
A Comparison of Fast Search Methods for Real-Time Situated Agents

Sven Koenig∗

Computer Science Department, University of Southern California
941 W 37th Street, Los Angeles, California 90089-0781

skoenig@usc.edu

Abstract

Real-time situated agents, including characters in real-time
computer games, often do not know the terrain in advance but
automatically observe it within a certain range around them.
They have to interleave planning with movement to make plan-
ning tractable when moving autonomously to user-specified co-
ordinates. Planning faces real-time requirements since it is impor-
tant that the agents be responsive to the commands of the users and
move smoothly. In this paper, we compare two fast search methods
for this task that speed up planning in different ways, namely real-
time heuristic search (LRTA*) and incremental heuristic search
(D* Lite), resulting in the first comparison of real-time and incre-
mental heuristic search in the literature. We characterize when to
choose which search method, depending on the kind of terrain and
the planning objective.

1. Introduction

Consider path planning for characters in real-time com-
puter games such as Total Annihilation, Age of Empires
or Dark Reign. These real-time situated agents often do
not know the terrain in advance but automatically observe
it within a certain range around them and then remember
it for future use. To make the agents easy to control, one
needs to give them the capability to understand and exe-
cute high-level user commands. For example, the users can
click on certain coordinates in known or unknown terrain
and the agents then move autonomously to these coordi-
nates. These path-planning problems are interesting because
they are different from the traditional off-line search prob-
lems encountered in fields other than autonomous agents.
In particular, our agents might not know the terrain ini-
tially and the resulting large number of contingencies makes
planning difficult. Finding optimal plans is often intractable
since the agents would have to find large conditional plans
to solve the planning tasks. However, planning faces real-
time requirements since the agents need to be responsive

∗ This research has been partly supported by an NSF award to Sven
Koenig under contract IIS-0350584. The views and conclusions con-
tained in this document are those of the author and should not be inter-
preted as representing the official policies, either expressed or implied,
of the sponsoring organizations, agencies, companies or the U.S. gov-
ernment.

to the commands of the users and move smoothly. Thus,
they need to use planning techniques that make planning
fast by sacrificing the optimality of the resulting plans. In
this paper, we describe an agent architecture that interleaves
planning with movement and then compare two fast search
methods that can be used as part of this agent architecture.
As the agents move in the terrain, they observe more of
it, which speeds up planning during subsequent planning
episodes since it reduces the number of possible contingen-
cies. The resulting paths are likely not optimal but this is of-
ten outweighed by the computational savings gained. The
first technique that we study is real-time heuristic search,
which makes planning efficient by limiting the search hori-
zon. The second technique is incremental heuristic search,
which makes planning efficient by reusing information from
previous planning episodes to speed up the current one. We
compare a simple version of the real-time heuristic search
method LRTA* [16] from artificial intelligence experimen-
tally to the real-time heuristic search method D* Lite [14]
from robotics, resulting in the first comparison of real-time
and incremental heuristic search in the literature. We char-
acterize when to choose which one of the two search meth-
ods, depending on the kind of terrain and the planning ob-
jective.

2. Planning Problem and Agent Architecture

We study fast search methods that move real-time sit-
uated agents autonomously to user-specified coordinates in
initially unknown terrain. The terrain is discretized into cells
that are either blocked or unblocked, a common practice in
the context of real-time computer games [2]. We assume for
simplicity that the agents can move in the four main com-
pass directions with equal cost and thus operate on four-
connected grids. As heuristic estimate of the distance of two
cells we use the sum of the absolute differences of their
x and y coordinates (Manhattan distance). The agents ini-
tially do not know which cells are blocked. They always
know which (unblocked) cells they are in, sense the block-
age status of their neighboring cells, and can then move to
any one of the unblocked neighboring cells. Their task is
to move to a given goal cell. To make planning tractable,

goal goal goalA

B

C

D

1 2 3 4 5 6

Figure 1. Obvious Planning Approach

we use an agent architecture that always assumes that cells
whose blockage status has not been observed yet are un-
blocked (freespace assumption) [15]. If an action execution
(movement) does not have the desired effect during plan ex-
ecution because this assumption does not hold, the agents
stop executing the plan and repeat the planning process from
their new states, until the planning task is solved. Thus, they
interleave planning with movement. They cannot inadver-
tently execute actions that make it impossible for them to
reach the goal cell since our grids are undirected. The sim-
plicity of our planning problem helps us to compare real-
time and incremental heuristic search rigorously even those
both search methods also apply to more complex scenar-
ios, such as dynamically changing grids with more complex
topologies and nonuniform edge costs as well as agents with
larger sensor ranges. Thus, both of them can also be used in
the presence of other agents.

3. Incremental Heuristic Search

One obvious approach to solving our planning problem
is to always plan a complete path from the current cells of
the agents to the goal cell. Since the agents always assume
that all cells whose blockage status they have not observed
yet are unblocked, they determine a shortest presumed un-
blocked path (a path that does not pass through cells that
are known to be blocked) from their current cells to the goal
cell and then move along it until they either reach the goal
cell or observe that their current path is blocked. If they can-
not find any presumed unblocked path, then there is no path
from their start cell or, alternatively, their current cell to the
goal cell. Figure 1 shows an example. The circle denotes the
agent. Black cells denote blocked cells that the agent has al-
ready observed, and grey cells denote blocked cells of which
the agent does not yet know. The arrows show the paths of
the agent between replanning episodes.

