coalition
need to visit the target at the same visit timeAn allocation of
agenta € A consists of the paifX,, C.), whereX, C X is the
set of targets assigned to it a64 is the set of its visit times for the
targets inX,, in the formz « ¢. The agent cost*?*"™*(X,, C,)

is the largest visit time of all targets N, if the agent can visit
all targets inX,, at the visit times inC, (and infinity if it cannot).
We want to assign and schedule targets so that the team cost is
small. We consider two different ways of defining the teant.cos
The team costi§", . , 2% (Xa, Ca) for the MiniSum team ob-
jective (which is roughly proportional to the energy neebtgdll
agents for waiting and moving) andax,e 4 c29¢™(X,, C,) for
the MiniMax team objective (which is equal to the task-coatioin
time).
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Figure 1: Multi-Agent Routing Problem on the Real Line

Function AssignTarget( STRATEGY{ X, }aca, k)
Input:
STRATEGMhe strategy for assigning targets;
{Xa}aeca: the current partial assignments;
k : the parameter for the simplified systematic strategy.
Output:
{(Xa,Ca)}aca: the allocations;
lowestevaluationthe team cost of the allocations.
{01} While (| X \ UgcaXa| > k)
{02} lowestevaluation= oo;
{03} Foreachz € X \ Ugeca X,

{04} ForeachO C A qualified forz

{05} Foreacha € A

{06} Ifa €O

{07} X! =X, U {z};

{08} Else

{09} X! =X

{10} If STRATEG¥ GREEDY

{11} ({(Xa,Ca)}aca,evaluation := ScheduleTarget§ X/ }ac);

{12} Else

{13} (XY, C)}Yaca, evaluation :=
AssignTargdiGREEDY { X/ }ae 4, 0);

{14} If evaluation< lowestevaluation

{15} lowestevaluation= evaluation

{16} ¥ = x;

{17} O* 1= 0;

{18} Foreacha € A

{19} Ifa € O™

{20} Xq =X, U{z"}

{21} If (‘X \ UaEAXaI > O)
{22} ({(Xa,C4q)}aca,lowestevaluation :=
AssignTargeiGREEDY { X, }aca, 0);
{23} Else
{24} ({(Xa,Ca)}aca,lowestevaluatioh := ScheduleTarget§ X, }aca);
{25} Return ({(X a4, Ca)}aca, lowestevaluatiojy

Figure 2: Pseudo Code for Assigning Targets

4. EXAMPLE PROBLEM

Consider the multi-agent routing problem in Figure 1, whiah
use throughout this paper. The agents and targets aredomatbe
real line. There exists only one capability. Agenisandaz pro-
vide one unit of this capability each. Targetsandz- require one
unit of this capability each, while target requires two units. In
other words, targets; andz» need to be visited by one agent each,
while targetzs needs to be visited by both agents simultaneously.
The agents can move one unit of distance in one unit of time. Th
complete assignments with the minimal team cost for the Miaxi
team objective are as follows: Agemt first visits targetr; attime
2 + € and then targets at time5. Agentas. first visits targetc, at
time 2 and then targets at time5. Agenta; can reach targets
already at time3 but then has to wait there until agent arrives at
time 5. Thus, the minimal team cost is

5. ASSIGNING TARGETS

Our strategies assign one unassigned target per roundalintil
targets have been assigned, as shown in Figure 2. Assignig o
unassigned target per round keeps the runtime small, yatsll
them to take into account the positive and negative syretuge
tween the targets that still need to be assigned and thetsatge

have already been assigned. Consider an arbitrary round. Le

the partial assignments of targets at the end of the previmwsd
be {X.}aca. The assignment§X, }.ca are called complete iff
X = UgeaXq. Otherwise, they are called partial.

