
Time-Bounded Adaptive A*

Carlos Hernández
Depto. de Ingenieŕıa Informática

Universidad Católica
de la Ssma. Concepción

Caupolican 491, Concepción, Chile

chernan@ucsc.cl

Jorge Baier
Computer Science Department

Pontificia Universidad
Católica de Chile

Santiago, Chile

jabaier@ing.puc.cl

Tansel Uras Sven Koenig
Computer Science Department

University of
Southern California

Los Angeles, CA 90089, USA

{turas,skoenig}@usc.edu

ABSTRACT

In this paper, we investigate real-time path planning in
static terrain, as needed in video games. We introduce the
game time model, where time is partitioned into uniform
time intervals, an agent can execute one movement during
each time interval, and search and movements are done in
parallel. The objective is to move the agent from its start
location to its goal location in as few time intervals as possi-
ble. For known terrain, we show experimentally that Time-
Bounded A* (TBA*), an existing real-time search algorithm
for undirected terrain, needs fewer time intervals than two
state-of-the-art real-time search algorithms and about the
same number of time intervals as A*. TBA*, however, can-
not be used when the terrain is not known initially. For
initially partially or completely unknown terrain, we thus
propose a new search algorithm. Our Time-Bounded Adap-
tive A* (TBAA*) extends TBA* to on-line path planning
with the freespace assumption by combining it with Adap-
tive A*. We prove that TBAA* either moves the agent from
its start location to its goal location or detects that this is
impossible - an important property since many existing real-
time search algorithms are not able to detect efficiently that
no path exists. Furthermore, TBAA* can eventually move
the agent on a cost-minimal path from its start location to
its goal location if it resets the agent into its start location
whenever it reaches its goal location. We then show experi-
mentally in initially partially or completely unknown terrain
that TBAA* needs fewer time intervals than several state-of-
the-art complete and real-time search algorithms and about
the same number of time intervals as the best compared
complete search algorithm, even though it has the advan-
tage over complete search algorithms that the agent starts
to move right away.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods, and
Search]: Graph and Tree Search Strategies, Heuristic Meth-
ods

General Terms

Algorithms, Experimentation

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords

A*, Incremental Heuristic Search, Learning Real-Time A*,
LRTA*, Path Planning with the Freespace Assumption,
Real-Time Heuristic Search, TBA*, Time-Bounded A*,
Video Games

1. INTRODUCTION
Game characters in video games can execute one move-

ment per game cycle. We therefore introduce the following
time model, called game time model. Time is partitioned
into uniform time intervals, an agent can execute one move-
ment during each time interval, and search and movements
are done in parallel. The objective is to move the agent
from its start location to its goal location in as few time
intervals as possible. Complete search algorithms, such as
A* [4], search first and only then move the agent along the
resulting path. They typically need several time intervals to
find a complete path from the start location of the agent to
its goal location, resulting in a long delay before the agent
starts to move and a long time until it reaches its goal lo-
cation. Real-time search algorithms avoid both issues by
executing A* searches and movements in parallel.

Most complete and real-time search algorithms can op-
erate in both known and initially partially or completely
unknown terrain. They typically use on-line path planning
with the freespace assumption in initially unknown terrain
by taking all obstacles into account that the agent has ob-
served so far but assuming that unknown terrain is free of
obstacles [11]. For example, Repeated A* is identical to A*
except that Repeated A* starts a new A* search from the
current location of the agent to its goal location whenever
the agent observes obstacles on its current path to its goal
location. Incremental search algorithms, such as Adaptive
A* [9] and D* Lite [7], behave in the same way but speed
up the A* searches by using their experience with prior A*
searches to speed up future ones.

