
Generalized Fringe-Retrieving A*:
Faster Moving Target Search on State Lattices

Xiaoxun Sun William Yeoh Sven Koenig
Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781, USA
{xiaoxuns, wyeoh, skoenig}@usc.edu

ABSTRACT
Moving target search is important for robotics applications
where unmanned ground vehicles (UGVs) have to follow
other friendly or hostile UGVs. Artificial intelligence re-
searchers have recently used incremental search to speed
up the computation of a simple strategy for the hunter.
The fastest incremental search algorithm, Fringe-Retrieving
A*, solves moving target search problems only on two-
dimensional grids, which are rather unrealistic models for
robotics applications. We therefore generalize it to General-
ized Fringe-Retrieving A*, which solves moving target search
problems on arbitrary graphs, including the state lattices
used for UGV navigation.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and
Search]: Graph and tree search strategies

General Terms
Algorithm; Experimentation; Performance

Keywords
A*; Fringe-Retrieving A*; Incremental Search; Moving
Target Search; Path Planning; State Lattices; Unmanned
Ground Vehicles

1. INTRODUCTION
Incremental search algorithms reuse information from pre-

vious searches to speed up the current search and are thus
often able to find cost-minimal paths for series of similar
search problems faster than by solving each search problem
with A* [1] from scratch [5]. As a result, artificial intelli-
gence researchers have recently used them to speed up the
computation of a simple strategy for the hunter in the con-
text of moving target search problems where the hunter uses
the following strategy to catch a moving target in a known
environment: The hunter always follows a cost-minimal path
from its current state to the current state of the target and
replans a new path whenever the target moves off the previ-
ous path. It repeats this process until it is in the same state

Cite as: Generalized Fringe-Retrieving A*: Faster Moving Target
Search on State Lattices, X. Sun, W. Yeoh and S. Koenig, Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen
(eds.), May, 10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

Figure 1: Example of Feasible Motion Primitive

as the target, at which point the target is caught [6, 13, 14].
Moving target search is important for robotics applications
where unmanned ground vehicles (UGVs) have to (a) follow
other friendly or hostile UGVs, (b) move from one surveil-
lance position to the next one as their surveillance target
moves or (c) find an empty parking spot in a parking lot,
where a different parking spot becomes their destination in
case their parking spot is taken by a different vehicle before
they get to it. Fringe-Retrieving A* (FRA*) is the fastest
incremental search algorithm for recomputing paths for the
hunter on two-dimensional grids according to a first study
in [14]. It starts A* with initial OPEN and CLOSED lists
obtained from the previous search rather than from scratch.
Although two-dimensional grids are the standard test do-
mains for moving target search in artificial intelligence [4,
10], they are rather unrealistic models for UGV navigation
since they are unable to model motion constraints. Unfortu-
nately, FRA* uses geometric properties that are specific to
two-dimensional grids and thus does not apply to arbitrary
graphs. We therefore generalize it to Generalized FRA* (G-
FRA*), which solves moving target search problems on ar-
bitrary graphs, including the state lattices used for UGV
navigation [15].

2. STATE LATTICES
Two-dimensional grids are the standard test domains for

moving target search in artificial intelligence. They consist
of blocked and unblocked cells. The states are the unblocked
cells, and both the hunter and target are able to move from
their current cell to any adjacent unblocked cell [4, 6, 13, 14,
10]. State lattices are extensions of two-dimensional grids
that are able to model motion constraints [12, 9, 7] and
are therefore well suited to planning for non-holonomic and
highly constrained robotic systems with limited maneuver-

ability, such as unmanned ground vehicles (UGVs) [9, 15].
A state lattice is constructed by discretizing the configura-
tion space into a high-dimensional grid and connecting the
cells of the grid with motion primitives, which are the build-
ing blocks for more complicated motions. A state in a state
lattice is a tuple (x, y, θ), where x and y are the location of
the center of the UGV and θ is its orientation. A motion
primitive is feasible in a state iff the UGV does not collide
with obstacles when executing it in that state. Ideally, an
edge from state u to state v in a state lattice exists iff there
is a feasible motion primitive in u whose execution results
in v. State lattices often include only a subset of edges to
make path planning fast [3, 9]. Figure 1 shows a feasible
motion primitive in state (1, 3, 90◦), whose execution results
in state (9, 1, 90◦), where 90◦ is to the right. Blue crosses are
obstacles. The black line represents the path of the center
of the UGV, and the blue rectangles are the perimeters of
the UGV as it executes the motion primitive.

