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ABSTRACT

Auctions are an important means for purchasing material in the
era of e-commerce. Research on auctions often studies them in
isolation. In practice, however, auction agents are part of com-
plete supply-chain management systems and have to make the
same decisions as their human counterparts. To address this is-
sue, we generalize results from auction theory in three ways. First,
auction theory provides the optimal bidding function for the case
where auction agents want to maximize the expected profit. Since
companies are often risk-averse, we derive a closed form of the
optimal bidding function for auction agents that maximize the
expected utility of the profit for concave exponential utility func-
tions. Second, auction theory often assumes that auction agents
know the bidder’s valuation of an auctioned item. However, the
valuation depends on how the item can be used in the production
process. We therefore develop theoretical results that enable us
to integrate our auction agents into production-planning systems
to derive the bidder’s valuation automatically. Third, auction
theory often assumes that the probability distribution over the
competitors’ valuations of the auctioned item is known. We use
simulations of the combined auction- and production-planning
system to obtain crude approximations of these probability dis-
tributions automatically. The resulting auction agents are part
of a complete supply-chain management system and seamlessly
combine ideas from auction theory, utility theory, and dynamic
programming.
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1. INTRODUCTION

Our goal is to develop agents that are able to make deci-
sions for far more realistic planning objectives than is cur-
rently possible. We do this in the context of auction plan-
ning. Auctions are an important means for purchasing ma-
terial in the era of e-commerce. Consequently, agents that
automate or support human decision making need to be able
to decide whether to participate in auctions and how much
to bid. If the auction is won, a company might be able to
save money compared to producing the material in house. If
the auction is lost, however, the company might incur large
penalties for not being able to deliver orders on time. Com-
panies are therefore often risk-averse (conservative) when
making these decisions and bid high to increase the chance
of winning the auction. In this paper, we investigate how
to build auction agents for high-stake single-instance deci-
sion situations like these. High-stake decision situations are
situations in which large wins or losses are possible. Single-
instance decision situations are situations that are faced only
once. People typically do not maximize the expected profit
in high-stake single-instance decision situations. Consider,
for example, that you can participate once in one (and only
one) of the following two lotteries without any cost to you:

Expected Expected
Choices Probability Profit Profit Utility Utility
Choice 1 50 percent | $10,000,000 | $5,000,000 0.95 0.475
50 percent $0 0.00
Choice 2 100 percent $4,500,000 | $4,500,000 0.74 0.740

When people have to decide whether they would like to
get 4,500,000 dollars for sure (Choice 2) or get 10,000,000
dollars with fifty percent probability and nothing otherwise
(Choice 1), many people prefer Choice 2 although its ex-
pected profit is clearly lower. They are risk-averse, that is,
willing to accept a decrease in the expected profit to reduce
the variance and thus the possibility of only a small profit.
The recommendations of agents should reflect the risk aver-
sion of people correctly. After all, agents make suggestions
for how to act and should make the same suggestions that
people would have made themselves, otherwise the agents
would not be very helpful.

Utility theory [4, 16] explains why people often do not
maximize the expected profit in high-stake single-instance
decision situations. Utility theory suggests that they max-
imize expected utility, where the utility is a strictly mono-
tonically increasing function of the profit. Nonlinear utility
functions are necessary to model risk-averse people. Ex-
periments show that utility functions in practice are of-
ten approximately logarithmic. We, however, use concave
exponential utility function because of their advantageous



properties. The lottery example, for instance, can be ex-
plained as follows: Assume that a person has a concave ex-
ponential utility function that associates utility (here: plea-
sure) 0.00 with a wealth of 0 dollars, utility 0.74 with a
wealth of 4,500,000 dollars, and utility 0.95 with a wealth
of 10,000,000 dollars. Then the (expected) utility of get-
ting 4,500,000 dollars for sure is 0.74, whereas the expected
utility of getting 10,000,000 dollars with fifty percent prob-
ability is only 0.475. Thus, Choice 2 maximizes the ex-
pected utility for this person, which explains why this per-
son chooses it over Choice 1. Other people can have other
utility functions and thus arrive at a different conclusion.

