
Fast Winner Determination
for Agent Coordination with SBB Auctions∗

(Extended Abstract)
Kenny Daniel

Computer Science Department
University of Southern California

941 W. 37th Place
Los Angeles, CA 90089-0781, USA

kfdaniel@usc.edu

Sven Koenig
Computer Science Department

University of Southern California
941 W. 37th Place

Los Angeles, CA 90089-0781, USA
skoenig@usc.edu

ABSTRACT
The runtime of winner determination for each round of a sequen-
tial bundle-bid auction (= SBB auction) has recently been shown to
be linear in the number of submitted bids, which makes SBB auc-
tions appealing for solving cooperative task-assignment problems.
In this paper, we introduce the Shrewd (= SHrewd Resource Effi-
cient Winner Determination) algorithm, whose runtime is linear in
the number of submitted bids but typically much smaller than the
runtime of the existing winner-determination algorithm for SBB
auctions, making them feasible for larger bundle sizes.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
auctions, combinatorial auction, coordination, decentralized con-
trol, distributed problem solving, sequential bundle-bid single-sale
auction, task allocation, winner determination

1. INTRODUCTION
Auctions promise to solve cooperative task-assignment problems

with small communication and computation costs [1]. Sequen-
tial bundle-bid auctions (= SBB auctions) with bundle size k are
multi-round auctions that assign k tasks in each round to one or
more agents so that the team cost increases the least [2]. The
runtime of winner determination for each round of an SBB auc-
tion has recently been shown to be linear in the number of sub-
∗This research was partly supported by NSF awards under con-
tracts ITR/AP0113881, IIS-0098807 and IIS-0350584 as well as
seed funding from NASA’s Jet Propulsion Laboratory. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the sponsoring organizations, agen-
cies, companies or the U.S. government.

Cite as: Fast Winner Determination for Agent Coordination with SBB
Auctions (Short Paper), Kenny Daniel and Sven Koenig, Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

mitted bids, making SBB auctions appealing [2]. In this paper,
we introduce Shrewd (= SHrewd Resource Efficient Winner De-
termination), whose runtime is linear in the number of submit-
ted bids but typically much smaller than the one of the existing
winner-determination algorithm for SBB auctions since it exploits
the structure of the optimization problem better. Our results make
SBB auctions feasible for larger bundle sizes, thus advancing the
state of the art in solving SBB auctions.

2. PROBLEM STATEMENT
We use multi-agent routing problems as examples of task-

assignment problems [3]. The agent cost to visit a set of given
targets corresponds to the smallest travel distance that the agent
needs to visit the targets from its current location. The team cost
is the sum of the agent costs. The objective of a multi-agent rout-
ing problem is to determine which agent should visit which targets
in which order so that each agent visits at most a given number of
targets (= its capacity), each target is visited by an agent, and the
team cost is small. In this paper, we use SBB auctions to achieve
this objective under the assumption that the terrain, the locations of
all agents and the locations of all targets are known.

An SBB auction with bundle size k ≥ 1 assigns k targets to one
or more agents in each round. Each agent submits a constant num-
ber of bids per round that does not depend on the number of agents
or tasks. Each bid b = (b.agent, b.tasks, b.cost) is a triple that consists
of an agent, a set of at most k tasks and a bid cost. Let B be the set
of bids submitted by all agents in a given round. Two bids b, b′ ∈ B
are compatible iff b.agent 6= b′.agent and b.tasks ∩ b′.tasks = ∅. A
portfolio is a set of bids. The team cost of a portfolio B′ ⊆ B is
cteam(B′) :=

P
b∈B′ b.cost. A portfolio B′ ⊆ B is potentially win-

ning iff its bids are pairwise compatible and | ∪b∈B′ b.tasks| = k.
A portfolio B′ ⊆ B is winning iff it is potentially winning and
its team cost is no larger than the team cost of all potentially win-
ning portfolios. The objective of winner determination is to deter-
mine a winning portfolio. The runtime of the only existing winner-
determination algorithm is linear in the number of submitted bids
[4]. However, it is too slow for real-time task allocation. In the fol-
lowing, we thus develop a novel winner-determination algorithm.

3. SHREWD
Our novel Shrewd (= SHrewd Resource Efficient Winner Deter-

mination) proceeds as follows: For every non-increasing sequence
[s(1) . . . s(l)] of positive integers that sum to k, it constructs a pri-
mary search tree. Each non-root node in the primary search tree is
labeled with a bid that must be pairwise compatible with the bids of

all of its non-root ancestors. The portfolio of a node is the bid of the
node together with the bids of its non-root ancestors. The portfolio
of a node at depth l is thus a potentially winning portfolio. Shrewd
constructs the primary search tree starting with a dummy root node
as follows: Shrewd repeatedly picks a leaf node of the primary
search tree at depth less than l, constructs a secondary search tree
for that leaf node and then adds all of the nodes in that secondary
search tree as the successors nodes of the leaf node in the primary
search tree.