Some theoretical properties of this planning approach
have been studied in the literature. It is easy to show that
the planning approach either moves agents to the goal cell or
correctly reports that this is impossible. The resulting paths
are reasonably short. In particular, the worst-case length
of a path on graphs with n (blocked or unblocked) ver-
tices is O(n log2

n) on general graphs and O(n log n) on
planar graphs, including grids [18]. The planning approach

can be implemented efficiently with the incremental heuris-
tic search methods focused Dynamic A* (D*) [22] and D*
Lite [14], that both reuse information from previous plan-
ning episodes to speed up the current one. This is possible
because the agents typically discover only a small number
of blocked cells between planning episodes, and successive
planning problems are thus very similar. D* is widely used
in mobile robotics, including DARPA’s Unmanned Ground
Vehicle (UGV) program, Mars rover prototypes, and tacti-
cal mobile robot prototypes [9, 23]. We use D* Lite in our
comparison since D* and D* Lite are about equally efficient
but D* Lite is somewhat easier to understand.

4. Real-Time Heuristic Search

Another obvious approach to solving our planning prob-
lem is to plan only the beginning of a path from the cur-
rent cells of the agents to the goal cell. This is sometimes
called agent-centered search and can be done by restrict-
ing planning to the part of the terrain around the current
cells of the agents (local search) [12]. The agents deter-
mine the local search space, search it, decide how to move
within it, and move along this path until they either leave
the local search space or observe that their current path
is blocked. They repeat this process until they reach the
goal cell. Real-time heuristic search is an agent-centered
search technique that stores a value in memory for each state
that it encounters during planning and uses techniques from
asynchronous dynamic programming to update the values
as planning progresses to make them more informed and,
this way, avoid cycling forever. Learning Real-Time A*
(LRTA*) [16] is probably the most popular real-time heuris-
tic search method. The values of its states approximate the
goal distances of the states. They can be initialized with a
heuristic approximation of the goal distances to focus plan-
ning towards the goal cell.

Some theoretical properties of LRTA* have been studied
in the literature. While LRTA* cycles forever if the goal cell
cannot be reached, one can show that it moves the agents to
the goal cell if it always updates at least the value of its cur-
rent cell and the goal cell can be reached from every cell.
The worst-case length of its paths on graphs with n un-
blocked vertices and diameter d is O(nd) [13]. Real-time
heuristic search methods have been used in artificial intel-
ligence to solve large search tasks, including the twenty-
four puzzle [17] and STRIPS-type planning tasks [4]. Sim-
ple versions of real-time heuristic search methods have also
been studied in the context of situated agents [11, 7, 1].

Many versions of LRTA* have been suggested in the
literature [11] since there are a large number of design
choices, including how to determine the local search spaces
and the values of which states in them to update. Since we
compare LRTA* with a computationally intensive search
method, we decided to design a version of LRTA* that is

Fast implementations of the following version of LRTA* do not initial-
ize all values up front since many states might not get encountered during
the search. Rather, they initialize a value only when it is needed for the first
time. From then on, they retain the value in memory so that they can up-
date it during the search.

1. Perform an A* search from the current state toward the goal state
until either n states have been expanded or the goal state is about to
be expanded. The expanded states form the local search space.

2. Use Dijkstra’s algorithm to replace the value of each state in the lo-
cal search space (that is, a state expanded in the first step) with the
sum of the distance from the state to a state s that borders the lo-
cal search space and the value of state s, minimized over all states s

that border the local search space.
3. Follow the following path until the agents either leave the local

search space or discover that the path is blocked, namely a short-
est path from the current state to a state s that borders the local search
space and minimizes the sum of the distance from the current state to
state s and the value of state s, minimized over all states s that bor-
der the local search space. This path is followed automatically if the
agents use the greedy strategy that repeatedly moves from the cur-
rent state to the neighboring state s that minimizes the sum of the
distance from the current state to state s and the (new) value of state
s. (Ties should be broken so that the agents move along the edges of
the A* search tree and thus stay in the local search space for as long
as possible.)

4. If the current state is different from the goal state, then go to the first
step, otherwise terminate successfully.

Figure 2. A Version of LRTA* (1)

also computationally intensive. Figure 2 describes the four
steps of this version of LRTA* in more detail, which was in-
spired by an algorithm in [21].