In this paper, we use results from auction theory and
utility theory to determine the optimal bidding strategy
for auction agents that maximize the expected utility for
a given concave exponential utility function, both for first-
and second-price sealed-bid auctions in the symmetric inde-
pendent private values model. To the best of our knowledge,
only qualitative results were known so far about the result-
ing optimal bidding strategy. However, qualitative results
are insufficient for building risk-averse auction agents. We
therefore derive quantitative results about the optimal bid-
ding strategy. We then use dynamic programming to show
how one can integrate our auction agents into production-
planning systems, which is important because auction the-
ory often studies auctions in isolation but production deci-
sions and results of previous auctions affect the behavior of
auction agents in subsequent auctions. Finally, we use sim-
ulations of the combined auction- and production-planning
system to obtain crude approximations of the probability
distribution over the competitors’ valuations of the auc-
tioned item, resulting in auction agents that are part of a
complete supply-chain management system and seamlessly
combine ideas from auction theory, utility theory, and dy-
namic programming.

2. THE AUCTION MODEL

A suitable auction model for our purposes is the symmet-
ric independent private values (SIPV) model [13]. In this
model:

e only one item is for sale, and the seller is willing to sell
it to the highest bidder for any positive price;

e the number of bidders N > 2 is known to all bidders;

e cach bidder 7 knows their own valuation v; for the auc-
tioned item (that is, the difference in profit between
owning and not owning the item);

e no bidder knows the competitors’ valuations of the
auctioned item, but these valuations are independent
random variables drawn from a given continuous prob-
ability distribution F(v) with density f(v) over the
nonnegative real-valued bids (valuation distribution),
and this distribution is known to all bidders;

e and the bidders are indistinguishable.

The SIPV model has been studied in the context of two
standard types of auctions, namely the first- and second-
price sealed-bid auctions [13]. In these auctions, the bidders
submit secret bids. The highest bid wins the item. The
winner pays the highest bid (“first price”) in the first-price

sealed-bid auction but only the highest losing bid (“second
price”) in the second-price sealed-bid auction.

Both kinds of auctions are modeled as non-cooperative
games with incomplete information, often under the assump-
tion that the behavior of a bidder is determined by a differ-
entiable bidding function. A bidding function b(-) maps the
bidder’s valuation v > 0 of the auctioned item to their non-
negative bid b(v) > 0, resulting in a deterministic bidding
strategy. The optimal bidding functions b*(-) must be in
a Bayes-Nash equilibrium, that is, no bidder can do better
by changing their bidding function provided that the com-
petitors do not change their bidding functions either. The
optimal bidding functions of all bidders are the same due to
symmetry in the SIPV model. Obviously, b*(0) = 0. Fur-
thermore, they are strictly monotonically increasing in the
valuation for both first- and second-price sealed-bid auctions
[13]. It follows immediately that the strategy that maxi-
mizes the expected profit for second-price sealed-bid auc-
tions is to bid the bidder’s valuation, simply because this
strategy dominates all other strategies. Consequently, the
optimal bidding function is the identity function. It is more
complicated to determine the strategy that maximizes the
expected profit for first-price sealed-bid auctions. The opti-
mal bidding function is known to be [13]

Jo F)Ntat )
F)N-1
Note that the bids have to be smaller than the bidder’s val-

uation for first-price sealed-bid auctions since bidding the
valuation results in zero profit.

b*(v) =v—

3. RISK AND UTILITY FUNCTIONS

We suggest that one can use utility theory to model the
bidding strategies of risk-averse auction agents in a princi-
pled way. Utility theory is a subfield of decision theory that
provides a normative framework for rational decision mak-
ing under uncertainty [4, 16]. Its main claim is that every
rational person has a strictly monotonically increasing util-
ity function u(-) that maps profit v into real-valued utility
u(v), so that the person always prefers the alternative with
the highest expected utility. The form of the utility func-
tion determines the risk attitude of the person. A person is
risk-averse if they are willing to accept a decrease in the ex-
pected profit to reduce the variance and thus the possibility
of a large loss. The risk-averse utility functions most often
used in utility theory are probably the concave exponential
utility functions

U(U) = 7’7“7

where the parameter 0 < v < 1 determines the level of
risk aversion [17]. If v approaches one, the person is less
and less risk-averse and, in the limit, maximizes the ex-
pected profit (under appropriate assumptions) [11]. As v
approaches zero, on the other hand, the person becomes
more and more risk-averse. Thus, concave exponential util-
ity functions can model a continuous spectrum of risk aver-
sion. For example, they include the utility function that we
used in the context of the lottery example.