5.1 Greedy Strategy

Xa @
Xg, i ®
0
a X 0 Xp ENE a % 2,8y X3
Xat {xa} Xa: {Xa} Xg 1@ Xa 1 ® X {Xa}
Xay: [} Xa,t (O] Xaz:{xl} Xaz:{xz) Xaz:(x3}
24 6 2% 2 3
a;iXy ap,ap[: X3 ag i Xy
Xa, t {X} Xa, {3} Xg 1@
Xa,: {x} Xa, {0, %} Xa, X%}
6 3 62
ay X% ER
Xal3 {3} Xa15 {%2, %3}
Xa, {4 %2, X3} Xa, :{X1, X3}
6 6
Figure 3: Greedy Strategy for Assigning Targets

The greedy strategy assigns one unassigned target per round
to a qualified coalition so that the resulting partial assign
ments have the smallest team cost. The function call
AssignTarget GREEDY {0}4c4,0) in Figure 2 executes the
greedy strategy. For each unassigned targetX and each quali-
fied coalitionO C A, it sets

X — XoU{z} facO

@) X ifag O
(Lines  05-09). The greedy strategy calls
ScheduleTargets({X/}sca) to schedule the assigned

targets and obtain the resulting team cost (Line 11). (Wedefiis
function later.) Assume that the partial assignments tiegufrom
assigning target:* to coalition O* have the smallest team cost
(Lines 14-17). Then, the greedy strategy s&ts:= X, U {z"}
for all agentsa € O™ (Lines 18-20), which terminates the current
round.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. The greedy stratagy
signs the targets in three rounds, as shown in Figure 3. Eacmb
the figure represents (partial or complete) assignments. ntim-
ber below it is the corresponding team cost. There are fivsilples
ways of assigning targets in the first round: targeto agenta,
targetz, to agenta,, targetz; to agentas, targetz, to agentas
and targetrs to agentsu; andas. Targetz; is assigned to agent
az in the first round since the resulting partial assignmente tize
smallest team cost, namety— ¢, shown by the thick border of the
corresponding box. Similarly, target is assigned to agents and
a2 in the second round, and target is assigned to agent in the
third round. The minimal team cost of the resulting assignses
6 — e and thus not the minimal team cost.

5.2 Systematic Strategy

The greedy strategy assigns one unassigned target per round
to a qualified coalition so that the resulting partial assignts
have the smallest team cost. The team costs of these partial
assignments can be calculated quickly but often do not grredi
the team costs of their completions well. The systematiat-str
egy therefore assigns one unassigned target per round talia qu
fied coalition so that the greedy completions of the resglpar-
tial assignments have the smallest team cost. The functdin c
AssignTargetSYSTEMATIC{(}.c 4, 0) in Figure 2 executes the
systematic strategy. For each unassigned target X and each
qualified coalitionO C A, it sets
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Figure 4: Simplified Systematic Strategy withk = 2 (= First
Round of Systematic Strategy) for Assigning Targets
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and then uses the greedy strategy to complete these pagigha
ments to complete assignments (Line 13). It then deterntimes
team costs of these complete assignments. Assume thaiebeygr
completions of the partial assignments resulting fromgassg tar-
getz™ to coalitionO™* have the smallest team cost. Then, the sys-
tematic strategy set¥, := X, U {z"} for all agentsa € O~,
which terminates the current round.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. The systematictsiyg
assigned the targets in three rounds, as shown in Figure thdor
first round only. Target; is assigned to agent in the first round
since the greedy completions of the resulting partial assents
have the smallest team cost (tied with two other ways of assig
targets), namely. Similarly, targetzs is assigned to agemt, in
the second round, and targef is assigned to agents andas in
the third round. The minimal team cost of the resulting agsignts
is 5 and thus the minimal team cost.

5.3 Simplified Systematic Strategy

The systematic strategy assigns one unassigned targetyvet r
to a qualified coalition so that the greedy completions of réhe
sulting partial assignments have the smallest team costhvit
more runtime intensive than the greedy strategy but has the p
tential to result in smaller team costs. In earlier rountis, par-
tial assignments that are evaluated by the greedy strategycd
very predictive for their greedy completions that are eatdd by
the systematic strategy. The simplified systematic styatiegre-
fore uses the systematic strategy in the first rounds butribedyg
strategy in the lask rounds, where; is a parameter. Thus, it is
identical to the greedy strategy if = oo and identical to the
systematic strategy ik = 0. The simplified systematic strat-
egy is more runtime intensive than the greedy strategy lus le
runtime intensive than the systematic strategy. It has tterp
tial to result in smaller team costs than the greedy strategy
almost as small team costs as the systematic strategy. Tie fu
tion call AssignTarget SIMPLIFIEDSYSTEMATIQ 0} aca, k) in
Figure 2 executes the simplified systematic strategy.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. The simplified syste
atic strategy withk = 2 assigns the targets in three rounds, as
shown in Figure 4. The target assigned in the first round isreet
mined as by the systematic strategy. Thus, targes assigned to

agenta; in the first round. The targets assigned in the next two
rounds are determined as by the greedy strategy. Thust tarie
assigned to agemnt, in the second round, and target is assigned

to agentsz; andas in the third round. The minimal team cost of
the resulting assignmentsfisand thus the minimal team cost.