It has not been studied extensively what the local search
spaces of LRTA* should be. LRTA* is most often used with
local search spaces that contain only the current states of
the agents but their sizes should really be optimized for the
planning objective. There have been some suggestions for
choosing larger local search spaces [21, 20, 10] but they
typically do not satisfy hard real-time constraints where
only a certain amount of time is available for each plan-
ning episode. The easiest way of limiting the planning time
is to limit the size of the local search spaces but this leaves
open the question exactly which cells the local search spaces
should contain. It makes sense that the local search spaces
are continuous parts of the terrain that contain the current
cells of the agents since these parts of the terrain contain
the cells that the agents might soon be in and are thus im-
mediately relevant for them in their current situations. In
the following, we describe a simple way of choosing the
local search spaces, namely by performing an A* search
[19] from the current states of the agents toward the goal
state until n states have been expanded, where n is an exter-
nal parameter, called the lookahead. The idea behind using
A* in the first step of our version of LRTA* is to try to re-
ject the current path if additional planning time is available.
The agent eventually moves towards a state s that borders
the local search space and minimizes the sum of the dis-
tance from the current state to state s and the value of state

goal

goal

goal

3 05 4 3 3 3 2

5 3 5 2

3 1 04 3 2

3 2

1

06 4 4 3 2 2

2

8 5

8 5

06 7 8

2

5

5

09 7 8

2

5 5

7 6

7 6

7 5

9 7

07 8

2

7

6

6

5

7

goal
09 7 8

2

9 7

7 6

7 6

5 5

9 7 7 6

9 7

7 5

07 8

2

7

6

8

7

7 6

7

5

A

B

C

D

1 2 3 4 5 6

Figure 3. A Version of LRTA* (2)

s, minimized over all states s that border the local search
space. This is a state that was generated but not expanded
by the A* search and has the smallest f-value among all
such states. Consequently, it is the state that the A* search
would expand next if it were allowed to expand one addi-
tional state, which could change the current path. The lo-
cal search space then consists of the expanded states. The
idea behind using Dijkstra’s algorithm in the second step of
our version of LRTA* is to update the values of all states in
the local search space to make them locally consistent [20]
and thus propagate as much information as possible.

Figure 3 gives the beginning of an example of how our
version of LRTA* operates. The lookahead is three. The left
column shows how the agent moves, similar to Figure 1.
The center column shows the results of the A* searches.
Each cell with a cached value is labeled with it in the upper
right corner. Each cell generated during an A* search is la-
beled with its f-value in the upper left corner. The arrows go
from parents to their children in the search tree. The right
column shows the results of Dijkstra’s algorithm. Each cell
with a cached value is labeled with it in the upper right cor-
ner. Each cell in the local search space has exactly one in-
coming arrow that shows the cell whose value was used to
update its value. Note that only the beginning of the path of
the agent is shown. The complete path is longer than the one
from Figure 1.

Both A* and Dijkstra’s algorithm expand each state at
most once and are thus efficient. They have an interesting
interface: Dijkstra’s algorithm needs to initialize its prior-

goalA

B

C

1 2 3 4 5 6

3 1 2

7 5 5 4 3 3 3 2

1 2 3

5 6 7 8

Figure 4. Interfacing A* and Dijkstra (1)

goalA

B

C

1 2 3 4 5 6

5 4
goal

5 5

7 57 6 7 4 7 3

9 4 9 3 9 2

9 1

8
goal

9

78 6 5

4 3 2

1

Figure 5. Interfacing A* and Dijkstra (2)

ity queue with the states that border the local search space
but these are exactly the states is the priority queue of A* af-
ter A* terminates. Thus, Dijkstra’s algorithm can reuse the
priority queue of A*. However, it needs to change the pri-
orities of the states in the priority queue. It appears that Di-
jkstra’s algorithm should be able to reuse more information
gathered during the A* search, such as the order in which
A* expanded the states or the A* search tree. However, it is
currently unclear how to exploit these ideas. Figure 4, for in-
stance, gives an example of LRTA* with lookahead three in
known terrain where the order in which Dijkstra’s algorithm
updates the states is different from both the order and the re-
verse of the order in which A* expanded the states. (The
circled numbers show this order.) Similarly, Figure 5 gives
an example of LRTA* with lookahead 9 in known terrain
where the value of cell B1 gets calculated from the value of
cell B2 even though these cells are not connected in the A*
search tree.

5. Experimental Comparison

The ideas behind real-time and incremental heuristic
search could, in principle, be combined by restricting plan-
ning to the part of the terrain around the current cells of
the agents and reusing information from previous plan-
ning episodes to speed up the current one. However, cur-
rent incremental heuristic search methods require that the
root of the search tree does not change, although there has
been some recent progress on relaxing this restriction [6].
Thus, incremental heuristic search is commonly used by
searching from the goal cell towards the current cells of
the agents, which does not work in conjunction with real-
time heuristic search. The question then arises when to
use real-time heuristic search and when to use incremen-
tal heuristic search. Incremental heuristic search has ad-
vantages over real-time heuristic search: Since incremen-
tal heuristic search plans a complete path, it can easily dis-

Figure 6. Maze (l) and Random Obstacles (r)

cover that the goal state cannot be reached from the current
state. On the other hand, real-time heuristic search also has
advantages over incremental heuristic search: Since real-
time heuristic search plans only in the state space around
the current cells of the agents, the sizes of the local search
spaces can be freely determined, depending on how fast
planning has to be. Thus, real-time heuristic search can sat-
isfy hard real-time requirements in terrain of any size by
choosing sufficiently small local search spaces (potentially
at the cost of longer paths) while the planning time of in-
cremental heuristic search increases with the size of the ter-
rain. We now compare our version of LRTA* with the opti-
mized final version of D* Lite as published in [14]. We use
standard binary heaps to implement the priority queues of
both search methods and test them on two different kinds
of grids: one in which the heuristics can be very misleading
and one in which they are generally not misleading. In each
case, we average over 1000 (for mazes) and 5000 (for grids
with random obstacles) randomly generated four-connected
grids of size 301×301 with randomly chosen start and goal
states with the restriction that there is a path from the start
state to the goal state. In the following, we describe our re-
sults in detail. We measure all times in microseconds and all
distances in number of movements.

