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ABSTRACT
In this paper, we present two simple optimizations that can
reduce the number of priority queue operations for A* and
its extensions. Basically, when the optimized search algo-
rithms expand a state, they check whether they will expand
a successor of the state next. If so, they do not first insert
it into the priority queue and then immediately remove it
again. These changes might appear to be trivial but are well
suited for Generalized Adaptive A*, an extension of A*. Our
experimental results indeed show that they speed up Gener-
alized Adaptive A* by up to 30 percent if its priority queue
is implemented as a binary heap.
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1. INTRODUCTION
A* [1] is probably the most popular search algorithm in

artificial intelligence and has been extended in various di-
rections, resulting in search algorithms such as General-
ized Adaptive A* [10], Learning Real-Time A* [6], Dynamic
Weighting A* [9] and Anytime Replanning A* [7]. In this
paper, we present two simple optimizations that can reduce
the number of priority queue operations for A* and its ex-
tensions. Basically, when the optimized search algorithms
expand a state, they check whether they will expand a suc-
cessor of the state next. If so, they do not first insert it into
the priority queue and then immediately remove it again.
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These changes might appear to be trivial but are well suited
for Generalized Adaptive A*, an extension of A*. Our ex-
perimental results indeed show that they speed up General-
ized Adaptive A* by up to 30 percent if its priority queue is
implemented as a binary heap.

2. NOTATION
Although A* and its extensions apply to general graphs,

we illustrate them and our optimizations on four-neighbor
grids with blocked and unblocked cells. S is the set of all
cells, sstart ∈ S is the start cell of the search, and sgoal ∈ S

is the goal cell of the search. If cell s ∈ S is unblocked,
then succ(s) ⊆ S is the set of its neighboring cells that are
unblocked. Otherwise, succ(s) = ∅. Moving from a cell
s ∈ S to its successor s′ ∈ succ(s) has cost c(s, s′) = 1.
Moving from a cell s ∈ S to any other cell s′ ∈ S has cost
c(s, s′) = ∞.

3. A*
We describe a version of A* that we will later generalize

to Generalized Adaptive A*. Its pseudocode is shown in
Figure 1.

3.1 Heuristics
A* and its extensions use h-values (= heuristics) to focus

their search. The h-values are derived from user-supplied
H-values H(s, s′) that estimate the cost of moving from
cell s ∈ S to cell s′ ∈ S. The user-supplied H-values
H(s, s′) have to satisfy the triangle inequality, namely sat-
isfy H(s′, s′) = 0 and 0 ≤ H(s, s′) ≤ c(s, s′′) + H(s′′, s′)
for all cells s, s′ ∈ S and s′′ ∈ succ(s). In this case, the
h-values h(s) = H(s, sgoal) are consistent with respect to
any goal cell sgoal ∈ S, namely satisfy h(sgoal) = 0 and
0 ≤ h(s) ≤ c(s, s′)+h(s′) for all cells s ∈ S and s′ ∈ succ(s)
(Consistency Property) [8]. We use the Manhattan distances
as H-values, that is, the smallest cost of moving from one
cell to another cell on a four-neighbor grid without blocked
cells.

3.2 Values
A* maintains four values for every cell s ∈ S: (1) The h-

value h(s) := H(s, sgoal) is an approximation of the smallest
cost of moving from cell s to the goal cell, as described above.
(2) The g-value g(s) is the smallest cost of moving from the
start cell to cell s found so far. (3) The f -value f(s) :=
g(s) + h(s) is an estimate of the smallest cost of moving
from the start cell via cell s to the goal cell. (4) The parent
pointer parent(s) points to the parent of cell s in the A*



01 function Main()
02 g(sstart) := 0;
03 parent(sstart) := NULL;
04 OPEN := ∅;
05 OPEN.Insert(sstart, g(sstart) + h(sstart));
06 CLOSED := ∅;
07 while OPEN 6= ∅
08 s := OPEN.Pop();
09 if s = sgoal

10 return “path found”;
11 CLOSED = CLOSED ∪ {s};
12 foreach s′ ∈ succ(s)
13 if s′ /∈ CLOSED
14 if s′ /∈ OPEN
15 g(s′) = g(s) + c(s, s′);
16 parent(s′) = s;
17 OPEN.Insert(s′, g(s′) + h(s′));
18 else if g(s) + c(s, s′) < g(s′)
19 g(s′) = g(s) + c(s, s′);
20 parent(s′) = s;
21 OPEN.Remove(s′);
22 OPEN.Insert(s′, g(s′) + h(s′));
23 return “no path found”;

Figure 1: A*.

search tree. The parent pointers are used to extract the
path after the search terminates.