3. INCREMENTAL SEARCH
Fringe-Retrieving A* (FRA*) is an incremental search al-

gorithm that is based on A* but solves moving target search
problems only on two-dimensional grids. We therefore gen-
eralize it to Generalized FRA* (G-FRA*), which solves mov-
ing target search problems on arbitrary graphs, including
state lattices. We first describe A*, then FRA* and finally
G-FRA*.

3.1 Notation
We use the following notation: (1) S denotes the finite set

of states, (2) sstart ∈ S denotes the current state of the hunter
and the start state of the search, (3) sgoal ∈ S denotes the
current state of the target and the goal state of the search,
(4) Succ(s) ⊆ S denotes the set of successor states of state
s ∈ S, (5) Pred(s) ⊆ S denotes the set of predecessor states
of state s ∈ S, and (6) c(s, s′) denotes the cost of a cost-
minimal path from state s ∈ S to state s′ ∈ S.

3.2 A*
A* [1] is a search algorithm that provides the founda-

tion for FRA* and G-FRA*. Our description closely follows
[13, 14]. A* uses user-provided h-values to focus its search,
where the h-value h(s, s′) is an approximation of c(s, s′).
The h-values have to be consistent [11]. A* maintains two
values for every state s ∈ S: (1) The g-value g(s) is an ap-
proximation of c(sstart, s). Initially, it is ∞. (2) The parent
pointer parent(s) points to the parent of state s in the search
tree. Initially, it is NULL. A* also maintains the OPEN and
CLOSED lists, whose states together form the search tree.
At the start of a search for a cost-minimal path from the
start state to the goal state, A* sets the g-value of the start
state to zero and initializes the OPEN list to contain the
start state and the CLOSED list to be empty. It then re-
peats the following procedure: It deletes a state s with the
smallest g(s) + h(s, sgoal) from the OPEN list, inserts it into
the CLOSED list and expands it by performing the following
operations for each successor s′ ∈ Succ(s): If s′ is neither
in the OPEN nor CLOSED lists, then A* generates it by
setting g(s′) := g(s) + c(s, s′), setting parent(s′) := s and
inserting it into the OPEN list. If s′ is already in the OPEN
list and g(s′) > g(s) + c(s, s′), then A* re-generates it by
setting g(s′) := g(s)+ c(s, s′) and parent(s′) := s. A* termi-
nates when its OPEN list is empty, which indicates that no

path exists from the start state to the goal state, or when
it expands the goal state, which indicates that A* found a
cost-minimal path from the start state to the goal state. A*
has the following properties. Property 1: The OPEN list
contains all states that are not in the CLOSED list but have
some predecessor in the CLOSED list, except at the start of
the search when it contains only the start state. The parent
pointer of a state s in the OPEN list (with the exception of
the start state) points to the predecessor s′ in the CLOSED
list that minimizes g(s′) + c(s′, s). The g-value of state s is
g(s′)+ c(s′, s) for this predecessor s′. Property 2: For any
two states s, s′ ∈ S in the CLOSED list so that s′ is in the
subtree of the search tree rooted at s, a cost-minimal path
from s to s′ is obtained when following the parent pointers
in reverse and its cost is g(s′) − g(s).

3.3 FRA*
Fringe-Retrieving A* (FRA*) [14] is an incremental search

algorithm that G-FRA* extends. Its pseudocode in Figure
3 and our description closely follow [14].1 At the start of
a moving target search, FRA* runs an A* search to find
a cost-minimal path from the current state of the hunter
to the current state of the target. The hunter then moves
along the path until it catches the target or the target moves
off the path. In the latter case, FRA* could run an A*
search from scratch to find a new cost-minimal path from
the current start state (= the current state of the hunter)
to the current goal state (= the current state of the tar-
get). However, FRA* runs an A* search with initial OPEN
and CLOSED lists obtained from the previous search rather
than from scratch. Each A* run is called a search iteration.
A search iteration finds a cost-minimal path from the cur-
rent start state to the current goal state since it maintains
Properties 1 and 2 of A*. It can run faster than an A*
search from scratch since it does not expand the states in
the initial CLOSED list. Figure 2 illustrates the operations
during a search iteration. In the beginning of a search iter-
ation, the initial OPEN and CLOSED lists are the same as
the previous OPEN and CLOSED lists (= the OPEN and
CLOSED lists at the end of the previous search iteration),
respectively. Figure 2(a) visualizes the previous OPEN and
CLOSED lists. S’ and S represent the previous and cur-
rent start states, respectively, and G’ and G represent the
previous and current goal states, respectively.