6. Mazes

We first use acyclic mazes as test domains whose cor-
ridor structure was generated with depth-first search. Fig-
ure 6 (left) shows an example (of smaller size than used
in the experiments). As heuristic approximation of the dis-
tance of two states we consider the Manhattan distance, that
is, the sum of the differences of their x- and y-coordinates
(strong heuristics). We also consider the maximum of the
differences of their x- and y-coordinates (weak heuristics).
The strong heuristics dominate the weak heuristics, and thus
A* with the strong heuristics expands fewer states than A*
with the weak heuristics but finds paths of the same lengths.
D* Lite is an incremental version of A*, and experimentally
D* Lite with the strong heuristics also expands fewer states
than D* with the weak heuristics but finds paths of about

(a) = state expansions per planning episode (lookahead), (b) = average planning time, and (c) = average number of
movements (path length).

mazes grids with random obstacles
strong heuristics weak heuristics strong heuristics weak heuristics

(a) (b) (c) (b) (c) (b) (c) (b) (c)

D* Lite
- 357417.38 21737.53 373560.62 21140.40 36825.63 308.98 40737.34 313.78

LRTA*
1 985361.73 1987574.25 628175.97 1259958.00 28279.51 498.55 28292.81 363.16
3 640567.24 931230.38 477551.83 685570.04 28380.11 377.15 28446.67 363.30
5 441522.49 594675.73 366611.13 477525.03 28435.03 337.67 28568.88 339.47
7 395581.98 499083.52 321784.17 382949.65 28536.61 329.00 28658.00 327.50
9 358532.52 422475.56 296545.64 321547.69 28617.42 322.19 28769.02 318.39
11 313997.99 337704.16 277974.35 272841.73 28698.35 315.32 28877.77 315.32
13 302791.98 303562.40 276238.32 252374.66 28785.79 310.35 29008.12 315.57
15 290252.67 268652.32 281280.60 239072.72 28873.00 307.15 29118.05 314.14
17 284827.58 243952.42 277453.57 215615.93 28966.89 305.47 29226.43 311.46
19 276990.44 217852.00 280483.72 199517.41 29056.67 303.58 29341.93 311.65
21 279855.69 205370.41 273280.22 177142.96 29152.59 302.27 29476.83 311.11
23 285321.52 196601.90 283999.33 171600.71 29241.04 301.54 29585.83 310.20
25 274999.82 169685.19 283950.17 155736.31 29332.52 300.77 29701.80 309.44
27 293554.47 176642.26 292767.20 151277.34 29428.39 300.24 29822.47 309.43
29 293262.79 163418.55 296116.07 140895.33 29524.39 299.44 29949.31 309.84
...

Table 1. Results for Different Heuristics

the same lengths. However, Table 1 shows that this is not
the case for LRTA*. LRTA* with the strong heuristics tends
to expand more states than LRTA* with the weak heuristics
but finds longer paths, at least for smaller lookaheads. The
reason for this is that the relative differences of the heuris-
tic values are much more important for focusing the search
of LRTA* than their absolute values. Because the heuristics
can be misleading in mazes, it is better if the differences of
the heuristic values are small because LRTA* can then cor-
rect them faster. A similar phenomenon had previous been
described for searching the eight-puzzle with LRTA* [13].
We use D* Lite and LRTA* with the heuristics that worked
best for them. Thus, we use D* Lite with the strong heuris-
tics and LRTA* with the weak heuristics.

Table 2 tabulates our results.1 Comparing the planning
time of D* Lite and LRTA* is difficult because the search
spaces are relatively small. The reason for this is that maps
of real-time computer games fit into memory and planning
for each game character has to be fast, especially if the num-
ber of characters is large. Then, however, the scaling behav-
ior of the search methods is less important than the hard-
ware and implementation details – including the data struc-
tures, tie-breaking strategies, and coding tricks. To avoid
this problem, one often uses proxies instead of the planning
time itself, such as the number of state expansions. This is
not possible in our case since D* Lite and LRTA* operate in
very different ways, which forces us to compare their plan-
ning times directly. However, Figure 7 shows that the plan-
ning time of LRTA* with different lookaheads appears to
be roughly proportional to its number of state expansions,
which gives us hope that different hardware and implemen-
tation details change the planning time of LRTA* by only a

1 Note that the number of state expansions can be smaller than the prod-
uct of the lookahead and the number of planning episodes because,
around the goal state, the number of state expansions per planning
episode is smaller than the lookahead since state expansion stops once
the goal state is about to be expanded.