3.3 OPEN and CLOSED Lists
A* maintains two data structures: (1) The OPEN list

is a priority queue that contains all cells to be considered
for expansion. OPEN.Insert(s, x) inserts cell s with value
x into the OPEN list, OPEN.Remove(s) removes cell s

from the OPEN list, and OPEN.Pop() removes a cell with
the smallest value from the OPEN list and returns it. (2)
The CLOSED list is a set that contains all cells that have
already been expanded.

3.4 Algorithm
A* repeats the following procedure until the OPEN list is

empty (Line 23) or it is about to expand the goal cell (Line
10): It removes a cell s with the smallest f -value from the
OPEN list (Line 08), inserts the cell into the CLOSED

list (Line 11) and expands it by performing the following
operations for each successor s′ ∈ succ(s) of cell s. If cell s′ is
neither in the OPEN nor CLOSED list, then A* generates
the cell by assigning g(s′) := g(s)+c(s, s′), setting the parent
pointer of cell s′ to cell s, and then inserting cell s′ into the
OPEN list with f -value f(s′) = g(s′)+ h(s′) (Lines 15-17).
If cell s′ is in the OPEN list and g(s)+c(s, s′) < g(s′), then
A* updates cell s′ by assigning g(s′) := g(s)+c(s, s′), setting
the parent pointer of cell s′ to cell s, and then updating
the f -value of cell s′ in the OPEN list to f -value f(s′) =
g(s′) + h(s′) (Lines 19-22).

3.5 Properties
A* has the following properties if its h-values are consis-

tent [8].

• A* Property 1: The sequence of the f -values of the
expanded cells is monotonically non-decreasing.

• A* Property 2: A path with the smallest cost of
moving from the start cell to any expanded cell s can
be identified in reverse by repeatedly following the par-
ent pointers from cell s to the start cell. Similarly, a
path with the smallest cost of moving from the start
cell to the goal cell s can be identified in reverse by
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Figure 2: Example Grid.

repeatedly following the parent pointers from the goal
cell to the start cell after the search terminates.

• A* Property 3: An A* search expands no more cells
than an otherwise identical A* search for the same
search problem if the h-values used by the first A*
search are no smaller for any cell than the correspond-
ing h-values used by the second A* search (= the
former h-values dominate the latter h-values at least
weakly).

3.6 Optimizations
Consider the following two simple optimizations that can

reduce the number of priority queue operations (insertions
and removals of cells) for A* and thus potentially speed it
up in case the priority queue operations are expensive.

• A* Variant 1: Assume that A* expands a cell s with
f -value f(s) and, in the process, inserts a successor s′

of the cell into the OPEN list with f -value f(s′) (Line
17) so that (Expansion Property 1) f(s′) = f(s). Since
the sequence of the f -values of the expanded cells is
monotonically non-decreasing (A* Property 1), A* can
expand cell s′ next and then removes it again from the
OPEN list (Line 08). In this case, our optimized A*
Variant 1 expands cell s′ immediately after cell s. It
leaves out both the insertion of cell s′ into the OPEN

list and its immediate removal from the OPEN list.
We say that cell s′ is expanded fast. In the experi-
ments, our A* Variant 1 expands the first generated
successor with Expansion Property 1 fast and all other
successors regularly (= slowly). The resulting order of
cell expansions in grids is consistent with breaking ties
among cells with equal f-values in favor of cells with
larger g-values, which is considered to be a good tie-
breaking strategy.