• Step 1 (Starting A* Immediately): FRA* exe-
cutes this step if it did not terminate in Step 3 in
the previous search iteration. If the previous and cur-
rent start states are identical, then FRA* executes
the remainder of this step and then skips Steps 2 to
5. If the current goal state is in the initial CLOSED
list (Line 54), then the previous search already de-
termined a cost-minimal path from the current start
state to the current goal state. FRA* thus determines
a cost-minimal path from the current start state to
the current goal state by following the parent pointers
in reverse. If the current goal state is not in the ini-
tial CLOSED list (Line 54), then the previous search
can be continued to determine a cost-minimal path

1We omit the optional Changing Parents step of FRA*
since it uses geometric properties that are specific to two-
dimensional grids. G-FRA* applies to arbitrary graphs and
thus cannot use this step.

Previous OPEN List

Previous CLOSED ListS’ G’ GS

(a) Before Step 1

Deleted
CLOSED List

Deleted OPEN List

Initial CLOSED List G

Incomplete Initial OPEN List

S

(b) After Step 2

Deleted
CLOSED List Initial CLOSED List GS

Inserted OPEN List Incomplete Initial OPEN List

(c) After Step 4

Figure 2: Illustration of the Operations of FRA*

from the current start state to the current goal state.
FRA* thus runs an A* search with the initial OPEN
and CLOSED lists (Line 51) and then determines a
cost-minimal path from the current start state to the
current goal state by following the parent pointers in
reverse.

• Step 2 (Deleting States): FRA* deletes all states
in the search tree that are not in the subtree rooted
at the current start state by deleting them from the
initial OPEN and CLOSED lists (Lines 26-29). Fig-
ure 2(b) visualizes the initial OPEN and CLOSED lists
after Step 2. The dotted line represents the states
deleted from the initial OPEN list (called “deleted
OPEN list”), the yellow area represents the states
deleted from the initial CLOSED list (called “deleted
CLOSED list”), the solid line represents the remain-
ing initial OPEN list (called “incomplete initial OPEN
list”), and the blue area represents the remaining ini-
tial CLOSED list (called “initial CLOSED list”).

• Step 3 (Terminating Early): If the current goal
state is in the initial CLOSED list (Line 54), then
the previous search already determined a cost-minimal
path from the current start state to the current goal
state. FRA* thus determines a cost-minimal path from
the current start state to the current goal state by fol-
lowing the parent pointers in reverse and skips Steps
4 and 5.

• Step 4 (Inserting States): The initial OPEN list
can be incomplete since, according to Property 1, it
needs to contain all states that are not in the initial
CLOSED list but have some predecessor in the initial
CLOSED list. Since the states in the initial CLOSED
list form a contiguous area on two-dimensional grids,
FRA* completes the initial OPEN list by traversing
(the relevant part of) the outer perimeter of this con-
tiguous area and performing the following check for
all encountered states: If the state is not in the ini-
tial OPEN list yet but one of its predecessors is in
the initial CLOSED list (Lines 37-38), then FRA* sets
its parent pointer and g-value according to Property 1
and inserts it into the initial OPEN list (Lines 33 and
39-40). Figure 2(c) visualizes the initial OPEN and
CLOSED lists after Step 4. The dotted line represents
the inserted states that complete the initial OPEN list
(called “inserted OPEN list”). The solid and dotted
lines together represent the initial OPEN list.

• Step 5 (Starting A*): FRA* runs an A* search with
the initial OPEN and CLOSED lists (Line 51) and then

determines a cost-minimal path from the current start
state to the current goal state by following the parent
pointers in reverse.