4. RISK-AVERSE BIDDING

Research performed in the context of the SIPV model of-
ten assumes that auction agents want to maximize the ex-
pected profit [13]. We have argued that we can take risk
aversion into account by assuming that they maximize the
expected utility for a concave exponential utility function.
Previous work has shown that the optimal bidding function
for risk-averse auction agents remains strictly monotonically
increasing in the valuation for both first- and second-price
sealed-bid auctions [12]. Again, the strategy that maximizes
the expected utility of the profit for second-price sealed-bid
auctions is to bid the bidder’s valuation, simply because
this strategy still dominates all other strategies. Conse-
quently, the optimal bidding function remains the identity
function. Thus, the bids of risk-averse auction agents and
auction agents that maximize the expected profit are identi-
cal for second-price sealed-bid auctions. However, this is not
the case for first-price sealed-bid auctions. It is known that
the bids of risk-averse auction agents in these auctions are
higher than the bids of auction agents that maximize the ex-
pected profit [12]. While this result explains why risk-averse
auction agents bid high to increase the chance of winning
the auction, it is qualitative in nature and does not spec-
ify the optimal bidding function. In fact, [12] showed that
the optimal bidding function, in general, is the solution of
a nonlinear differential equation which can only be solved
numerically. However, we show in the following that the
optimal bidding function can be obtained in closed form for
risk-averse auction agents with concave exponential utility
functions in the context of first-price sealed-bid auctions in
the SIPV model. We extend the symmetry assumptions of
the SIPV model to include the assumption that all bidders
have the same concave exponential utility function, and con-
tinue to assume that the optimal bidding function b*(-) is
differentiable and thus continuous. Under this assumption,
the optimal bidding function is also strictly monotonically
increasing [12]. Thus, it has a differentiable inverse that we
denote by o(-), and it holds that o(b) = v iff b = b"(v).

Derivation of the Optimal Bidding Function

We now derive the optimal bidding function for auction
agents with concave exponential utility functions in the con-
text of first-price sealed-bid auctions in the SIPV model.
Our derivation parallels the one in [13] but maximizes the
expected utility of the profit rather than the expected profit.
We first determine the probability p(b) with which the auc-
tion agent wins the auction when it bids b. Without loss of
generality, we consider bidder 1. Any competitor 2 <i < N
has valuation v; and thus bids b*(v;). Thus,

= P(b*(_vg_)<b/\.../\b*(UN)<b)
N N
= H P (vi) <b) = H P(v; < (b))

= Flo®)" (2)

p(b) = P< max b*(v;) < b)

Later, we need the derivative of this probability with respect
to b. It is

P'(b) = (N =) F(a(6)" " f(a(b)o’ (b). 3)

The expected utility EU(v,b) of the profit obtained from
bidding b for an item with valuation v is

EU®,b) = p(bu(v - b) + (1 - p®)u(0).  (4)

The optimal bid 8 maximizes FU (v, b) and thus the deriva-
tive of EU (v, b) with respect to b at 3 is zero. Thus,

OBUW.b)|  _,
b |,
p'(B)u(v = B) — p(B)u' (v — B) — p'(B)u(0) =0
p'(B) [u(v — B) —u(0)] = p(B)u' (v — B). (5)

By substituting Equations (2) and (3) as well as v =
o(B) into Equation (5) and then dividing both sides by
F(o(8))V 72, we obtain

(N =1)f(@(B))a’ (B) [u(e(B) — B) — u(0)]
= F(o(B)v'(a(B) - B). (6)

This is a differential equation for o(-), but we are interested
in the differential equation for its inverse b*(-). By sub-
stituting o(8) = v, 8 = b*(v) and ¢'(B) = 1/b*'(v), the
relationship between the derivative of a function and the
derivative of its inverse, into Equation (6), we obtain

(N = 1)f(v) [u(v = b"(v)) — u(0)]
= F(v)u' (v — b*(v))b*' (v). (7)

In general, this differential equation cannot be solved in
closed form. However, we now show how one can obtain
a closed form solution for concave exponential utility func-
tions. In this case, Equation (4) simplifies to