• A* Variant 2: Assume that A* expands a cell s with
f -value f(s) and, in the process, inserts a successor s′

of the cell into the OPEN list with f -value f(s′) (Line
17) so that (Expansion Property 2) every successor of
the cell that is also inserted into the OPEN list is
inserted into the OPEN list with an f -value that is
no smaller than f(s′) and (Expansion Property 3) ei-
ther the OPEN list is empty or the smallest f -value
of any cell in the OPEN list is no smaller than f(s′).
Since the sequence of the f -values of the expanded
cells is monotonically non-decreasing (A* Property 1),
A* can expand cell s′ next and then removes it again
from the OPEN list (Line 08). In the experiments,
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Figure 3: Execution Traces of A* Variants.

our A* Variant 2 expands the first generated successor
with Expansion Property 1 fast and all other succes-
sors slowly. If there is no successor with Expansion
Property 1, then it expands the first generated suc-
cessor with Expansion Properties 2 and 3 fast and all
other successors slowly.

A* Variants 1 and 2 can expand the start cell fast as well.
A* Variant 1 will sometimes be able to expand cells fast
due to the h-values used. Every cell s ∈ S \ {sgoal} has
one or two neighboring cells s′ ∈ S in grids with h(s) =
c(s, s′) + h(s′) if the Manhattan distances are used. If cells
s and s′ are unblocked, then s′ ∈ succ(s) and it holds that
f(s) = g(s) + h(s) = g(s) + c(s, s′) + h(s′) = g(s′) + h(s′) =
f(s′) when A* expands cell s and updates the g-value of
its successor s′ to g(s′) := g(s) + c(s, s′). A* Variant 2
expands every cell fast that A* Variant 1 expands fast and
thus reduces the number of priority queue operations of A*
at least as much as A* Variant 1 but has additional overhead
due to the bookkeeping operations required to keep track of
the successor with the smallest f -value. Thus, the effect
of A* Variants 1 and 2 on the runtime of A* needs to be
determined experimentally.

3.7 Example
We use the grid from Figure 2 to illustrate A* Variants 1

and 2. Black cells are blocked, and white cells are unblocked.
The start cell F2 is marked S, and the goal cell C6 is marked
G. The h-values are shown in the top right corners of the
cells. The execution traces of A* Variants 1 and 2 are shown
in Figure 3. The g-values and f -values are shown in the top
left and bottom right corners, respectively, of the cells. A*
Variant 1 expands the red cells slowly and the green cells
fast. A* Variant 2 expands all (green) cells fast.

4. GENERALIZED ADAPTIVE A*
We use Generalized Adaptive A* (GAA*) [10] to demon-

strate that our optimizations apply not only to A* but its
extensions as well. The pseudocode of GAA* is shown in
Figure 4. GAA* is an incremental search algorithm that
solves a sequence of search problems. The current cell of the
agent (start cell), goal cell and the blockage status of cells
can change between searches. GAA* performs A* searches
but updates the h-values to make future A* searches more
focused. Eager GAA* updates the h-values immediately af-
ter each A* search, while Lazy GAA* updates them only
when they are needed during a future A* search. We de-
scribe Eager GAA* in the following because it is easier to

01’ function Main()
02’ while sstart 6= sgoal

03’ run A*;
04’ move the agent along the path returned by A* (using A*

Property 2) until it reaches sgoal, sgoal changes, or action
costs or blockages change;

05’ forall s ∈ CLOSED
06’ h(s) := g(sgoal) − g(s);
07’ sstart := current agent cell (if changed);
08’ sgoal := current goal cell (if changed);
09’ if the goal cell changed
10’ temp := h(sgoal);
11’ forall s ∈ S
12’ h(s) := max(H(s, sgoal), h(s) − temp);
13’ update the blockage status of cells and the action costs (if any);
14’ OPEN := ∅;
15’ forall s ∈ S \ {sgoal} and s′ ∈ succ(s)

whose c(s, s′) decreased or for which s′ ∈ succ(s) became true
16’ if h(s) > c(s, s′) + h(s′)
17’ h(s) := c(s, s′) + h(s′);
18’ if s ∈ OPEN
19’ OPEN.Remove(s);
20’ OPEN.Insert(s, h(s));
21’ while OPEN 6= ∅
22’ s′ := OPEN.Pop();
23’ forall s ∈ S \ {sgoal} and s′ ∈ succ(s)
24’ if h(s) > c(s, s′) + h(s′)
25’ h(s) := c(s, s′) + h(s′);
26’ if s ∈ OPEN
27’ OPEN.Remove(s);
28’ OPEN.Insert(s, h(s));

Figure 4: Generalized Adaptive A* (GAA*).

understand but use Lazy GAA* in the experiments because
it runs faster.