Assume that the depth of the leaf node of the primary search tree
is i and its portfolio is B′. Each edge in the secondary search tree
is labeled with a constraint. Each node in the secondary search
tree is labeled with a bid, namely the bid with the smallest bid
cost that is pairwise compatible with the bids in B′, is on a set
of s(i + 1) tasks and satisfies all constraints that label the edges
from the root node of the secondary search tree to the node in ques-
tion. Shrewd deletes the node from the secondary search tree if no
such bid exists. Shrewd constructs the secondary search tree as fol-
lows: Shrewd repeatedly picks a leaf node of the secondary search
tree and then adds one successor node for each one of the following
constraints, where b is the bid that labels the leaf node and b′ is a
variable that represents the bid that labels its successor node:

• Type A: “t 6∈ b′.tasks,” one constraint for each t ∈ b.tasks; and

• Type B: “b′.agent 6= b.agent.”

Shrewd deletes a successor node from the secondary search tree
if the number of constraints of Type A that label the edges from the
root node to the successor node is larger than

Pl
j=i+2 s(j) or the

number of constraints of Type B that label the edges from the root
node to the successor node is larger than l − i− 1.

Once Shrewd has constructed all primary search trees, it returns
the portfolio of the leaf node of any primary search tree with the
smallest team cost as winning portfolio. We can prove that Shrewd
finds the winning portfolio and runs in time linear in the number of
bids.

4. OPTIMIZED SHREWD
The secondary search trees of Shrewd can be optimized in case

s(i + 1) = 1. Everything remains unchanged, except that, in this
case, Optimized Shrewd repeatedly picks a leaf node of the sec-
ondary search tree and then adds one successor node for each one
of the following constraints, where b is the bid that labels the leaf
node and b′ is a variable that represents the bid that labels its suc-
cessor node:

• Type C: “b.agent = b′.agent and b.tasks 6= b′.tasks.”

Shrewd deletes a successor node from the secondary search tree
if the number of constraints of Type C is larger than l − i− 1. We
can prove that optimized Shrewd finds the winning portfolio and
runs in time linear in the number of bids.

5. EXPERIMENTAL RESULTS
Table 1 shows upper bounds on the number of nodes in the pri-

mary search trees for the existing winner-determination algorithm,
Shrewd and Optimized Shrewd. (We call them upper bounds be-
cause additional pruning of nodes might be possible.) Optimized
Shrewd uses fewer search tree nodes than Shrewd, and Shrewd uses
fewer search tree nodes than the existing winner-determination al-
gorithm.

Bundle Size Existing Shrewd Opt Shrewd
k = 1 1 1 1
k = 2 17 11 5
k = 3 1,482 227 32
k = 4 244,809 15,166 410
k = 5 9.8 · 107 3.7 · 106 10,122
k = 6 7.4 · 1010 3.4 · 1010 587,893
k = 7 9.8 · 1013 1.2 · 1013 7.9 · 107

Table 1: Upper Bounds on the Number of Search Tree Nodes

Bundle Size Team Costs Run Times
Existing Shrewd Opt Shrewd

k = 1 500.77 0.0028 0.0028 0.0024
k = 2 515.81 0.0265 0.0251 0.0245
k = 3 491.89 1.4335 0.2030 0.1990
k = 4 483.09 – 2.2822 1.7762
k = 5 481.12 – 208.8787 10.5177
k = 6 480.73 – – 487.6028

Table 2: Team Costs and Runtimes

To demonstrate that fewer search tree nodes translate into smaller
runtimes, we generated 50 random instances of a multi-agent rout-
ing problem with 40 targets and 10 agents of capacity 4 randomly
placed on a 51 × 51 eight-neighbor grid that modeled a building,
similar to [4]. Table 2 shows the average team costs and runtimes
(in seconds) of a Java 1.6 implementation of an SBB auction on
an AMD Athlon 64 X2 Dual Core 3800+ PC with 4GB of RAM
running Ubuntu 8.04. The runtimes are for the complete SBB
auction to assign all targets to agents, including bidding and win-
ner determination for all rounds. Each agent uses a combination
of the two-opt and cheapest-insertion heuristics to approximately
solve the TSPs necessary for computing its agent costs. Optimized
Shrewd ran faster Shrewd, and Shrewd ran faster than the existing
winner-determination algorithm. Optimized Shrewd could solve
SBB auctions with bundle size k = 6 while the existing winner-
determination algorithm could only solve SBB auctions with bun-
dle size k = 3. This is a big improvement because the runtime of
all of these winner-determination algorithms is exponential in the
bundle size. Furthermore, the increase in bundle size made possible
by Shrewd decreased the team cost substantially for our multi-agent
routing problem. Further increases in bundle size then no longer re-
duced the team cost significantly. Thus, SBB auctions with bundle
size k = 5 present a good tradeoff between small runtimes and
small team costs.

6. REFERENCES
[1] M. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based

multirobot coordination: A survey and analysis. Proceedings
of the IEEE, 94:1257–1270, 2006.

[2] S. Koenig, C. Tovey, X. Zheng, and I. Sungur. Sequential
bundle-bid single-sale auction algorithms for decentralized
control. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1359–1365, 2007.

[3] M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak,
S. Koenig, A. Kleywegt, C. Tovey, A. Meyerson, and S. Jain.
Auction-based multi-robot routing. In Proceedings of the
International Conference on Robotics: Science and Systems,
2005.

[4] C. Tovey, M. Lagoudakis, S. Jain, and S. Koenig. The
generation of bidding rules for auction-based robot
coordination. In L. Parker, F. Schneider, and A. Schultz,
editors, Multi-Robot Systems: From Swarms to Intelligent
Automata, pages 3–14. Springer, 2005.