6. SCHEDULING TARGETS

The strategies for assigning targets call
ScheduleTargets({X,}.ca) to schedule the assigned
targets and obtain the resulting team cost, which is an NB-ha
problem (similar to the traveling salesperson problem). nbe
explain how this function can be implemented. Clearly, ¢her
always exists a way of scheduling targets since the stegegi
for assigning targets assign targets only to qualified tioak.
Our strategies for scheduling targets first determine tloeroin
which the agents should visit the targets assigned to theliedc
their schedules, and only then the visit times of the targ€ar
strategies determine the schedules using the same paséplour
strategies for assigning targets. They Gthedule({X,}aca)
in Figure 5 to determine the earliest visit times of the tesdbat
are fonsistent with the schedules and obtain the resuléam t
cost:

6.1 Naive Strategy

The naive strategy makes the agents visit the targets inrtiez o
in which they were assigned to them, which is completely dete
mined since the strategies for assigning targets assigriaoget
per round. In other words, each agent inserts the targeeant
of its schedule whenever it is assigned a target.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. Assume that somatstr
egy assigns targef; to agenta; and targets, x3 andx. to agent
az (in this order). The minimal team cost of the resulting assig
ments is6 — e. The naive strategy thus results in the schedules
where agenti; visits targetrs and agent visits targetsei, x3
andzz (in this order). Agenu, visits targetrs at time3. Agent
ay first visits targetr; at time2 — ¢, then targete at time3 and
finally targetz. at time6. Thus, the team cost sand thus not the
minimal team cost of these assignments.

6.2 Greedy Strategy

Our other strategies for scheduling targets schedule osehed-
uled target per round until all targets have been schedateshown
in Figure 5. Consider an arbitrary round. Let the schedutes a
the end of the previous round HeX,}aca. The greedy strat-
egy schedules one unscheduled target per round so thatsthle re
ing partial schedules have the smallest team cost. Theifunct
call ScheduleTarget§GREEDY {0}ac, {Xa}aca,0) in Figure
5 executes the greedy strategy and can be used in Figure 2 if on
adds the remaining arguments. We do not explain its pseudi® co
since it as similar to the one in Figure 2.

We write the schedule of ageate A asX,. The pseudo code
uses the functionX + {z} to insert targetr € X at the end of
scheduleX and the functioni(z, z') to compute the distance from

targetz to targetz’. The pseudo code uses the variableto store
the last target in the current partial schedule of ageand variable
t, to store the visit time of the target. The pseudo code refdbate
adds the agents to the coalitiongD,, of the targetsc, that they
visit next (Lines 35-36). Once a coalition is qualified foraaget,
the pseudo code calculates the smallest visit time of tlyetare-
moves it from the schedules of the agents for its coalitiomeL
37-44), and repeats the process.



Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. Assume that somatstr
egy assigns targef; to agenta; and targets:1, x3 andx» to agent
az2. The greedy strategy then schedules the targets in threesou

Targetz; is scheduled in the first round since the team costs of the

partial schedules that result from scheduling targetsc. andxs
are2 — ¢, 2 and3, respectively. Similarly, targets is scheduled in
the second round, and targetis scheduled in the third round. The
team cost of the resulting schedulesiand thus not the minimal
team cost of these assignments.

6.3 Systematic Strategy

The systematic strategy schedules one unscheduled taget p
round so that the greedy completions of the resulting par-
The functioh cal

tial schedules have the smallest team cost.
ScheduleTarget§SYSTEMATIC 0} aca, { Xa}aca, 0) in Figure

5 executes the systematic strategy and can be used in Figtire 2

one adds the remaining arguments.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. Assume that somatstr
egy assigns targef; to agenta; and targets:1, x3 andx» to agent

a2. The systematic strategy then schedules the targets ie thre
rounds. Target:, is scheduled in the first round since the team

costs of the greedily completions of the partial scheddiasresult
from scheduling targets,, =2 andxs are6, 6 — ¢ and8 — 2e,
respectively. Similarly, targets is scheduled in the second round,

and targetr; is scheduled in the third round. The team cost of the

resulting schedules &— € and thus the minimal team cost of these
assignments.