4.1 Algorithm: Improving the h-Values
GAA* updates (= overwrites) the consistent h-values with

respect to the goal cell of all expanded cells s ∈ S after an
A* search by assigning

h(s) := g(sgoal) − g(s) (1)

(Lines 05’-06’). This principle was first used in [2] and later
resulted in the independent development of GAA*. The
updated h-values are again consistent with respect to the
goal cell and dominate the immediately preceeding h-values
at least weakly [3]. Thus, future A* searches of GAA* are
more focused since an A* search with the updated h-values
expands no more cells than an otherwise identical A* search
with the immediately preceeding h-values (A* Property 3).

4.2 Algorithm: Maintaining Consistency
It is important that the h-values remain consistent with

respect to the goal cell from A* search to A* search. The
following changes can occur between A* searches:

• Change 1: The start cell changes. In this case, GAA*
does not need to do anything since the h-values remain
consistent with respect to the goal cell.

• Change 2: The goal cell changes. In this case, GAA*
needs to update the h-values since they might not be
consistent with respect to the new goal cell. Assume
that the goal cell changes from sgoal ∈ S to s′goal ∈ S.
GAA* then updates the h-values of all cells s ∈ S by
assigning

h(s) := max(H(s, s′goal), h(s) − h(s′goal)) (2)
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Figure 5: h-Value Updates.
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Figure 6: Execution Traces of GAA* Variants.

(Lines 10’-12’). The updated h-values are consistent
with respect to the new goal cell [4]. However, they are
potentially smaller than the immediately preceeding
h-values. Taking the maximum of h(s) − h(s′goal) and
the user-supplied H-value H(s, s′goal) with respect to
the new goal cell ensures that the updated h-values
dominate the user-supplied H-values at least weakly.

• Change 3: Costs or blockages changed but no cost de-
creased and no successor set contains additional cells.
In this case, GAA* does not need to do anything since
the h-values remain consistent with respect to the goal
cell [10].

• Change 4: At least one cost decreased or at least one
successor set contains additional cells. In this case,
GAA* needs to update the h-values since they might
no longer be consistent with respect to the goal cell.
GAA* does so by executing the Consistency Proce-
dure, which reuses the OPEN list as its priority queue:
If a cell s and its successor s′ ∈ succ(s) no longer sat-
isfy the Consistency Property h(s) ≤ c(s, s′) + h(s′),
then it assigns h(s) := c(s, s′) + h(s′) and inserts cell
s into the OPEN list with h-value h(s) or, if it is al-
ready in the OPEN list, updates its h-value to h(s)
(Lines 14’-20’). Then, it repeats the following proce-
dure until the OPEN list is empty: It removes a cell
s′ with the smallest h-value from the OPEN list. If a
cell s and its successor s′ ∈ succ(s) no longer satisfy
the Consistency Property h(s) ≤ c(s, s′) + h(s′), then
it assigns h(s) := c(s, s′) + h(s′) and inserts cell s into
the OPEN list with h-value h(s) or, if it is already in
the OPEN list, updates its h-value to h(s) (Lines 21’-
28’). The updated h-values are consistent with respect
to the goal cell [10].

4.3 Optimizations
GAA* performs A* searches and can thus use A* Variants

1 and 2, resulting in GAA* Variants 1 and 2, respectively.
GAA* Variants 1 and 2 are often able to expand cells fast
due to the way GAA* updates its h-values. For example,
after Assignment (1) assigns h(s) := g(sgoal) − g(s) and
h(s′) := g(sgoal)− g(s′) after an A* search to two expanded
cells s, s′ ∈ S with s′ ∈ succ(s), it holds that f(s) = g(s) +
h(s) = g(sgoal) = g(s′) + h(s′) = f(s′). Similarly, after the
Consistency Procedure assigns h(s) := c(s, s′)+h(s′) to two
cells s, s′ ∈ S with s′ ∈ succ(s), it holds that f(s) = g(s) +
h(s) = g(s) + c(s, s′) + h(s′) = g(s′) + h(s′) = f(s′) when
A* expands cell s and updates the g-value of its successor
s′ to g(s′) := g(s) + c(s, s′). Assignment (2) will often leave
these relationships unchanged.