In this paper, we study Time-Bounded A* (TBA*) [1].
TBA* is an existing real-time search algorithm for undi-
rected terrain that performs an A* search from the start
location of the agent to its goal location. At the end of
each time interval, the agent executes a movement towards
a location in the OPEN list with the smallest f-value. We
show experimentally that TBA* moves the agent in known
terrain from its start location to its goal location in fewer
time intervals than two state-of-the-art real-time search al-
gorithms and in about the same number of time intervals
as A*. However, it cannot be used when the terrain is not
known initially. We thus extend it to on-line path planning



with the freespace assumption in initially partially or com-
pletely unknown (but static) terrain in two steps. In the
first step, we extend TBA* to Restarting Time-Bounded
A* (RTBA*). RTBA* is identical to TBA* except that,
whenever the agent observes obstacles on its current path
to a location in the OPEN list with the smallest f-value,
RTBA* starts a new A* search from the current location of
the agent to its goal location. At the end of each time inter-
val, the agent continues to execute a movement towards a
location in the OPEN list with the smallest f-value. In the
second step, we extend RTBA* to Time-Bounded Adaptive
A* (TBAA*). TBAA* is identical to RTBA* except that
TBAA* updates the h-values of the expanded states after
each A* search to make them more informed and thus focus
future A* searches better, just like Adaptive A* and RTAA*
[10]. We prove that RTBA* and TBAA* correctly either
move the agent from its start location to its goal location or
detect that this is impossible. Many other real-time search
algorithms cannot detect efficiently that this is impossible.
Furthermore, RTBA* and TBAA* can eventually move the
agent on a cost-minimal path from its start location to its
goal location if they reset the agent into its start location
whenever it reaches its goal location. We show experimen-
tally that TBAA* moves the agent in initially partially or
completely unknown terrain from its start location to its
goal location in fewer time intervals than several state-of-
the-art complete search algorithms (including Adaptive A*)
and real-time search algorithms (including RTAA*) and in
about the same number of time intervals as the best com-
pared complete search algorithm (namely, D* Lite), even
though it has the advantage over complete search algorithms
that the agent starts to move right away.

2. GAME TIME MODEL
We now introduce and justify the game time model. Un-

der the game time model, time is partitioned into uniform
time intervals, an agent can execute one movement during
each time interval, and search and movements are done in
parallel. The objective is to move the agent from its start lo-
cation to its goal location in as few time intervals as possible.
The game time model is motivated by video games. Video
games often partition time into game cycles, each of which is
only a couple of milliseconds long [2]. Each game character
executes one movement at the end of each game cycle, which
gives the players the illusion of fluid movement. During each
game cycle, video games perform all computations necessary
to progress the game, which includes the calculation of the
next movement of the agent, before redrawing the visuals.

The game time model addresses the fact that the stan-
dard way of evaluating search algorithms, namely using their
CPU times or path costs, is problematic in real-time situ-
ations. A*, for example, needs the smallest CPU time of
any search algorithm to find cost-minimal paths (up to tie
breaking). Yet, an agent that uses A* might need more
time to move from its start location to its goal location than
an agent that uses some other search algorithm because A*
searches first and only then moves the agent along the result-
ing path. A* typically needs several time intervals to find
a cost-minimal path from the start location of the agent to
its goal location, resulting in a long delay before the agent
starts to move (which makes the agent unresponsive) and a
long time until it reaches its goal location (which makes the
agent inefficient) since there is no parallelism of search and

movement – the agent does not move until the path is found
and does not search afterwards. The advantage of the game
time model is that the time needed by the agent to move
from its start location to its goal location is proportional to
the number of time intervals needed. A search algorithm
that computes a path while moving the agent might be able
to move the agent to its goal location (along a suboptimal
path) in fewer time intervals than A* and thus is more desir-
able than A*, even though both its CPU time and resulting
path cost could be larger than those of A*.