6.4 Simplified Systematic Strategy

The simplified systematic strategy uses the systematic
strategy in the first rounds but the greedy strategy in the

last k£ rounds, wherek is a parameter. The function call
ScheduleTarget$SIMPLIFIEDSYSTEMATIG 0} ac a, {Xa taca, k)
in Figure 5 executes the simplified systematic strategy amndoe
used in Figure 2 if one adds the remaining arguments.

Example: Consider again the multi-agent routing problem in
Figure 1 for the MiniMax team objective. Assume that somatstr
egy assigns targefs to agenta; and targets:1, x3 andz. to agent
az2. The simplified systematic strategy with= 2 then schedules
the targets in three rounds. The target scheduled in thedirst is
determined as by the systematic strategy. Thus, targit sched-
uled in the first round. The targets scheduled in the next buads
are determined as by the greedy strategy. Thus, tatgistsched-
uled in the second round, and targatis scheduled in the third
round. The team cost of the resulting schedules ise and thus
the minimal team cost of these assignments.

7. COMPLEXITY ANALYSIS

We now analyze the runtime complexity of our strategies. Re-

member thatn is the number of targets, is the number of agents
andk is the parameter for the simplified systematic strategis
the largest possible coalition size for any target and truusted
by max,ex >, bf from above.

We first consider the strategies for assigning targets. frages

gies haveO(m) rounds. In each round, a strategy evaluates all

combinations 0 (m) unassigned targets aft(n°) coalitions for
the targets. Thus, they evaluadém?n°) partial assignments. The
greedy strategy schedules targets for each assignment fonee

total of O(m?n°®) schedule determinations. The systematic strat-

egy and the simplified systematic strategy greedily corepdeich
partial assignment (in the firéd(m — k) rounds for the simpli-

Function ScheduIQ{Xa}agA)
Input:
{Xa}aeA: the current partial schedules.
Output:
{(Xa,Ca)}aca: the allocations;
lowestevaluationthe team cost of the allocations.
{26} Foreacha € A

{271} Xo :=0;

{28} C, :=10;

{29} =z, := the current location of agent
{30} t, =0;

{31} Foreachz € X

{82} 0. =0;

{33} While ({Xa}aca # {0}aca)

{34} Foreacha € AWith X, # 0

{35} . := the first target inX,;

{36} Oz, =0z, U{a};

{37} If O, is qualified forz,

{38} t' := arg max,/eo,, (tgr +d(ZTyr,za));

{39} Foreacha’ € Og,

{40} tyr =t

{41} X=X U{za};

Eigi ?a’ = Cpr U{zq «— tyr };
Ty, 1= Tq;

{44} removez, from X /;

{45} If the team objective is MiniMax

{46} lowestevaluation= arg max,ca ta;

{47} Else/* the team objective is MiniSum */

{48} lowestevaluation= 3" _ , ta; _
{49} Return ({(Xa, Ca)}aca, lowestevaluation

Function ScheduleTarget§STRATEGY{ )?a Yaca, {Xataca, k)
Input:

STRATEGMhe strategy for scheduling targets;

{)?a }ac a: the current partial schedules;

{Xa}aca: the current assignments;

k : the parameter for the simplified systematic strategy.
Output:

{(Xa,Ca)}aca: the final complete allocations;

lowestevaluationthe team cost of the final complete allocations.
{50} While (| Ugca Xa| > k)
{51} lowestevaluation= oc;
{62} Foreachz € Ugeca X,

{53} Foreacha € A

{54}  Ifze X,

{55} X! = Xa+w;
{56} x! = Xo \ {=};
{57} Else

{58} X; = Xa;

{59} X=X,

{60} If STRATEGY GREEDY
{61} ({(Xa,Ca)}aca,evaluation := Schedulé{X/ }aca);

{62} Else

{63} ({(Xa,Ca)}aca,evaluatior :=
ScheduleTargetSREEDY { X/, }ac a, { X’ Yaca,0);

{64} If evaluation< lowestevaluation

{65} lowestevaluation= evaluation

{66} ¥ =

{67} Foreacha € A

68 If z* € X,

69} Xa = )Za-i-m*;
{70} Xo =X, \ {z*};

{71} If (‘ UaEA Xa‘ > O)

{72} ({(Xa,Ca)}aca,lowestevaluation :=
ScheduleTargetSREEDY { X, }ac 4, {Xa taca,0);

{73} Else

{74 ({(Xa,Ca)}aca, lowestevaluation := Schedulé{ X, }aca);

{75} Return ({(X a4, Ca)}aca, lowestevaluatiojy

Figure 5: Pseudo Code for Scheduling Targets

fied systematic strategy) once with the greedy strategya ftotal
of O(m?*n°) applications of the greedy strategy aBdm*n>®)
schedule determinations.