4.4 Example
We again use the grid from Figure 2 to illustrate GAA*

Variants 1 and 2. The first A* search of GAA* Variants 1
and 2 is identical to that of A* Variants 1 and 2, respectively,
shown in Figure 3. Assume that the start cell then changes
to E2, the goal cell changes to B6, and cell F3 becomes un-
blocked. The h-values are shown in the top right corners of
the cells. GAA* first improves the h-values of all expanded
cells with Assignment (1), shown in Figure 5(a). Cells whose
h-values changed are shown in grey. GAA* then updates the
start and goal cells and corrects the h-values of all cells with
Assignment (2) to make them consistent with respect to the
new goal cell, shown in Figure 5(b). Cells whose h-values
changed are shown in grey. GAA* then makes cell F3 un-
blocked and corrects the h-values of cells D2, E2, F2 and F3
with the Consistency Procedure to make them again consis-
tent, shown in Figure 5(c). Cells whose h-values changed
are shown in grey. Finally, GAA* performs its second A*
search. The execution trace of GAA* Variants 1 and 2 is



shown in Figure 6. The g-values and f -values are shown in
the top left and bottom right corners, respectively, of the
cells. The second A* search of GAA* Variant 1 generates
but does not expand the yellow cells. It expands the red
cells slowly and the green cells fast. When it expands cell
F4 with f -value 9, it could expand either cell E4 or F5 fast
since both of them have f -value 9. We assume that it gen-
erates cell E4 first and thus expands it fast. The second A*
search of GAA* Variant 2 is identical to the one of GAA*
Variant 1.

5. EXPERIMENTAL EVALUATION
We perform several experiments to compare the runtimes

of A* Variants 1 and 2 against the runtime of A* and the
runtimes of GAA* Variants 1 and 2 against the runtime of
GAA*.

5.1 Experimental Setup
We perform experiments in randomly generated four-

connected torus-shaped grids of size 200×200. We generate
their random corridor structure with a depth-first search,
which guarantees that there exists a path between any two
unblocked cells. We choose the start and goal cells ran-
domly. We base all search algorithms on the same implemen-
tation but use two different data structures for implement-
ing their priority queues, namely binary heaps and buckets,
because they differ in the runtime of their priority queue
operations. We perform two different kinds of experiments,
both of which require repeated searches. In both cases, all
search algorithms search from the agent (start cell) to the
target (goal cell).

• Stationary-Target Search: We study a version of
stationary-target search in which an agent needs to
reach a stationary target on an initially unknown grid.
The agent always knows which (unblocked) cell it is in
and which (unblocked) cell the target is in. Initially,
the agent does not know which cells are blocked but it
can always sense the blockage status of its four neigh-
boring cells. The agent always moves on a shortest
presumed unblocked path (= a path that is not known
to be blocked according to its current knowledge) from
its current cell to the cell of the target (freespace as-
sumption) [5]. It recomputes the shortest presumed
unblocked path whenever it observes its current path
to be blocked.

• Moving-Target Search: We also study a version of
moving-target search in which an agent needs to reach
a moving target on an initially known grid. We un-
block k blocked cells and block k unblocked cells every
tenth time step, while ensuring that there always ex-
ists a path from the current cell of the agent to the
current cell of the target. The target moves randomly
with the restriction that it does not move every tenth
time step, which allows the agent to reach the current
cell of the target eventually. Additionally, we do not
allow the target to return to its previous cell, unless
that is its only possible move. The agent always knows
which cells are currently blocked and moves on a short-
est path from its current cell to the current cell of the
target. It recomputes the shortest path whenever the
target moves off its current path or the blockage status
of cells changes.