3. NOTATION
A search problem is a tuple (S, A, c, sstart, sgoal), where

(S, A) is a finite digraph. S is the set of states, and A is the
set of edges. Succ(s) = {t | (s, t) ∈ A} is the set of successors
(or, synonymously, neighbors) of state s ∈ S. c : A 7→ R

+

is the cost function that associates a cost with each edge.
sstart ∈ S is the start state, and sgoal ∈ S is the goal state.
We assume that the digraph is undirected, meaning that
there is an edge from vertex s to vertex t iff there is one from
t to s, and both edges have the same cost. For simplicity, we
call the edges undirected. We also assume that the reader is
familiar with A* and knows that A*, when searching from
sroot to sgoal, maintains an OPEN list (a priority queue)
and, for every state s ∈ S, a g-value g(s) that is the cost
of the cost-minimal path from sroot to s found so far, an
h-value h(s) that is an approximation of the cost of a cost-
minimal path from s to sgoal, an f-value f(s) = g(s) + h(s),
and a parent pointer parent(s) that points to the parent of
s in the A* search tree, whose root is sroot. H(s) is the
user-provided h-value of s. The h-values are consistent iff
h(sgoal) = 0 and h(s) ≤ c(s, t)+h(t) for all states s ∈ S and
t ∈ Succ(s).

4. TBA*
Given a search problem, the objective is to move an agent

from sstart to sgoal in as few time intervals as possible. Real-
time search algorithms execute one or more A* searches to
determine one movement for the agent per time interval,
that is, after a bounded amount of computation. Time-
Bounded A* (TBA*) [1] is an existing real-time search al-
gorithm for search problems with known cost functions. We
use known four-neighbor grids with blocked and unblocked
cells as examples, where the states are the cells and edges
connect every unblocked cell to its unblocked neighboring
cells to the north, east, south and west with cost one. TBA*
performs an A* search from sroot = sstart to sgoal. At the
end of each time interval, the agent executes the movement
from its current state scurrent towards a state sbest in the
OPEN list with the smallest f-value (where sgoal should be
chosen if possible), as follows: Consider the branch path of
the A* search tree from its root sroot = sstart to sbest, which
is a cost-minimal path from sroot to sbest. If scurrent is on
path (that is, scurrent is encountered when following the
parent pointers from sbest to sroot), then the agent executes
the movement from scurrent towards sbest along path (that
is, moves to the state after scurrent on path). Otherwise,
it executes the movement from scurrent towards sroot along
the branch of the A* search tree from sroot to scurrent (that
is, follows the parent pointer of scurrent), which is possible
since the edges are undirected. The time that it takes to
expand a state depends on the size of the OPEN list, and



Algorithm 1 TBA*

1: procedure InitializeState(s)
2: if search(s) = 0 then

3: h(s) := H(s);
4: g(s) := ∞;

5: search(s) := searchnumber;

6: procedure InitializeSearch()
7: searchnumber := searchnumber + 1;
8: sroot := scurrent;
9: InitializeState(sroot);
10: g(sroot) := 0;
11: OPEN := ∅;
12: Insert sroot into OPEN;
13: InitializeState(sgoal);
14: goalFoundFlag := 0;

15: function Search()
16: expansions := 0;
17: while OPEN 6= ∅ AND expansions < k AND
18: g(sgoal) + h(sgoal) > min

t∈OPEN(g(t) + h(t)) do

19: s := arg min
t∈OPEN(g(t) + h(t));

20: Remove s from OPEN;
21: for all t ∈ Succ(s) do

22: InitializeState(t)
23: if g(t) > g(s) + c(s, t) then

24: g(t) := g(s) + c(s, t);
25: parent(t) := s;
26: Insert t into OPEN;

27: expansions := expansions + 1;

28: if OPEN = ∅ then

29: return false;

30: sbest := arg min
t∈OPEN(g(t) + h(t));

31: if sbest = sgoal then

32: goalFoundFlag := 1;

33: path := path from sroot to sbest;
34: return true;

35: function MoveToGoal()
36: scurrent := sstart;
37: InitializeSearch();
38: while scurrent 6= sgoal do

39: print(“a new time interval starts now”);
40: if goalFoundFlag = 0 then

41: if Search() = false then

42: return false;

43: if scurrent is on path then

44: scurrent := state after scurrent on path;
45: else

46: scurrent := parent(scurrent);