(a) = state expansions per planning episode (lookahead) (b) = average number of state expansions, (c) = average num-
ber of planning episodes (d) = average number of movements (path length), (e) = average number of movements per
planning episode, (f) = average planning time, (g) = average planning time per planning episode, and (h) = average plan-
ning time per movement.

(a) (b) (c) (d) (e) (f) (g) (h)

D* Lite
- 230893.54 6606.37 21737.53 3.29 357417.38 54.10 16.44

LRTA*
1 1259958.00 1259958.00 1259958.00 1.00 628175.97 0.50 0.50
3 1012633.01 337544.61 685570.04 2.03 477551.83 1.41 0.70
5 765644.80 153129.55 477525.03 3.12 366611.13 2.39 0.77
7 658618.41 94089.35 382949.65 4.07 321784.17 3.42 0.84
9 588810.14 65424.97 321547.69 4.91 296545.64 4.53 0.92
11 531955.23 48361.94 272841.73 5.64 277974.35 5.75 1.02
13 518431.33 39882.58 252374.66 6.33 276238.32 6.93 1.09
15 517913.09 34531.72 239072.72 6.92 281280.60 8.15 1.18
17 495466.48 29150.37 215615.93 7.40 277453.57 9.52 1.29
19 487622.82 25670.60 199517.41 7.77 280483.72 10.93 1.41
21 459565.74 21891.42 177142.96 8.09 273280.22 12.48 1.54
23 470419.04 20461.61 171600.71 8.39 283999.33 13.88 1.66
25 456751.93 18279.86 155736.31 8.52 283950.17 15.53 1.82
27 465707.78 17259.47 151277.34 8.76 292767.20 16.96 1.94
29 460964.20 15907.64 140895.33 8.86 296116.07 18.61 2.10
31 469144.66 15147.32 135554.16 8.95 310131.20 20.47 2.29
33 460947.12 13983.02 125789.79 9.00 304691.69 21.79 2.42
35 474447.93 13571.97 123304.98 9.09 315807.85 23.27 2.56
37 492481.84 13327.82 122274.35 9.17 329287.75 24.71 2.69
39 514415.51 13209.17 122839.82 9.30 344388.42 26.07 2.80
41 512638.46 12523.62 114917.08 9.18 348330.44 27.81 3.03
43 517674.55 12060.69 111242.82 9.22 354049.77 29.36 3.18
45 507532.55 11301.47 100257.67 8.87 354495.33 31.37 3.54
47 532693.30 11358.48 103038.69 9.07 370009.76 32.58 3.59
49 555105.16 11355.05 104059.85 9.16 385354.53 33.94 3.70

Table 2. Results for Mazes

constant factor.
Table 2 shows some interesting trends: First, the path

length of LRTA* decreases as its lookahead increases: more
planning results in shorter paths, which confirms earlier re-
sults in different domains [16] although exceptions to this
property have also been reported [5]. Second, the planning
time first decreases and then increases as the lookahead of
LRTA* increases. This is the result of two different effects,
namely an increasing planning time per planning episode
due to the larger lookahead and a decreasing number of
planning episodes due to the shorter paths. The graph in
Figure 8 visualizes this trade-off between the planning time
and the resulting path length. The planning time of LRTA*
is larger than the one of D* Lite for lookaheads of more
than 45, and its paths are longer than the ones of D* Lite for
all tabulated lookaheads. Because the heuristics can be mis-
leading in mazes, planning all the way to the goal cell allows
one to find short paths. Thus, the paths of D* Lite are short.
The path of LRTA* are short only for larger lookaheads.
LRTA* with smaller lookaheads moves back and forth in
local minima of the value surface until it has increased the
values of the cells sufficiently to be able to escape the lo-
cal minima, which results in longer paths.

In the following, we describe three planning objectives
and analyze which search method one should choose for
each one. We assume that one cannot overlap planning and
movement and thus has to interleave them. This is not com-
pletely realistic especially if movement is slow but allows us
to obtain first results. In future work, we intend to relax this
assumption, which will require us to develop new theoreti-
cal foundations that might be similar to those in [3, 24, 8].

• We first study what to do if one wants to minimize

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

 0 5 10 15 20 25 30 35 40 45 50

state expansions per planning episode (= lookahead)

average total number of state expansions
average total planning time

Figure 7. Planning Time vs. State Expansions

the sum of the planning and plan-execution time. The
result depends on the relative speed of planning and
movement. If planning is sufficiently fast relative to
movement (a realistic assumption for many applica-
tions), then the sum of the planning and plan-execution
time is determined by the movement time, that is, path
length (x is large, see below). In this case, a large
lookahead is optimal for LRTA*. On the other hand,
if movement is sufficiently fast relative to planning,
then the sum of the planning and plan-execution time
is determined by the planning time (x is small). In this
case, a lookahead of 21 is optimal for LRTA*. To un-
derstand the cases between these extremes better, we
use x > 0 to denote the ratio of the planning speed and
movement speed. The sum of the planning and plan-
execution time is then proportional to: planning time +
x × path length. The following table shows the opti-
mal lookahead for LRTA* as a function of x:

range of x optimal lookahead
10

−4.00 -10−0.31 21
10

−0.30 -10−0.16 25
10

−0.15 -10+0.29 33
... ...