3.4 G-FRA*
FRA* solves moving target search problems only on two-

dimensional grids since Step 4 uses geometric properties that
are specific to them. Figure 5(a) shows an example eight-
neighbor grid where C represents the states in the initial
CLOSED list and O represents the states that have to be
inserted into the initial OPEN list to complete it. Step 4
of FRA* identifies the states that have to be inserted into
the initial OPEN list by traversing the outer perimeter of the
initial CLOSED list, which is possible since the states on the
outer perimeter of the initial CLOSED list are connected on
two-dimensional grids. However, Figure 5(c) shows that this
is not necessarily the case on arbitrary graphs. Thus, Step
4 has to identify the states that have to be inserted into the
initial OPEN list in a different way. Step 4 could iterate
over the states in the initial CLOSED list and insert their
successors that are not in the initial CLOSED list into the
initial OPEN list. However, iterating over the states in the
initial CLOSED list can be slow since the initial CLOSED
list can be large. Instead, Step 4 iterates over the states
deleted from the initial OPEN and CLOSED lists in Step
2 and inserts those states that have a predecessor in the
initial CLOSED list into the initial OPEN list. G-FRA*,
the resulting version of FRA*, solves moving target search
problems on arbitrary graphs. Figure 4 shows the neces-
sary changes to the pseudocode from Figure 3. G-FRA*
maintains a DELETED list, that contains all states deleted
from the initial OPEN and CLOSED lists in all executions
of Step 2 since G-FRA* ran the last A* search. G-FRA* ini-
tializes the DELETED list to empty between Lines 49 and
50, calls GeneralizedStep2() on Line 63 instead of Step2()
and calls GeneralizedStep4() on Line 67 instead of Step4().
In Step 2, G-FRA* now also inserts all states deleted from
the initial OPEN and CLOSED lists (that is, all states in the
search tree that are not in the subtree rooted at the current
start state) into the DELETED list (Line 72). In Step 4,
G-FRA* completes the initial OPEN list by performing the
following check for all states in the DELETED list before
it sets the DELETED list to empty again (Line 87): If the
state has a predecessor in the initial CLOSED list (Line 80),
then G-FRA* sets its parent pointer and g-value according
to Property 1 and inserts it into the initial OPEN list (Lines
84-86). According to Property 1, the initial OPEN list has
to contain all states that are not in the initial CLOSED list
but have some predecessor in the initial CLOSED list. The
correctness of G-FRA* follows from the fact that every state
that has a predecessor in the initial CLOSED list when G-

01 procedure InitializeState(s)
02 if (generatediteration(s) �= iteration)
03 g(s) := ∞;
04 generatediteration(s) := iteration;
05 expanded(s) := false;

06 function TestClosedList(s)
07 return (s = sstart OR (expanded(s) AND parent(s) �= NULL));

08 function ComputeCostMinimalPath()
09 while (OPEN �= ∅)
10 s := arg mins∈OPEN(g(s) + h(s, sgoal));
11 OPEN := OPEN \ {s};
12 expanded(s) := true;
13 forall s′ ∈ Succ(s)
14 if (NOT TestClosedList(s′))
15 InitializeState(s′);
16 if (g(s′) > g(s) + c(s, s′))
17 g(s′) := g(s) + c(s, s′);
18 parent(s′) := s;
19 if (s′ /∈ OPEN)
20 OPEN := OPEN ∪ {s′};
21 if (s = sgoal)
22 return true;
23 return false;

24 procedure Step2()
25 parent(sstart) := NULL;
26 forall s ∈ S in the search tree rooted at previous sstart

but not the subtree rooted at sstart

27 parent(s) := NULL;
28 if (s ∈ OPEN)
29 OPEN := OPEN \ {s};

30 procedure Step4()
31 forall s ∈ S on relevant part of outer perimeter of CLOSED lista

32 if (s /∈ OPEN AND ∃s′ ∈ Pred(s) : TestClosedList(s′))
33 OPEN := OPEN ∪ {s};
34 forall s ∈ OPEN
35 InitializeState(s);
36 forall s ∈ OPEN
37 forall s′ ∈ Pred(s)
38 if (TestClosedList(s′) AND g(s) > g(s′) + c(s′, s))
39 g(s) := g(s′) + c(s′, s);
40 parent(s) := s′;

41 function Main()
42 forall s ∈ S
43 generatediteration(s) := 0;
44 expanded(s) := false;
45 parent(s) := NULL;
46 iteration := 1;
47 InitializeState(sstart);
48 g(sstart) := 0;
49 OPEN := {sstart};
50 while (sstart �= sgoal)
51 if (NOT ComputeCostMinimalPath())
52 return false;
53 openlist incomplete := false;
54 while (TestClosedList(sgoal))
55 while (target is on path from sstart to sgoal and not caught)
56 follow cost-minimal path from sstart to sgoal;
57 if (target is caught)
58 return true;
59 previous sstart := sstart;
60 sstart := the current state of the hunter;
61 sgoal := the current state of the target;
62 if (sstart �= previous sstart)
63 Step2();
64 openlist incomplete := true;
65 if (openlist incomplete)
66 iteration := iteration + 1;
67 Step4();
68 return true;

a
The CLOSED list contains all states s′ ∈ S with TestClosedList(s′).