EU(®v,5) = = [p(b)y"™" + (1 — p(b))]- (®)

Similarly, since the derivative of the utility function with
respect to v is u/(v) = —(lny)y", Equation (7) simplifies to

(N =1)f @) [ @ 1] = F@)y* ™" (= my)p™ (v)

(N =1)f() [v* =2 = P} (ny)p™ (v). (9)
We can solve Equation (9) with the substitution
B(v) =~"" " F@)" (10)
For Equation (10), it holds that

7 = ngv)i (11)

and also that
b*(v) = (N —1)log, F(v) —log, B(v). (12)
For Equation (10), it also holds that

B0 = 77 R0 (<6 @y + (- ) H)

B(v) (—b*/(v) Iny+ (N — 1);,((1;)))

and thus




By substituting Equations (11) and (13) into Equation (9),
we obtain

¥ -0 (- ﬂ)
102wy,

= F(U)’yv ((N - 1) F('U) - B(U)

By expanding both sides of the equation, canceling the first
terms and the common factors on both sides, and using
[F()V ™) = (N = 1) f(v)F(v)V 2, we obtain

(N =D)f(0)F ()" ="B'(v)

B =" [F"]

B(v) = c+/ S AR (14)
0
Since F(0) = 0 and thus B(0) = v"*" @O F@©0)N~t = 0, it
follows that C' = 0. By substituting Equation (14) with C' =
0 into Equation (12), we obtain a solution of the differential
equation for b*(v) of the form

b*(v) = (N —1)log, F'(v) —log, /Ov y AR @)V (15)

F

This is the optimal bidding function for risk-averse auc-
tion agents with concave exponential utility functions in the
context of first-price sealed-bid auctions in the SIPV model
and thus the equivalent of Equation (1) for risk-averse auc-
tion agents. Formula (16) shows that the bids are always
smaller than the bidder’s valuation, as expected. It is also
numerically more stable than Formula (15).

Properties of the Optimal Bidding Function

In the following we show that the optimal bidding func-
tion from Equation (15) has two desired properties in the
limit. First, the bidding function approaches Equation (1)
as the auction agent becomes less and less risk-averse and
thus becomes more and more interested in maximizing the
expected profit. This was to be expected. Second, the op-
timal bidding function approaches the identity function as
the auction agent becomes more and more risk-averse, and
the profit is zero in the limit. This is consistent with the
qualitative results in [12].

Case 1

As ~ approaches one, the auction agent becomes less and
less risk-averse. To determine

lim b*(U) — lim (N - 1) lnF(v) —In fov ’YﬁtdF(t)Nfl

y—1 y—1 In~y

— w—log, |14 =20 [T p@N-14e-0g| . (16)
= v—log, W T J, 0% .

note that both its numerator and denominator approach
zero and we can thus apply L’Hopital’s rule to obtain

Jg =ty T rarmN Tt
T JgvtaFmN T

J/erllb(v) B %Lml 1/~

Jy tdF ()Nt

— _ 0

[JdF@N-T T F(y)N-T

which is the same as the optimal bidding function for an
auction agent that maximizes the expected profit, as shown
in Equation (1).

[ RN dt

1000

T

— identity

— - y=09 .

900 -~ y=0.95 s
y=0.975 e

— expected profit [

. . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
valuation

Figure 1: Optimal Bidding Functions

Case 2

As ~ approaches zero, the auction agent becomes more and
more risk-averse. This time, both the numerator and de-
nominator approach minus infinity and we can thus continue
to apply L’Hopital’s rule. We obtain

gyt RN
[V~ —1 N—-1
lim b*(v) = lim Jo' v TdE®)
y—0+ ~—0+ 1/~
Cty TR ()N !

lim —fOU 7 ®)
y—0+ fo y-tdF(t)N-1
C o DFE@NT = T E@N T (T — tny)y)de
i 8 YUF ()Nt — [T F()N (= Iny)y~tdt

i PF@NT = S FONT (T — tny)y ) de
= lim 7

=0+ Fo)N=1 4+ [JF()N=1(Iny)yv—tdt

As v approaches zero, both integrals in the above expression
are well-defined and strictly monotonic with respect to . As
known from real analysis [1], we can exchange the limit and
integral operators. Recall that for any ¢t < v, v —t > 0, so

li vt=0 d lim (1 vTt=o.
oy an 7g&( ny)y

Therefore, it holds that

. « vF(v)N 1
lim b"(v) = —5%—F— =v.
=0+ @) Fv)N-1
Consequently, the optimal bid approaches the bidder’s val-
uation, which decreases the profit to zero but increases the
chance of winning the auction.