47: Execute movement to scurrent;

48: return true;

49: procedure Main()
50: searchnumber := 0;
51: for all s ∈ S do

52: search(s) := 0;

53: if MoveToGoal() = true then

54: print(“the agent is now at the goal state”);
55: else

56: print(“the agent cannot reach the goal state”);

the time that it takes to determine the next movement for
the agent depends on the length of path. In the following,
we make the simplifying assumption that the time per state
expansion is constant and the time per movement determi-
nation is zero, resulting in a constant number k of state
expansions during each time interval. The original version
of TBA* uses an additional parameter and techniques that
make it a true (amortized) real-time search algorithm. We
could do the same for RTBA* and TBAA* but will not do
so for simplicity.

Algorithm 1 shows TBA*. Procedure InitializeState ini-
tializes the h-value of a given state (to the user-provided

6

A

4 51 2 3

F

B

C

D

E

6 0 5 0 4 0 3 0

5 0 4 0 3 0 2 0

2 6

4 1 2 0 1 0

1 4 0 2 � �

3 1 2 1 0 1

F

B

C

D

E

6

A

4 51 2 3

(a) terrain (b) after 1st time interval

4 10

6 1 5 0 4 0 3 0

3 8 4 8

5 1 4 1 3 0 2 0

2 6

4 1 2 0 1 0

1 4 0 2 � �

3 1 2 1 0 1

6

A

4 51 2 3

F

B

C

D

E

4 10 5 10 6 10

6 1 5 1 4 1 3 0

3 8 4 8 5 8 6 8

5 1 4 1 3 1 2 1

2 6 6 8

4 1 2 1 1 0

1 4 0 2 � �

3 1 2 1 0 1

6

A

4 51 2 3

F

B

C

D

E

(c) after 2nd time interval (d) after 3rd time interval

4 10 5 10 6 10 7 10

6 1 5 1 4 1 3 1

3 8 4 8 5 8 6 8

5 1 4 1 3 1 2 1

2 6 6 8 7 8

4 1 2 1 1 1

1 4 0 2 8 8

3 1 2 1 0 1

F

B

C

D

E

6

A

4 51 2 3

(e) after 4th time interval

Figure 1: Operation of TBA*

h-value) and the g-value of the state (to infinity) when they
are needed for the first time, to avoid initializing those val-
ues that are not needed later. searchnumber is the num-
ber of the current A* search, and search(s) is the number
of the A* search during which the g-value of state s was
initialized last. It is zero if the g-value has not been ini-
tialized yet. Procedure Search performs an A* search from
sroot to sgoal by expanding states until the OPEN list be-
comes empty (in which case the agent cannot reach sgoal),
until a cost-minimal path from sroot to sgoal has been found
(that is, sbest = sgoal) or until k states have been expanded.
expansions is the number of expanded states in the current
time interval, and goalFoundFlag is true iff the A* search has
found a cost-minimal path from sroot to sgoal. Procedure
Search sets goalFoundFlag and path before it terminates.
Procedure MoveToGoal sets the agent into sstart and calls
procedure InitializeSearch to initialize the A* search from
sroot = scurrent to sgoal. It then repeatedly calls procedure
Search (if goalFoundFlag is false) and then executes a move-
ment on Lines 43-47, until the agent reaches sgoal or the A*
search indicates that the agent cannot reach sgoal. Proce-
dure Main calls procedure MoveToGoal for a given search
problem and reports the results.