Figure 3: FRA*

69 procedure GeneralizedStep2()
70 parent(sstart) := NULL;
71 forall s ∈ S in the search tree rooted at previous sstart

but not the subtree rooted at sstart

72 DELETED := DELETED ∪ {s};
73 parent(s) := NULL;
74 if (s ∈ OPEN)
75 OPEN := OPEN \ {s};

76 procedure GeneralizedStep4()
77 forall s ∈ OPEN
78 generatediteration(s) := iteration;
79 forall s ∈ DELETED
80 if (∃s′ ∈ Pred(s) : TestClosedList(s′))
81 InitializeState(s);
82 forall s′ ∈ Pred(s)
83 if (TestClosedList(s′) AND g(s) > g(s′) + c(s′, s))
84 g(s) := g(s′) + c(s′, s);
85 parent(s) := s′;
86 OPEN := OPEN ∪ {s};
87 DELETED := ∅;

Figure 4: Generalized Fringe-Retrieving A*

FRA* executes Step 4 was in the OPEN or CLOSED lists
after the last A* search and thus is in the initial CLOSED
list, the initial OPEN list or the DELETED list when G-
FRA* executes Step 4. We distinguish three cases:

• If a state is in the initial CLOSED list when G-FRA*
executes Step 4, then it was in the CLOSED list and
thus not in the OPEN list after the last A* search
and still is not in the initial OPEN list when G-FRA*
executes Step 4. G-FRA* does nothing since it should
indeed not be in the initial OPEN list when G-FRA*
executes Step 4.

• If a state is in the initial OPEN list when G-FRA*
executes Step 4, then it was in the OPEN list and thus
was not in the CLOSED list but had some predecessor
in the CLOSED list after the last A* search and this
still holds when G-FRA* executes Step 4 (otherwise it
would have been deleted from the initial OPEN list in
Step 2). G-FRA* does nothing since it should indeed
be in the initial OPEN list when G-FRA* executes
Step 4 and its parent pointer and g-value still satisfy
Property 1.

• If a state is in the DELETED list, then it was deleted
from the initial OPEN and CLOSED lists in Step 2.
Thus, if it has some predecessor in the initial CLOSED
list, G-FRA* inserts it into the initial OPEN list in
Step 4 and sets its parent pointer and g-value according
to Property 1.

4. EXPERIMENTAL EVALUATION
FRA* is the fastest incremental search algorithm for mov-

ing target search on two-dimensional grids according to a
first study in [14]. Thus, G-FRA* could be fast for mov-
ing target search on arbitrary graphs, including state lat-
tices. Generalized Adaptive A* (GAA*, sometimes also
called Generalized MT-Adaptive A*) [13] is the fastest in-
cremental search algorithm so far for moving target search
on arbitrary graphs according to a first study in [13]. GAA*
is a generalization of Moving-Target Adaptive A* [6], which
build on an idea in [2]. Different from FRA* and G-FRA*,
GAA* does not speed up the current search by reusing parts

C C

C C

O O

O

O

O

(a) Example
Grid

C C

C C

O O

O

O

O

(b) Traversing the
Outer Perimeter

C C

C C

O O

O

O

O

(c) Example
Graph

C C

C C

O O

O

O

O
?

(d) Inability to Traverse
the Outer Perimeter

Figure 5: Limitations of FRA*

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

START

GOAL

Figure 6: Example UGV Path

of the previous search tree but by making the previous h-
values more informed. We therefore perform preliminary ex-
periments that compare G-FRA* against running A* from
scratch and GAA* on known state lattices. We use simi-
lar experimental settings as earlier experiments that com-
pared FRA* against running A* from scratch and GAA* on
two-dimensional grids [14]. They allow us to determine the
influence of the graph topology on the runtime of the incre-
mental search algorithms and to use SBPL both for plan-
ning and execution (instead of using a motion simulator)
but do not result in a realistic simulation of moving tar-
get search with UGVs since the UGV and target take turns
executing uninterruptible actions with potentially different
execution times. We implemented all search algorithms in
similar ways. For example, they all find cost-minimal paths
from the current state of the UGV to the current state of
the target and re-plan when the target moves off the path,
and they all use a binary heap to implement the OPEN list.