5.2 Experimental Results
Tables 1 and 2 compare A* Variants 1 and 2 against A*

and GAA* Variants 1 and 2 against GAA*, averaged over
100 grids on a Pentium D 3.0 GHz computer with 2 GByte of
RAM. We report one measure for the difficulty of the search
problems, namely the average number of searches performed
until the agent reaches the target. We also report three
measures for the efficiency of the search algorithms, namely
the number of slowly expanded cells per search, the number
of fast expanded cells per search (for A* Variants 1 and 2 and
GAA* Variants 1 and 2) and the total runtime per search
in microseconds. We also show the standard deviation of
the mean for the number of expanded cells in parentheses to
demonstrate the statistical significance of our results.

Table 1 reports on stationary-target search. In general,
A* Variant 1 or GAA* Variant 1 is always faster than A*
Variant 2 or GAA* Variant 2, respectively. If the priority
queues are implemented with buckets, then A* or GAA* is
faster than A* Variant 1 or GAA* Variant 1, respectively.
However, it is not always feasible to implement the priority
queues with buckets, for example, when the f -values are not
integers. If the priority queues are implemented with binary
heaps, then A* Variant 1 or GAA* Variant 1 is faster than
A* or GAA*, respectively. In fact, A* Variant 1 is 14.5
percent faster than A*, and GAA* Variant 1 is 33.7 percent
faster than GAA*. We draw the following conclusions.

• Conclusion 1: If the priority queues are implemented
with buckets, then the priority queue operations are
fast and the runtime overhead of the optimizations
outweighs the runtime savings gained from reducing
the number of priority queue operations. If the pri-
ority queues are implemented with binary heaps, then
the priority queue operations are slow and the runtime
savings gained from reducing the number of priority
queue operations outweighs the runtime overhead of
the optimizations.

• Conclusion 2: The additional runtime overhead of
A* Variant 2 or GAA* Variant 2 over A* Variant 1
or GAA* Variant 1, respectively, outweighs the addi-
tional runtime savings gained from increasing the num-
ber of fast expansions.

• Conclusion 3: If the priority queues are implemented
with binary heaps, then GAA* Variant 1 speeds up
GAA* more than A* Variant 1 speeds up A* because
GAA* Variant 1 can expand more cells fast than A*
Variant 1 due to the way GAA* updates its h-values,
as discussed earlier.

Table 2 reports on moving-target search. In general, A*
Variant 1 or GAA* Variant 1 is always faster than A* or
GAA* Variant 2, respectively. If the priority queues are
implemented with buckets, then A* or GAA* is (almost)
always faster than A* Variant 1 or GAA* Variant 1, respec-
tively. If the priority queues are implemented with binary
heaps, then A* Variant 1 is sometimes faster than A*, while
GAA* Variant 1 is always faster than GAA*. GAA* Variant
1 is 30.7 percent faster than GAA* for k = 1, 24.9 percent
faster than GAA* for k = 10, 14.7 percent faster than GAA*
for k = 20, 12.9 percent faster than GAA* for k = 50 and
7.2 percent faster than GAA* for k = 100. Conclusions 1-3
from above continue to hold.



Binary Heap Buckets

searches slow fast fast runtime searches slow fast fast runtime
until target expansions expansions expansions per per until target expansions expansions expansions per per

reached per search per search slow expansion search reached per search per search slow expansion search

A* 3417 1707 (7.5) N/A N/A 421 3381 1057 (3.7) N/A N/A 134

A* Variant 1 3418 980 (1.6) 726 0.7413 360 3485 803 (1.3) 635 0.7909 191
A* Variant 2 3417 977 (1.6) 730 0.7473 387 3485 778 (1.3) 659 0.8464 208

GAA* 3481 346 (1.6) N/A N/A 92 3308 277 (1.0) N/A N/A 33

GAA* Variant 1 3428 28 (0.1) 333 12.087 61 3509 24 (0.1) 315 13.199 39
GAA* Variant 2 3428 26 (0.1) 334 12.987 63 3552 22 (0.1) 321 14.599 42

Table 1: Stationary Target Search in Initially Unknown Grids.