Example

To illustrate the optimal bidding function for risk-averse
auction agents in the context of first-price sealed-bid auc-
tions, we assume that the competitors’ valuation distribu-
tion is uniform over the interval [0,1000]. In this case, the
bidding function that maximizes the expected profit is

* 1
bW =1 2,
which can be derived from Equation (1). The bidding func-

tion that maximizes the expected utility of the profit for



risk-averse auction agents is

" viny)V 1
b (o) = o, S =T
v viny
N-1'|1- —_—
(N-1) v ;O i

which can be derived from Equation (15). Figure 1 shows
the optimal bidding functions in case there are four bidders.
Different bidding functions correspond to different levels of
risk aversion. The bidding functions (bids) are always lower
than the identity function (bidder’s valuations), as expected.
If v is approximately one, then the auction agents maximize
the expected profit. As 7 decreases, the auction agents be-
come more and more risk averse, which increases the bids.
These results are consistent with the qualitative claims from
auction theory [12] and the properties of the optimal bidding
functions proved in the previous section. Note that, even in
this simple case, the bids that maximize the expected utility
of the profit are much higher than the bids that maximize
the expected profit, to increase the chance of winning the
auction.

5. APPLICATION

We study a paper mill that uses both paper machines and
cutting machines. Paper machines produce different kinds
of paper rolls out of paper pulp. The cost of switching from
producing one kind of paper to another kind of paper is sub-
stantial, and there are lower and upper limits on the length
of paper that the machines can produce. Cutting machines
then cut wide paper rolls to produce narrower ones. One of
the authors has co-developed a production-planning system
that manages the production process of paper mills (that is,
determines how to use the machines), reducing the produc-
tion cost of paper mills by millions of dollars per year [14].
The production process is driven by orders. Whenever a new
order is placed, the production-planning system updates the
production plan by solving a finite horizon multi-stage op-
timization problem, where the horizon is either fixed or set
to the latest delivery date. If an order cannot be delivered
completely by the negotiated date, the paper mill has to pay
a penalty to the customer.

We use our auction agent for deciding whether the pa-
per mill should participate in auctions to purchase paper
rather than produce it. Consider, for example, a publisher
that places an order for the paper needed to print paper-
back books. Such orders usually contain two different kinds
of paper, namely the paper needed for the covers and the
paper needed for the pages. It can be advantageous for the
paper mill to purchase the paper for the covers, because the
amount of paper needed for the covers is much smaller than
the amount of paper needed for the pages, and it is therefore
expensive to produce the paper for the covers due to both the
minimum length constraints and the switching costs. Com-
bined orders of this kind and the resulting participation in
auctions are a common scenario in the paper industry and
a supply-chain management system must be able to handle
them. We therefore demonstrate in the following how our
auction agents can be integrated into a simplified version of
the existing production-planning system for paper mills.

Assumptions

We assume that bidders are similar, that is, do not only
have the same valuation distributions but also the same ob-

jective function, including the same level of risk aversion.
This assumption is approximately satisfied for our applica-
tion: Paper mills are typically of the same size and have
similar customers, production capacities, and states of the
production process (such as current orders and inventory
levels). They also use similar production-planning methods.

We also assume that auctions are not concurrent or com-
binatorial. This assumption is approximately satisfied for
our application: Paper is sold in small bundles of a fixed
size. Different kinds of paper are sold at different auctions.
Paper mills are typically only members of one auction site
and there is typically only one open auction at any point in
time for any kind of paper at any one auction site.

Production Planning

So far, we have derived the bidding strategy for risk-averse
auction agents in single auctions if they know the bidder’s
valuations of the auctioned items. We now use dynamic pro-
gramming to integrate our auction agents into the existing
production-planning system. This is important because the
bidder’s valuation of an item reflects the difference in profit
between owning and not owning the item, and thus depends
on how the item can be used in the production process. By
integrating our auction agents into a production-planning
system, we allow them to derive the bidder’s valuation of an
item automatically.