4.1 SBPL
We implement all search algorithms in the Search-Based

Planning Library (SBPL) [8], a publicly available library for
UGV navigation with state lattices that is written in C++.
SBPL discretizes the orientation θ into multiples of 22.5◦

and constructs the state lattices from three inputs, namely
the size of the UGV, an environment definition file and a
motion primitive definition file. An environment definition
file defines the size of the grid, the size of each cell, the loca-
tions of obstacles, the translational and rotational velocities
of the UGV and the start and goal states of the UGV. A mo-
tion primitive definition file defines the motion primitives in
each state. The cost of a motion primitive is its execution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

(a) pr2.mprim

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

(b) pr2sides.mprim

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

(c) mprim_unic_sideback.mprim

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

(d) pr2_all_2.5cm_20turncost.mprim

Figure 7: Motion Primitives

time. Figure 6 shows an example UGV path for a state
lattice constructed by SBPL. We use the default size of the
UGV, namely 20 centimeters × 4 centimeters. We use one of
the example environment definition files (env2.cfg), which
defines the size of the grid to be 1200 cells × 100 cells, the
size of each cell to be 2.5 centimeters × 2.5 centimeters, the
translational velocity of the UGV to be 1 meter per second
and the rotational velocity of the UGV to be 22.5◦ per sec-
ond. We use four motion primitive definition files together
with the default h-values, namely the amount of time needed
for the UGV to move to the goal state at maximal speed in
a straight line in the absence of obstacles and motion con-
straints. Figure 7 shows the motion primitives defined in
the four files for state (8, 2, 90◦). The target moves ran-
domly with the same translational and rotational velocities
as the UGV but skips every tenth move.

searches costs states states states runtime
per per expanded deleted reused per

test case test case per search per search per search search
A* 157 37,741 83,303 984
GAA* 154 39,978 57,864 655
G-FRA* 151 40,056 12,511 4,062 117,901 61

pr2.mprim
(7 Motion Primitives per State)

A* 161 32,240 118,965 1,570
GAA* 145 32,466 68,674 773
G-FRA* 176 32,132 13,361 5,408 125,144 82

pr2sides.mprim
(9 Motion Primitives per State)

A* 156 32,437 147,172 2,017
GAA* 153 32,136 86,770 1,122
G-FRA* 174 32,749 15,463 5,714 124,098 116

mprim_unic_sideback.mprim
(11 Motion Primitives per State)

A* 172 39,820 166,321 2,554
GAA* 160 40,562 103,326 1,313
G-FRA* 166 42,941 15,942 5,718 129,093 130

pr2_all_2.5cm_20turncost.mprim
(13 Motion Primitives per State)

Table 1: Experimental Results

4.2 Results
Table 1 reports two measures for the difficulty of the mov-

ing target search problems, namely the average number of
searches and the average cost of the UGV path until it
catches the target. These values vary slightly among the
different moving target search algorithms due to them break-
ing ties differently among several cost-minimal paths. The
table reports two measures for the efficiency of the moving
target search algorithms, namely the average number of ex-
panded states per search and the average runtime per search
in milliseconds on a Pentium D 3.0 Ghz PC with 2 GByte of
RAM. For G-FRA*, the table also reports the average num-
bers of deleted states per search (= number of states deleted
from the search tree in Step 2) and reused states per search
(= number of states remaining in the search tree after Step
2). We make the following observations:

• A*, GAA* and G-FRA* have runtimes per search that
generally increase with the number of motion primi-
tives per state. As the number of motion primitives
per state increases, the number of successors per state
increases, which in turn increases the runtime per state
expansion.

• GAA* has a smaller runtime per search than A* be-
cause it makes the h-values more informed over time
and hence expands fewer states per search.

• G-FRA* has a smaller runtime than A* and GAA*
because it reuses the previous search tree and hence
expand fewer states per search than A* and GAA*.
The runtime per search of G-FRA* is about 5.3 to
29.9 times smaller than the one of A* and about 3.0
to 23.6 times smaller than the one of GAA*.