Binary Heap Buckets

searches slow fast fast runtime searches slow fast fast runtime
until target expansions expansions expansions per per until target expansions expansions expansions per per

reached per search per search slow expansion search reached per search per search slow expansion search

k = 1
A* 716 4583 (15.6) N/A N/A 953 711 4602 (15.7) N/A N/A 807

A* Variant 1 790 2474 (8.8) 2463 0.9954 909 791 2474 (8.8) 2463 0.9956 878
A* Variant 2 790 2334 (8.4) 2602 1.1147 962 791 1935 (7.0) 3001 1.5509 886

GAA* 731 2056 (8.4) N/A N/A 414 731 2013 (8.2) N/A N/A 297
GAA* Variant 1 814 101 (1.5) 2132 21.059 287 814 101 (1.5) 2139 21.100 281

GAA* Variant 2 814 99 (1.5) 2133 21.444 299 814 97 (1.5) 2141 21.816 297

k = 10
A* 371 3344 (18.5) N/A N/A 652 372 3355 (18.6) N/A N/A 557

A* Variant 1 447 1970 (9.6) 1934 0.9817 663 447 1970 (9.6) 1932 0.9809 652
A* Variant 2 447 1900 (9.2) 2003 1.0541 698 447 1668 (8.2) 2232 1.3376 671

GAA* 381 1310 (9.6) N/A N/A 301 371 1313 (9.8) N/A N/A 223

GAA* Variant 1 410 158 (3.0) 1303 8.9181 226 410 159 (3.0) 1306 8.2122 224
GAA* Variant 2 410 155 (2.9) 1306 8.4263 232 410 150 (2.9) 1313 8.7446 225

k = 20
A* 278 2657 (19.4) N/A N/A 504 278 2712 (19.5) N/A N/A 437

A* Variant 1 361 1613 (8.9) 1563 0.9689 516 360 1633 (9.8) 1579 0.9672 515
A* Variant 2 361 1563 (8.7) 1609 1.0277 553 360 1406 (7.9) 1806 1.2840 529

GAA* 304 1088 (10.3) N/A N/A 266 305 1094 (10.2) N/A N/A 195

GAA* Variant 1 381 188 (3.2) 1201 6.3929 227 383 186 (3.2) 1191 6.3975 216
GAA* Variant 2 383 183 (3.2) 1203 6.5686 235 381 176 (3.1) 1203 6.8291 224

k = 50
A* 212 2511 (21.8) N/A N/A 491 209 2501 (22.0) N/A N/A 397

A* Variant 1 255 1462 (10.1) 1395 0.9542 477 255 1466 (10,1) 1398 0.9537 463
A* Variant 2 254 1430 (9.9) 1428 0.9987 507 255 1293 (9.1) 1568 1.2129 479

GAA* 230 969 (12.0) N/A N/A 271 236 989 (11.8) N/A N/A 209

GAA* Variant 1 288 214 (4.3) 975 4.5397 236 287 213 (4.3) 968 4.5420 211
GAA* Variant 2 288 209 (4.2) 980 4.6729 247 287 199 (4.2) 980 4.9045 220

k = 100
A* 183 2272 (22.6) N/A N/A 467 178 2311 (23.1) N/A N/A 387

A* Variant 1 225 1316 (9.9) 1221 0.9277 441 222 1339 (10.2) 1238 0.9247 412
A* Variant 2 225 1292 (9.8) 1242 0.9606 468 223 1206 (9.3) 1360 1.1274 433

GAA* 200 875 (12.8) N/A N/A 265 197 912 (13.0) N/A N/A 213

GAA* Variant 1 263 228 (4.7) 895 3.9189 249 259 229 (4.7) 890 3.8870 222
GAA* Variant 2 261 220 (4.7) 897 4.0672 256 257 214 (4.7) 901 4.2104 232

Table 2: Moving Target Search in Known Grids.

6. CONCLUSIONS
In this paper, we presented two simple optimizations that

can reduce the number of priority queue operations for A*
and its extensions. Basically, when the optimized search al-
gorithms expand a cell, they check whether they will expand
a successor of the cell next. If so, they do not first insert
it into the priority queue and then immediately remove it
again. Our experimental results show that our optimizations
speed up Generalized Adaptive A* by up to 30 percent if its
priority queue is implemented as a binary heap.
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