The production-planning problem can, in principle, be for-
mulated as a discrete-time Markov decision problem (MDP)
with a limited time horizon, that can then be solved with
standard techniques from dynamic programming [5, 8]. The
MDP process starts at time 0. At time ¢, the process is
in some state s € S and the agent can choose an action
a € Ai(s) for execution. The execution then results in a
transition to state s’ € S¢(s,a) with probability P;(s'|s,a),
the agent receives an immediate profit of r according to the
profit distribution 7.(r|s, a, s’), and the time is increased by
one. Execution stops at time 7"+ 1, and the agent can no
longer obtain any immediate profits, where T is the planning
horizon. In the context of production planning for paper
mills, for example, the states correspond to the inventory
levels and the status of the various machines, the actions
correspond to decisions about how to use the machines, and
profits correspond to payments as well as production costs.

Suppose the state of the MDP process at time ¢ is s and
the agent executes action a; and receives immediate profit
r¢. If the agent wants to maximize the expected sum of the
immediate profits, that is, the expected profit, the agent
has to maximize the following expectation along all possible
state sequences {so, S1, ..., ST+1}:

T
ET(),“.,’I‘T E Tt|
t=0

where the decision variables are the actions a: € A¢(s¢) at
time t = 0,...,7. This can be done with techniques from
dynamic programming because the immediate profits are
additive, resulting in the one-step decomposition

T
Evy,..rr Zrt = E, . .rp
t=0




Based on this decomposition, dynamic programming calcu-
lates a value function V; which maps state s at time ¢ to the
largest expected profit that the agent can obtain if execution
starts in state s at time ¢t. The value functions are recur-
sively defined by the following equations, known as Bellman
Equations [2]:

Vi(s) = max E,.u[r+ Viti(s)]
a€A(s)
VT+1 (S) = 0
for all times ¢t = 0,...,7T and all states s, where s’ € S;(s,a).

To maximize the expected profit, the agent should then
execute the action a € Ai(s) at time ¢ that maximizes
E’r,s’ [T‘ -+ ‘/;5_0_1(8/)}.

Risk-Averse Production Planning

We have assumed that the agent is risk-averse with a con-
cave exponential utility function. Thus, the agent does not
maximize the expected profit but rather the expected utility
of the profit and thus the expectation

In general, this objective cannot be decomposed. However,
it is known that it can be decomposed for utility functions
with the delta property [9] or, equivalently, constant local
risk aversion [15]. The only utility functions that have this
property are the linear ones, concave exponential ones and
convex exponential ones. The objective can thus be decom-
posed for concave exponential utility functions, resulting in
the one-step decomposition

T
ETO,A“,TT |:u <Z Tt)
t=0

=F

70, T

[_,YZ —o Tt]

T
- E’r‘o ’YTO E'r1 ..... Ll |: H,}/Tt:|:|
t=1
T
- E’V‘(] Yy E’rl ..... T |:’LL <Z Tt>:|:| .
t=1

Based on this decomposition, one can continue to apply
dynamic programming, this time by calculating a value func-
tion V; which maps states s at time ¢ to the largest expected
utility of the profit if execution starts in state s at time ¢.
The value functions are recursively defined by the following
equations:

Vi = E,. o |7y Vi ! 17
+(s) JDax I, [V Vit (s)] (17)

Vesi(s) = u(0)=—1 (18)
for all times ¢t = 0,...,7T and all states s, where s’ € S;(s,a).

To maximize the expected utility of the profit, the agent
should then execute the action a € A(s) at time ¢ that max-
imizes E, o [Y"Vi41(s)]. In previous work, we have applied
similar dynamic programming methods to sensor planning
[10].

Risk-Averse Bidding and Production Planning

We now integrate risk-averse bidding into the risk-averse
production planning system derived so far and show how to
determine the bidder’s valuation for an auctioned item au-
tomatically. We do this by deriving the optimal bid directly
and then calculating the bidder’s valuation based on the op-
timal bidding function. It turns out that we can reuse the
results that we have derived in the context of isolated auc-
tions, and that the resulting valuations have very intuitive
interpretations.