Overall, these results for G-FRA* on state lattices are sim-
ilar to earlier results that compared FRA* against running
A* from scratch and GAA* on two-dimensional grids using
similar experimental settings [14]. They show that G-FRA*
can be up to one order of magnitude faster than GAA*.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we used incremental search to speed up the

computation of a simple strategy for the hunter in the con-
text of moving target search problems where the hunter has
to catch a moving target in a known environment. Our main
technical contribution was the development G-FRA*, a gen-
eralization of the incremental search algorithm FRA* from
two-dimensional grids to arbitrary graphs. Our experiments
showed that G-FRA* can be up to one order of magnitude
faster than GAA*, the fastest incremental search algorithm
so far for solving moving target search problems on arbitrary
graphs according to a first study in [13]. G-FRA* thus seems
to be a promising building block for applying incremental
search to moving target search with UGVs. However, we
did not attempt to build on a realistic simulation of moving
target search with UGVs because we wanted to use similar
experimental settings as earlier experiments. The result-
ing limitations of our experiments are as follows: We used
a coarse-grained discrete simulation on the motion-primitive
level. The UGV and target had symmetrical motion capabil-
ities and took turns executing uninterruptible actions with
potentially different execution times. The motion strategy
of the target was also simplistic. It is therefore future work
to evaluate G-FRA* as part of a realistic simulation of mov-
ing target search with UGVs, where (a) a motion simulator
provides a continuous simulation, (b) the UGV and target
are able move in parallel, (c) the UGV and target are able
to interrupt their execution of motion primitives, (d) the
UGV and target have different motion capabilities, and (e)
the target uses a more sophisticated motion strategy. It is
also future work to exploit the structure of graphs to speed
up the computation of simple strategies for the UGV even
more and, more importantly, to speed up the computation
of more complex strategies for the UGV, such as minimax
strategies [10], and to generalize the results to moving target
search in unknown environments.

Acknowledgments
We thank Maxim Likhachev, the creator of SBPL, for his
help and the anonymous reviewers for their helpful com-
ments. This material is based upon work supported by,
or in part by, NSF under contract/grant number 0413196,
ARL/ARO under contract/grant number W911NF-08-1-
0468 and ONR in form of a MURI under contract/grant
number N00014-09-1-1031. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, ei-
ther expressed or implied, of the sponsoring organizations,
agencies or the U.S. government.

6. REFERENCES
[1] P. Hart, N. Nilsson, and B. Raphael. A formal basis

for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 2:100–107, 1968.

[2] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald.
Speeding up problem solving by abstraction: A graph
oriented approach. Artificial Intelligence,
85(1–2):321–361, 1996.

[3] T. Howard and A. Kelly. Optimal rough terrain
trajectory generation for wheeled mobile robots.

International Journal of Robotics Research,
26(1):141–166, 2007.

[4] T. Ishida and R. Korf. Moving target search. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 204–211, 1991.

[5] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy.
Incremental heuristic search in artificial intelligence.
AI Magazine, 25(2):99–112, 2004.

[6] S. Koenig, M. Likhachev, and X. Sun. Speeding up
moving-target search. In Proceedings of the
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1136–1143, 2007.

[7] A. Kushleyev and M. Likhachev. Time-bounded
lattice for efficient planning in dynamic environments.
In Proceedings of the International Conference on
Robotics and Automation, pages 1662–1668, 2009.

[8] M. Likhachev. SBPL graph search library, 2009.
www.seas.upenn.edu/∼maximl/software.html.

[9] M. Likhachev and D. Ferguson. Planning long
dynamically feasible maneuvers for autonomous
vehicles. International Journal of Robotics Research,
28(8):933–945, 2009.

[10] C. Moldenhauer and N. Sturtevant. Optimal solutions
for moving target search (Extended Abstract). In
Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, pages
1249–1250, 2009.

[11] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1985.

[12] M. Pivtoraiko and A. Kelly. Generating near minimal
spanning control sets for constrained motion planning
in discrete state spaces. In Proceedings of the
International Conference on Intelligent Robots and
Systems, pages 3231–3237, 2005.

[13] X. Sun, S. Koenig, and W. Yeoh. Generalized
Adaptive A*. In Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 469–476, 2008.

[14] X. Sun, W. Yeoh, and S. Koenig. Efficient incremental
search for moving target search. In Proceedings of the
International Joint Conference on Artificial
Intelligence, pages 615–620, 2009.

[15] C. Urmson et al. Autonomous driving in urban
environments: Boss and the Urban Challenge. Journal
of Field Robotics (Special Issue on the 2007 DARPA
Urban Challenge, Part I), 25(1):425–466, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