Figure 1 shows the operation of TBA* with k = 2 in
the known four-neighbor grid with blocked (black) and un-
blocked (white) cells shown in Figure 1(a). sstart = E3, and
sgoal = E5. The user-provided h-values are the Manhattan



distances, that is, the costs of cost-minimal paths from the
cells to the goal cell on a four-neighbor grid without blocked
cells. The OPEN list contains the non-expanded cells that
have a neighboring expanded (grey) cell. The bottom-left
and bottom-right corners of each cell show its h- and search-
values, respectively. The top-left and top-right corners of
each cell show its g- and f-values, respectively, iff its g-value
has been initialized. The arrow shows its parent pointer iff
its parent pointer has been initialized. Dotted arrows in-
dicate the cost-minimal path from sroot = sstart to sbest.
Figure 1(b) shows the situation at the end of the first time
interval (but before the first movement of the agent). The
OPEN list contains only D2 with f-value 6. scurrent = E3
is on the branch path of the A* search tree from sroot = E3
to sbest = D2. The agent thus executes the movement along
this branch to E2. Figure 1(c) shows the situation at the
end of the second time interval (but before the second move-
ment of the agent). The OPEN list contains C3 with f-value
8 and B2 with f-value 10. scurrent = E2 is on the branch
path of the A* search tree from sroot = E3 to sbest = C3.
The agent thus executes the movement along this branch to
D2, and so on. Figure 1(e) shows that the A* search finds
a cost-minimal path from sroot = E3 to sgoal = E5 at the
end of the fourth time interval (but before the fourth move-
ment of the agent). The agent then executes movements
along this branch without any further cell expansions until
it reaches sgoal = E5.

5. RTBA*
TBA* does not apply to search problems with unknown

cost functions. We require that the agent observes the cost
of an edge before it traverses it. In cases where a lower
bound on the cost function is known, search algorithms can
use the lower bound when an edge cost is unknown. This
way, the observation of an actual edge cost can change the
assumed edge cost only once, namely from the lower bound
to the actual edge cost, which cannot decrease the assumed
edge cost - properties that we exploit in the following.1 We
use initially unknown four-neighbor grids with blocked and
unblocked cells as examples. The agent knows its start and
goal cells. It does not know the blockage status of the cells
initially but always observes the blockage status of its four
neighboring cells to the north, east, south and west. It can
use path planning with the freespace assumption by assum-
ing that all cells are unblocked, that is, edges connect every
cell to its neighboring cells to the north, east, south and
west with cost one. If, after executing a movement, it ob-
serves that a neighboring cell is blocked, it increases the
costs of all incoming and outgoing edges of that cell to in-
finity, which is equivalent to removing the edges from the
set of edges A. The agent could run TBA* again whenever
edge costs have increased during the current A* search but
would then often abandon the current A* search unnecessar-
ily. Instead, it runs TBA* again only when edge costs on the
path from scurrent to sbest have increased during the current
A* search. We refer to this search algorithm as Restarting
Time-Bounded A* (RTBA*).

Algorithm 2 shows RTBA* without repeating the Initial-
izeSearch, Search and Main procedures from Algorithm 1.
Procedure InitializeState now initializes the h-value of a

1We just refer to edge costs and the context determines
whether we mean the actual or assumed edge costs.

Algorithm 2 RTBA*

1: procedure InitializeState(s)
2: if search(s) = 0 then

3: h(s) := H(s);
4: g(s) := ∞;
5: else if search(s) 6= searchnumber then

6: g(s) := ∞;

7: search(s) := searchnumber;

8: procedure StartNewSearch?()
9: if edge costs on path have increased
10: since the last call to InitializeSearch then

11: InitializeSearch();
12: path := empty;

13: function MoveToGoal()
14: scurrent := sstart;
15: InitializeSearch();
16: Observe edge cost increases (if any);
17: while scurrent 6= sgoal do

18: print(“a new time interval starts now”);
19: if goalFoundFlag = 0 then

20: if Search() = false then

21: return false;

22: StartNewSearch?();

23: if path 6= empty then

24: if scurrent is on path then

25: scurrent := state after scurrent on path;
26: else

27: scurrent := parent(scurrent);

28: Execute movement to scurrent;
29: Observe edge cost increases (if any);
30: StartNewSearch?();

31: return true;

given state (to the user-provided h-value) when it is needed
for the first time. It initializes the g-value of the state (to
infinity) when it is needed by the current A* search for the
first time. Procedure StartNewSearch? checks whether edge
costs on the path from scurrent to sbest have increased dur-
ing the current A* search and, if so, starts a new A* search
from sroot = scurrent to sgoal.