We now consider the strategies for scheduling targets,imdat
the functionSchedule The runtime of our simple implementa-
tion of this function isO(mnc). The naive strategy calls it once,
for a total runtime ofO(mnc). The other strategies hav@(m)
rounds. In each round, a strategy evaluaiés:) targets. Thus,



Greedy Simplified Systematic ARF
Assignment Assignment
Naive Greedy Simplified Naive Greedy
Scheduling Scheduling Systematic Scheduling Scheduling
Scheduling

Agents | Targets TC RT TC RT TC RT TC RT TC RT TC RT
4 20 || 1320.4 0.00| 1311.6 0.02| 1250.2 0.2| 1124.8 0.08| 1045.7 1.61| 1298.4 1.8
4 30| 1616.0 0.08| 1616.0 0.09| 1587.4 1.7| 1460.6  0.42| 1428.0 7.64| 1524.7 1.8
4 40 || 2019.4 0.01| 2019.4 0.34| 2010.9 8.5| 1750.6  1.22| 1696.3 24.9| 1995.8 1.8
6 20 || 1136.9 0.04| 1190.4 0.08| 1125.2 1.1| 1063.9 1.17| 1001.3 24.3| 1108.5 0.5
6 30 || 14715 0.02| 1471.6 0.45| 1451.6 8.7| 1329.9 4.92| 1272.8 79.09| 1451.2 0.5
6 40 || 1685.5 0.04| 1684.4 1.57| 1685.4 42.8| 1586.4 15.5| 1521.2 454.4| 1646.7 0.5
8 20 || 1060.5 0.02| 1053.4 0.25| 1028.6 3.3 970.1 7.16| 917.2 121.3| 1022.8 0.2
8 30 || 1325.4 0.04| 1343.3 1.24| 1322.0 25.5| 1207.2  28.8| 1150.4 501.5| 1330.9 0.2
8 40 || 1580.4 0.08| 1579.8 4.45| 1570.6  84.5| 1483.5 93.9 — — | 1556.4 0.2
10 20 963.6 0.03] 963.6 0.54| 960.6 7.0 907.8 25.5| 890.4 415.0f 936.7 0.2
10 30|l 1229.6 0.08| 1229.6 2.96| 1193.7 56.5| 1135.7 104.2 — — | 1215.6 0.2
10 40 || 1489.1 0.16| 1485.0 9.68| 1480.2 164.1] 1307.5 340.2 — — | 1489.6 0.2

Table 1: Experimental Results for Multi-Agent Routing Problems with the MiniSum Team Objective

Greedy Simplified Systematic ARF
Assignment Assignment
Naive Greedy Simplified Naive Greedy
Scheduling | Scheduling Systematic Scheduling Scheduling
Scheduling

Agents | Targets|| TC RT TC RT TC RT TC RT TC RT TC RT
4 20 || 367.3 0.00( 367.3 0.02| 345.8 0.2| 320.4 0.09| 316.6 1.82| 385.3 0.4
4 30| 425.1 0.01| 421.4 0.11| 398.8 2.1| 372.9 0.45| 366.0 5.32| 447.1 0.4
4 40 || 529.4 0.02| 528.8 0.35| 492.5 8.0| 455.1  1.40| 452.9 15.5| 545.7 0.4
6 20 || 207.4 0.04| 213.6 0.08| 210.2 1.1} 1824 1.08| 186.3 23.9| 2174 0.1
6 30| 259.6 0.02| 261.6 0.44| 251.0 8.8| 2244 4.27| 215.1 81.2| 268.1 0.1
6 40 || 303.4 0.03| 313.9 1.60| 308.6 40.5| 263.9 15.3| 256.5 400.4| 319.4 0.1
8 20 || 175.4 0.01| 175.3 0.24| 165.6 3.2| 150.1 6.44] 143.1 100.2| 176.7 0.1
8 30| 202.8 0.03| 203.3 1.18| 192.2 20.7| 172.4 26.1| 165.2 433.4| 213.4 0.1
8 40 || 247.4 0.08| 247.4 4.27| 236.1 68.9] 205.1 85.9 — — 2531 0.1
10 20 || 132.4 0.02| 132.2 0.49| 130.4 6.3| 114.3 26.0| 108.2 412.5| 144.4 0.2
10 30| 159.5 0.07| 158.5 2.46| 158.9 50.9| 140.3 101.9 — — | 163.1 0.2
10 40 || 188.9 0.18| 187.4 9.17| 180.7 149.7| 186.9 321.4 — — | 202.1 0.2