We can easily integrate bidding into the risk-averse dy-
namic programming formulation of production planning, as
given by Equations (17) and (18). Some times ¢ now cor-
respond to auctions. The actions at these times correspond
to the possible bids b, and a bid of zero corresponds to the
decision not to participate in the auction. The actions have
uncertain outcomes. With probability p(b) the auction is
won. In this case, the immediate profit is the negative of
the paid price p and the inventory level increases by the
auctioned item (resulting in state s;). With the comple-
mentary probability 1 — p(b) the auction is lost. In this
case, the immediate profit is zero and the inventory level
does not change (resulting in an unchanged state s). Con-
sequently, the value functions for the times when the agent
participates in auctions are recursively defined by the fol-
lowing equations:

Vi(s) = max By [y Vira(s)]
= max By [Byly 71 Vi (s)]
= max [pB) Bl s+ Visi(s+)
+(1 = p(B) 3] Vi (5)]
= max [p(0)Ely s+ Vis (s4)

+(1 = p() Vi (5)].
For simplicity, we define
EUu(5,b) = p(b) Ely |5+ Vi (5) + (1 — p(6)) Vi (5)

so that Vi(s) = max, EUy(s,b). The price p if the auction is
won and thus EU,(s,b) depend on the kind of auction. We
therefore study first- and second-price sealed-bid auctions
separately. Note that a similar formulation can also be used
to model the option of buying an item for a given price.

First-Price Sealed-Bid Auctions

In this case, p = bif the auction is won and thus E[y?|s4] =
4t Therefore,

EUs,b) = p(b)y™"Visa(s4) + (1= p(b)) Vi (s)
_ Vigi(s4) -
= O+ W= )|V (o)

Comparing the expression with Equation (8) yields

Vita(sy)
EU(s,b) = EU ( log, ———=,b | (—V4 .
(5.6) = 50 (g, 52080 (Vi (o)
Vit1(s) is negative according to Equation (17) and (18).
Thus, —Vi+1(s) is positive, and the bid that maximizes the
first factor also maximizes EUy(s,b). So far, we have not
made any assumption about the competitors. Because we



have no further information, the best we can do is to assume
that these valuations are characterized by valuation distri-
butions. We make the simplifying assumption that all val-
uation distributions and risk attitudes are the same, which
allows us to use the optimal bidding function from Equa-
tion (16) to determine the optimal bid. It is

B="0" <10g —VtH(SJr)) .

7 Viga(s)
The bidder’s valuation therefore is
Vi
o = log, LD 1o v (s,)] — log, [~ Vi (s)]

7 Viga(s)
= u (Vs (s4)) —u™ (Visa(s)).

In utility theory, the expression v~ (z) is called the certainty
equivalent of the expected utility . The bidder’s valuation
therefore is simply the difference in certainty equivalents of
the state that results when the item is won and the state
that results when the item is not won.

Second-Price Sealed-Bid Auctions

In this case, assume that the bid of the auction agent is b,
and the highest bid made by others is ¥’. Then p = b’ if the
auction is won and

By Pls+] = BRI <)
So,
EU.(s,0) = p(D)Ely ™" b < 0]Vira(s+) + (1 — p(b))Vira(s).
Recall that, for a random variable x with distribution F'(z),
the conditional expectation of a function g(z), given that
event A happens is

Blg(e) ) = 1A e

Thus, the conditional expectation in EU;(s,b) can be calcu-
lated as

POV o < 1) = / Y dp(H)

J0o

b ’
= ) — / (V) (~ny)y~ db’

b ’
v "p(b) +1n7/ p(b")y ™" db'.
0

Therefore,

EU(s,b) = {fbp(b) +1Iny /Ob p(b')f”/db'] Vis1(s4)

(1= p(B)Vira(s).
The optimal bid § maximizes EU;(s,b) and thus the deriva-
tive of EU¢(s,b) with respect to b is zero:

OEU,(s,b)

5 = [(=Iny)yp(8) +~7"0'(8)

b=p

+ (W)Y P p(B)Vig (51) — p'(B) Vit (5)
=0 (B)(v Visa(s1) — Visa(s)) = 0.