2 Procedure MoveToGoal now
calls procedure StartNewSearch? on Line 30 after the agent
executes a movement since the agent might observe addi-
tional edge costs which result in increases of edge costs on
the path from scurrent to sbest. Procedure MoveToGoal also
calls procedure StartNewSearch? on Line 22 after the call to
procedure Search since it might result in a new path from
scurrent to sbest that contains edge costs increases that have
been ignored earlier.

Figure 2(a,b,d) shows the operation of RTBA* with k = 2
in an initially unknown four-neighbor grid with blocked and
unblocked cells. sstart = E3, and sgoal = E5. The user-
provided h-values are the Manhattan distances. The first
three time intervals are as in Figure 1 except that the agent
observes blocked cell C3 after the third time interval and
movement of the agent, which increases edge costs on the

2Actually, procedure StartNewSearch? checks the branch
path of the A* search tree from sroot to sbest rather than the
path from scurrent to sbest. The agent traverses only edges
that belong to branches of the A* search tree. Consider the
branches of the A* search tree from sroot to scurrent and
from sroot to sbest. There cannot be any edge cost increases
on the branch from sroot to scurrent since the edges are undi-
rected and the agent has traversed the edges of the branch
earlier already. The path from scurrent to sbest is made up
of both branches without their common prefix. Thus, edge
costs increase on the path iff they increase on the branch
from sroot to sbest.



4 10 5 10 6 10

6 1 5 1 4 1 3 0

3 8 4 8 5 8 6 8

5 1 4 1 3 2 1

2 6 6 8

4 1 2 1 1 0

1 4 0 2 � �

3 1 2 1 0 1

2 3

F

B

C

D

E

6

A

4 51

(a) after observing C3 is blocked after 3rd time interval and movement

1 7 5 10 6 10

6 2 5 1 4 1 3 0

0 5 4 8 5 8 6 8

5 2 4 1 3 1 2 1

1 5 6 8

4 2 2 1 1 0

2 5 0 2 � �

3 2 2 1 0 2

2 3

F

B

C

D

E

6

A

4 51

1 7 5 10 6 10

6 2 5 1 4 1 3 0

0 5 4 8 5 8 6 8

5 2 4 1 3 1 2 1

1 7 6 8

6 2 2 1 1 0

2 9 0 2 � �

7 2 2 1 0 2

2 3

F

B

C

D

E

6

A

4 51

(b) RTBA* after 4th time interval (c) TBAA* after 4th time interval

1 7 5 10 6 10

6 2 5 1 4 1 3 0

0 5 4 8 5 8 6 8

5 2 4 1 3 1 2 1

1 5 6 8

4 2 2 1 1 0

2 5 3 5 � �

3 2 2 2 0 2

2 3

F

B

C

D

E

6

A

4 51

1 7 2 7 3 7

6 2 5 2 4 2 3 0

0 5 4 8 5 8 6 8

5 2 4 1 3 1 2 1

1 7 6 8

6 2 2 1 1 0

2 9 0 2 � �

7 2 2 1 0 2

2 3

F

B

C

D

E

6

A

4 51

(d) RTBA* after 5th time interval (e) TBAA* after 5th time interval

Figure 2: Operation of RTBA* and TBAA*

path from scurrent = C2 to sgoal = E5. Thus, RTBA* starts
a new A* search from sroot = scurrent = C2 to sgoal = E6.
Figure 2(b) shows the situation at the end of the fourth time
interval (but before the fourth movement of the agent). The
OPEN list contains E2 with f-value 5 and B2 with f-value
7. scurrent = C2 is on the branch path of the A* search tree
from sroot = C2 to sbest = E2. The agent thus executes the
movement along this branch to D2. Figure 2(d) shows the
situation at the end of the fifth time interval (but before the
fifth movement of the agent). The OPEN list contains only
B2 with f-value 7. scurrent = D2 is not on the branch path

of the A* search tree from sroot = C2 to sbest = B2. The
agent thus executes the movement that follows the parent
pointer of scurrent = D2 to C2.