This result is intuitive: Lookaheads that are smaller
than the lookahead that minimizes the planning time
cannot be optimal for LRTA* since both its planning
time and its path length decrease as its lookahead in-
creases. The lookahead that minimizes its planning
time is optimal for x = 0. Its planning time increases
and its path length decreases as the lookahead in-
creases, starting with the lookahead that minimizes its
planning time. Thus, its optimal lookahead increases
as x increases. If x is larger than 10−0.27, then D*
Lite should be preferred over LRTA* with the opti-
mal lookahead since LRTA* needs a much larger plan-
ning time than D* Lite to find paths that are not much
longer than the ones of D* Lite.

0

200000

400000

600000

800000

1000000

1200000

1400000

 0 5 10 15 20 25 30 35 40 45 50

state expansions per planning episode (= lookahead)

average total planning time
average total number of movements (= path length)

Figure 8. Planning Time vs. Path Length

• We now study what to do if one wants to minimize the
path length subject to the hard real-time constraint that
only a certain amount of time is available for each plan-
ning episode. Thus, there is a time limit on the plan-
ning time per planning episode. We argue with aver-
ages in the following to make our argument simple
even though this is not quite correct. D* Lite has a
planning time per planning episode of 54.10 and thus
cannot be used if the time limit is smaller than this.
Thus, LRTA* with the largest lookahead that fits the
time limit should be used instead of D* Lite if the time
limit is smaller than 54.10. LRTA* with a lookahead
of up to 75 (not shown in Table 2) has a planning
time per planning episode that is smaller than 54.10.
On the other hand, since LRTA* with a lookahead of
even 241 (not shown in Table 2) finds only paths of
length 44721.30 but has a planning time per planning
episode of 168.19, D* Lite should be used if the time
limit is larger than 54.10 (but small).

• Finally, we study what to do if one wants to minimize
the path length subject to the hard real-time constraint
that only a certain amount of time is available for each
planning episode but the planning time can be amor-
tized over the movements. Thus, there is a time limit on
the planning time per movement. D* Lite has a plan-
ning time per movement of 16.44 and thus cannot be
used if the time limit is smaller than this. Thus, LRTA*
with the largest lookahead that fits the time limit should
be used instead of D* Lite if the time limit is smaller
than 16.44. LRTA* with a lookahead of up to 165 (not
shown in Table 2) has a planning time per movement
that is smaller than the one of D* Lite. On the other
hand, since LRTA* with a lookahead of even 241 finds
only paths of length 44721.30 but has a planning time
per movement of 28.61, D* Lite should be used if the
time limit is larger than 16.44 (but small).

The column headings (a) - (h) are the same as in Table 2.

(a) (b) (c) (d) (e) (f) (g) (h)

D* Lite
- 11424.90 72.54 308.98 4.26 36825.63 507.65 119.18

LRTA*
1 498.55 498.55 498.55 1.00 28279.51 56.72 56.72
3 622.46 207.83 377.15 1.81 28380.11 136.56 75.25
5 686.46 137.77 337.67 2.45 28435.03 206.39 84.21
7 796.09 114.30 329.00 2.88 28536.61 249.66 86.74
9 902.13 100.92 322.19 3.19 28617.42 283.58 88.82
11 1013.99 92.98 315.32 3.39 28698.35 308.65 91.01
13 1128.42 87.72 310.35 3.54 28785.79 328.14 92.75
15 1238.49 83.63 307.15 3.67 28873.00 345.25 94.00
17 1353.46 80.83 305.47 3.78 28966.89 358.36 94.83
19 1464.02 78.40 303.58 3.87 29056.67 370.61 95.71
21 1578.59 76.68 302.27 3.94 29152.59 380.16 96.45
23 1701.07 75.63 301.54 3.99 29241.04 386.62 96.97
25 1822.36 74.75 300.77 4.02 29332.52 392.40 97.53
27 1953.37 74.38 300.24 4.04 29428.39 395.67 98.02
29 2077.55 73.85 299.44 4.05 29524.39 399.76 98.60
31 2202.06 73.40 299.20 4.08 29615.10 403.48 98.98
33 2323.90 72.99 298.70 4.09 29715.34 407.11 99.48
35 2438.37 72.38 297.90 4.12 29799.11 411.73 100.03
37 2569.27 72.30 298.38 4.13 29904.07 413.58 100.22
39 2683.20 71.80 297.61 4.14 29994.63 417.73 100.78