The solution to the above equation is

B Viv1(sy)
f=logy TS

=u (Viga(sy)) — u™ (Viga(s)).
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Figure 2: Estimated Valuation Distribution

Since the optimal bidding function for second-price sealed-
bid auctions is the identity function [12], the bidder’s valu-
ation is again the difference in certainty equivalents of the
state that results when the item is won and the state that
results when the item is not won.

Estimating the Valuation Distributions

Auction theory often assumes that the competitor’s valua-
tion distributions are known. We use simulations to obtain
crude approximations of them automatically. This can be
done because we assume that all bidders have similar valu-
ation distributions and we can thus approximate the com-
petitors’ valuation distributions with the one of the bidder
in question, averaged over all states of the production pro-
cess. We have already shown that the bidder’s valuation of
an item is the difference in certainty equivalents of the state
that results when the item is won and the state that results
when the item is not won, in the context of both first- and
second-price sealed-bid auctions. We therefore use Monte-
Carlo simulations of the combined auction- and production-
planning process to sample these certainty equivalents and
then approximate the distribution of their differences with
the observed frequencies. We only simulate the production
process but not the participation in auctions and therefore
estimate the valuation distributions under the assumption
that there are no subsequent auctions. Our estimates thus
provide only crude approximations of the valuation distri-
butions. There are alternatives to our approach. [6] esti-
mates the bid distribution directly and, for risk-averse auc-
tion agents with concave exponential utility functions, could
then use this information to obtain the valuation distribu-
tion. [7] uses fictitious play to obtain the optimal bidding
strategy directly without having to estimate the valuation
distribution but does so only for auction agents that maxi-
mize the expected profit.

Experimental Results

We have implemented our auction agents using heuristic
search instead of dynamic programming. Solving combined
auction- and production-planning problems optimally is NP-
hard in general but heuristic search methods can focus the
search and thus are generally somewhat faster than dynamic
programming methods. To find optimal solutions, one needs
to use heuristics that underestimate the costs, or synony-
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Figure 3: Optimal Bidding Functions

mously, overestimate the rewards. We used heuristics that
were based on linear programming relaxations, which overes-
timate the expected profit and thus also the certainty equiv-
alents for risk-averse auction agents.

We applied the resulting system to a simple problem in-
volving a paper mill that has one paper machine and one
cutting machine. Figure 2 shows the valuation distribution
that we obtained. It is interesting to note that the auc-
tion agents can value an auctioned item as low as 0 dollars
if orders can be satisfied easily and higher as 1000 dollars
if orders cannot be delivered on time without the auctioned
item and the paper mill then incurs large penalties. Figure 3
shows the resulting bidding function in case there are four
bidders in a first-price sealed-bid auction whose valuation
distributions are given in Figure 2. Different bidding func-
tions correspond to different levels of risk aversion. Similar
to our earlier example, the bidding functions (bids) are al-
ways lower than the identity function (bidder’s valuations).
If v is approximately one, then the auction agents maxi-
mize the expected profit. As ~ decreases, the auction agents
become more and more risk averse, which increases the bids.

6. CONCLUSIONS

In this paper, we developed the theory for auction agents
that are part of a complete supply-chain management sys-
tem and seamlessly combine ideas from auction theory, util-
ity theory, and dynamic programming. First, we used re-
sults from utility theory to derive the optimal bidding strat-
egy in closed form for risk-averse auction agents, both for
first- and second-price sealed-bid auctions in the symmet-
ric independent private values model. To the best of our
knowledge, only qualitative properties were known so far
about the optimal bidding strategy, which was insufficient
to implement auction agents. Second, we used dynamic pro-
gramming to integrate the resulting auction agents with a
production-planning system. Third, we used simulations of
the combined auction- and production-planning system to
obtain crude approximations of the competitor’s valuations
distributions of the auctioned item.

Our work so far has used simple but reasonable models of
auctions and production processes. For some applications,
our assumptions might be simplifying. For example, we have
assumed that there are no constraints on the bids. In prac-
tice, however, the bids are often constrained by the avail-

able budget [3]. The theory developed in this paper then
still provides a heuristic for building supply-chain manage-
ment systems that combine auction planning and production
planning, and might therefore be a good starting point to
build auction agents for more complex decision situations.
In future work, we intend to relax some of our assumptions
and build even more powerful auction agents.
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