Table 2: Experimental Results for Multi-Agent Routing Problems with the MiniMax Team Objective

they evaluateD(m?) partial schedules. The greedy strategy calls two or three units of this capability. For each of these steaa

the functionSchedulefor the partial schedules once, for a total
runtime of O(m®nc). The systematic strategy and the simplified
systematic strategy greedily complete each partial sdbdduthe

first O(m — k) rounds for the simplified systematic strategy) once

with the greedy strategy, for a total runtime@tm’nc).

The runtime of combinations of strategies for assigning and
scheduling targets is their product. fis constant, then the re-
sulting runtimes are polynomial. However, they can be lagge
pecially if the systematic strategy or simplified systematrategy

are used for either assigning or scheduling targets.

8. EXPERIMENTAL RESULTS

We now evaluate our strategies using multi-agent routirdp{pr
lems on known four-neighbor planar grids of size x 51 with
square cells that are either blocked or unblocked. The gesism-
ble office environments with randomly closed doors [4]. Weyva
the number of agents from 4, 6, 8 to 10 and the number of targets
from 10, 20, 30 to 40. There exists only one capability. Eaygma
provides one unit of this capability, and each target rexsuone,

we average over 50 runs with randomly generated cells folothe
cations of the agents and targets and randomly chosen tiesuofi
the capability required by the targets. We introduced tisteste-
gies for assigning targets and four strategies for scheglaéirgets
in this paper. We pick the five combinations with the smaltast
time and let the simplified systematic strategy perform gfstesn-
atic strategy only in the first round, both for assigning ¢asgand
for scheduling targets. We compare these combinations (&
optimized versions of the pseudo code presented earli@ipsty
the most closely related existing work, namely ARF (= Apptoa
with Reaction Functions) [12].

Tables 1 and 2 present the resulting average runtimes (RELn
onds and the resulting average team costs (TC). We terrdieatsh
multi-agent routing algorithm after 1000 seconds if it had ter-
minated by then. The results show that there is a trade-bffden
the runtime of a combination and the resulting team cost.rlihe
time increases only slowly with the number of agents or targe
if the simplified systematic strategy is used neither foigmssg
nor scheduling targets, otherwise it increases quicklying/she



simplified systematic strategy rather than the greedyegyafor
assigning targets reduces the team costs on average by&8ut
percent for the MiniSum team objective and 13-15 percenttfer
MiniMax team objective (everything else being equal). \gsihe
simplified systematic strategy rather than the naive ordyretrat-
egy for scheduling targets reduces the team costs on avbyage
about 1-2 percent for the MiniSum team objective and 4 péeifoen
the MiniMax team objective (everything else being equalye®
all, using the simplified systematic strategy for assigrimgets
results in smaller team costs but larger runtimes than ARR®
MiniSum team objective. All of our combinations result inaier

team costs than ARF for the MiniMax team objective even those

that have smaller runtimes than ARF.

9. CONCLUSIONS

We studied task-allocation problems where one wants to-mini

mize the team cost subject to the constraint that each taskimsu
executed by a given number of cooperative agents simultesheo
We use the same principle to develop several efficient ardtafe
(greedy) hillclimbing strategies for both assigning andestuling
targets, namely the greedy strategy, the systematic gyrated the
simplified systematic strategy. We analyzed their compksiand
showed experimentally that our strategies result in smadam
costs than a previous algorithm on multi-agent routing |enois
with the MiniMax team objective, even those that have smalie-
times than the previous algorithm. It is future work to make o
strategies decentralized to distribute their computatemmong the
agents and thus reduce their runtime.
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