Table 3. Results for Random Obstacles

7. Grids with Random Obstacles

We now use grids with randomly placed obstacles
(blocked cells) as test domains. Their obstacle den-
sity is 25 percent. Figure 6 (right) shows an example
(of smaller size than used in the experiments). Test-
ing D* Lite and LRTA* on these different kinds of grids
is interesting because they have very different proper-
ties from mazes. For example, the heuristics are not
very misleading, and Table 1 shows that LRTA* per-
forms about the same with the strong and the weak heuris-
tics, at least for larger lookaheads. Thus, we now use
both D* Lite and LRTA* with the strong heuristics. Ta-
ble 3 tabulates our results, which are similar to the
ones for mazes. However, the planning time per plan-
ning episode of both D* Lite and LRTA* is now much
larger due to the larger branching factor. The planning time
of LRTA* is now smaller than the one of D* Lite for all tab-
ulated lookaheads (although eventually its planning time
will be larger than the one of D* Lite as the lookahead in-
creases since it does not use experience from previous plan-
ning episodes to speed up the current one), and its paths
are shorter than the one of D* Lite for all tabulated looka-
heads larger than 13. These good results for LRTA* are
due to the fact that the heuristics are generally not mis-
leading. One can therefore reduce the planning time
by basically following the heuristics, with some looka-
head to avoid being misled by inaccuracies of the heuris-
tics caused by obstacles. This means that it is unnecessary
to plan all the way to the goal cell. We do not under-
stand yet why the path length of LRTA* with larger looka-
heads is smaller than the one of D* Lite. We would have ex-
pected the path length of LRTA* to approach the one
of D* Lite as the lookahead of LRTA* increases be-
cause LRTA* chooses paths of the same lengths as D* Lite
once its local search spaces always border the goal state.

(a) = state expansions per planning episode (lookahead), (b) = average number of state expansions (as an indicator for
the average planning time - note, though, that breadth-first search can expand states faster than A*), and (c) = average
number of movements (path length).

mazes grids with random obstacles
LRTA* (with A*) LRTA* with BFS LRTA* (with A*) LRTA* with BFS

(a) (b) (c) (b) (c) (b) (c) (b) (c)

1 1259958.00 1259958.00 1244573.34 1244573.34 498.55 498.55 496.82 496.82
3 1012633.01 685570.04 2151181.27 1427453.49 622.46 377.15 751.35 382.46
5 765644.80 477525.03 608563.97 339733.20 686.46 337.67 883.16 340.95
7 658618.41 382949.65 470885.88 239418.18 796.09 329.00 1081.67 331.05
9 588810.14 321547.69 439573.64 204921.68 902.13 322.19 1224.09 322.09
11 531955.23 272841.73 437526.96 189936.61 1013.99 315.32 1377.21 317.84
13 518431.33 252374.66 410861.79 165348.26 1128.42 310.35 1554.31 316.33
15 517913.09 239072.72 460207.28 177181.12 1238.49 307.15 1716.99 313.97
17 495466.48 215615.93 430183.56 154345.68 1353.46 305.47 1871.26 312.06
19 487622.82 199517.41 453565.17 154292.26 1464.02 303.58 2020.39 310.60
21 459565.74 177142.96 448383.49 144253.88 1578.59 302.27 2169.39 309.72
23 470419.04 171600.71 470230.40 144736.66 1701.07 301.54 2315.88 308.09
25 456751.93 155736.31 473433.00 138034.91 1822.36 300.77 2465.16 307.65
27 465707.78 151277.34 483322.87 135636.58 1953.37 300.24 2605.35 306.62
29 460964.20 140895.33 499253.40 133028.67 2077.55 299.44 2763.52 306.93
...

Table 4. Results for Different Search Spaces

We now study again what to do if one wants to mini-
mize the sum of the planning and plan-execution time. The
following table shows the optimal lookahead for LRTA* as
a function of x, the ratio of the planning speed and move-
ment speed:

range of x optimal lookahead
10

−4.00 -10−0.09 1
10

−0.08 -10+0.14 3
10

+0.15 -10+1.06 5
10

+1.07 -10+1.07 7
10

+1.08 -10+1.24 11
10

+1.25 -10+1.43 13
10

+1.44 -10+1.71 15
10

+1.72 -10+1.86 19
10

+1.87 -10+2.07 21
10

+2.08 -10+2.15 25
... ...

A lookahead of one now minimizes the planning time of
LRTA*, which is smaller than the lookahead of 21 that mini-
mized the planning time of LRTA* in mazes. For each value
of x, LRTA* with the optimal lookahead has a smaller sum
of the planning and plan-execution time than D* Lite, and
thus LRTA* with the optimal lookahead should always be
preferred over D* Lite. This is not surprising since both the
planning time of LRTA* with a sufficiently large lookahead
and the resulting path length are smaller than the ones of
D* Lite. For the same reason, LRTA* should always be pre-
ferred over D* Lite if there is a time limit on the planning
time per planning episode or movement.

8. Conclusions and Future Work

In this paper, we studied fast search methods that can
be used for path planning by real-time situated agents such
as characters in real-time computer games. We compared
a simple version of LRTA*, a real-time heuristic search
method, experimentally to D* Lite, an incremental heuris-
tic search method, and characterized when to choose which
one of the two search methods, depending on the kind of
terrain and the planning objective. During our experiments,

we noticed that small algorithmic details can be very im-
portant. For example, it is beneficial for LRTA* with small
lookaheads to generate the successors of states during the
A* search in a random order rather than a fixed one. More
generally, we do not yet understand what the most advanta-
geous version of LRTA* is. For example, there are versions
of LRTA* that reduce either the planning time or path length
of our version of LRTA*. Some of them do not update all
values in their local search space (for example, the origi-
nal version of LRTA* [16]), update the values in a different
way (for example, RTA* [16]), use faster search algorithms
than A* to determine the local search spaces (for example,
the original version of LRTA* [16]) or never expand cells
with unknown blockage status (for example, LCM [20]).
Thus, we need to compare different versions of LRTA* sys-
tematically. For example, the experimental results of this
paper suggest that one should experiment with versions of
LRTA* that are computationally less intensive than the ver-
sion used in this paper. Table 4 shows first experimental
results for a version of LRTA* with breadth-first search
rather than A* search, which has a smaller planning time per
planning episode because one can implement a breadth-first
search without complex priority queues. The table shows
that LRTA* with A* search performs well on grids with ran-
dom obstacles but that LRTA* with breadth-first search per-
forms well in mazes, at least for smaller lookaheads (differ-
ent from three). In this case, LRTA* with A* search appears
not to choose good local search spaces. We do not under-
stand yet why this is the case. In the future, we intend to in-
vestigate additional real-time heuristic search methods and
compare them with D* Lite and other ways of speeding up
heuristic search, for example, using inconsistent heuristics
rather than the two consistent heuristics used in this paper.
A major open issue in this context is how to compare differ-
ent search methods for situated agents since their planning
time critically depends on both hardware and implementa-
tion details and the experimental results could therefore dif-
fer in different studies.

References

[1] A. Barto, S. Bradtke, and S. Singh. Learning to act us-
ing real-time dynamic programming. Artificial Intelligence,
73(1):81–138, 1995.

[2] M. Bjornsson, M. Enzenberger, R. Holte, J. Schaeffer, and
P. Yap. Comparison of different abstractions for pathfinding
on maps. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, 2003.

[3] M. Boddy and T. Dean. Solving time-dependent planning
problems. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, pages 979–984, 1989.

[4] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast ac-
tion selection mechanism. In Proceedings of the National
Conference on Artificial Intelligence, pages 714–719, 1997.

[5] V. Bulitko. Lookahead pathologies and meta-level control in
real-time heuristic search. In Proceedings of the Euromicro
Conference on Real-Time Systems, pages 13–16, 2003.

[6] S. Edelkamp. Updating shortest paths. In Proceedings of the
European Conference on Artificial Intelligence, pages 655–
659, 1998.

[7] M. Goldenberg, A. Kovarksy, X. Wu, and J. Schaeffer. Mul-
tiple agents moving target search. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, pages
1538–1538, 2003.

[8] R. Goodwin. Reasoning about when to start acting. In Pro-
ceedings of the International Conference on Artificial Intel-
ligence Planning Systems, pages 86–91, 1994.

[9] M. Hebert, R. McLachlan, and P. Chang. Experiments with
driving modes for urban robots. In Proceedings of the SPIE
Mobile Robots, 1999.

[10] T. Ishida. Moving target search with intelligence. In Pro-
ceedings of the National Conference on Artificial Intelli-
gence, pages 525–532, 1992.

[11] T. Ishida. Real-Time Search for Learning Autonomous
Agents. Kluwer Academic Publishers, 1997.

[12] S. Koenig. Agent-centered search. Artificial Intelligence
Magazine, 22(4):109–131, 2001.

[13] S. Koenig. Minimax real-time heuristic search. Artificial In-
telligence, 129:165–197, 2001.

[14] S. Koenig and M. Likhachev. D* Lite. In Proceedings of the
National Conference on Artificial Intelligence, pages 476–
483, 2002.

[15] S. Koenig, C. Tovey, and Y. Smirnov. Performance bounds
for planning in unknown terrain. Artificial Intelligence,
147:253–279, 2003.

[16] R. Korf. Real-time heuristic search. Artificial Intelligence,
42(2-3):189–211, 1990.

[17] R. Korf. Linear-space best-first search. Artificial Intelli-
gence, 62(1):41–78, 1993.

[18] A. Mugdal, C. Tovey, and S. Koenig. Analysis of greedy
robot-navigation methods. In Proceedings of the Conference
on Artificial Intelligence and Mathematics, 2004.

[19] J. Pearl. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley, 1985.

[20] J. Pemberton and R. Korf. Making locally optimal decisions
on graphs with cycles. Technical Report 920004, Computer
Science Department, University of California at Los Ange-
les, Los Angeles (California), 1992.

[21] S. Russell and E. Wefald. Do the Right Thing – Studies in
Limited Rationality. MIT Press, 1991.

[22] A. Stentz. The focussed D* algorithm for real-time replan-
ning. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1652–1659, 1995.

[23] S. Thayer, B. Digney, M. Diaz, A. Stentz, B. Nabbe, and
M. Hebert. Distributed robotic mapping of extreme environ-
ments. In Proceedings of the SPIE: Mobile Robots XV and
Telemanipulator and Telepresence Technologies VII, volume
4195, 2000.

[24] S. Zilberstein. Operational Rationality through Compila-
tion of Anytime Algorithms. PhD thesis, Computer Science
Department, University of California at Berkeley, Berkeley
(California), 1993.