6. TBAA*
Each time RTBA* starts a new A* search, all informa-

tion from the previous A* search is lost. However, real-
time search algorithms often update the h-values to make
them more informed. We therefore propose Time-Bounded
Adaptive A* (TBAA*). TBAA* works like RTBA* but up-
dates h-values of cells in the way (Lazy) Adaptive A* [9]
and (Lazy) RTAA* do. Each time TBAA* starts a new A*
search, it updates the h-values of all generated states s by
the previous A* search by assigning h(s) := f(sbest) − g(s)
if this increases h(s), which maintains the consistency of the

Algorithm 3 TBAA*

1: procedure InitializeState(s)
2: if search(s) = 0 then

3: h(s) := H(s);
4: g(s) := ∞;
5: else if search(s) 6= searchnumber then

6: if h(s) < pathcost(search(s)) − g(s) then

7: h(s) := pathcost(search(s)) − g(s);

8: g(s) := ∞;

9: search(s) := searchnumber;

10: procedure StartNewSearch?()
11: if edge costs on path have increased
12: since the last call to InitializeSearch then

13: pathcost(searchnumber) := min
s∈OPEN(g(s) + h(s));

14: InitializeSearch();
15: path := empty;

h-values. TBAA* performs this h-value update only once
the h-value of a state is needed by the current A* search for
the first time, to avoid computing those h-values that are
not needed later.

Algorithm 3 shows TBAA* without repeating the Initial-
izeSearch, Search and Main procedures from Algorithm 1
and the MoveToGoal procedure from Algorithm 2. Proce-
dure StartNewSearch? now remembers f(sbest) on Line 13
by assigning pathcost(searchnumber) := f(sbest), and Pro-
cedure InitializeState now updates the h-value of the given
state s on Line 7 when it is needed by the current A* search
for the first time by assigning h(s) := pathcost(search(s))−
g(s) if this increases h(s).

Figure 2(a,c,e) show the operation of TBAA* with k = 2
in the same scenario as described for RTBA*. TBAA* sets
pathcost(1) = f(C5) = 8 and starts a new A* search from
sroot = scurrent = C2 to sgoal = E6. Figure 2(c) shows the
situation at the end of the fourth time interval (but before
the fourth movement of the agent). The OPEN list contains
E2 with f-value 9 (four higher than for RTBA*) and B2
with f-value 7. scurrent = C2 is on the branch path of the
A* search tree from sroot = C2 to sbest = B2. The agent
thus executes the movement along this branch to B2 and
needs fewer movements to reach sgoal = E5 than RTBA*,
demonstrating the advantage of updating the h-values.

7. ANALYSIS
We now prove that RTBA* and TBAA* correctly either

move the agent from sstart to sgoal or detect that this is im-
possible. Furthermore, RTBA* and TBAA* can eventually
move the agent on a cost-minimal path from sstart to sgoal if
they reset the agent into sstart whenever it reaches sgoal. We
make use of the following assumptions and properties: The
user-provided h-values are consistent. The h-value updates
of Adaptive A* (and thus also the ones of TBAA*) maintain
the consistency of the h-values [9]. An A* search with con-
sistent h-values correctly finds a path or detects that none
exists [12], and the found path is cost-minimal [12].

Theorem 1. RTBA* and TBAA* correctly either move
the agent from sstart to sgoal or detect that this is impossible.

Proof. Each time the search algorithm starts a new A*
search, it has observed at least one additional edge cost.
Thus, the number of times it starts a new A* search is
bounded. Consider the last A* search, and let sroot be the
root of the A* search tree. This A* search correctly finds a



Algorithm 4 Repeated Runs of RTBA* and TBAA*

1: procedure Main()
2: searchnumber := 0;
3: for all s ∈ S do

4: search(s) := 0;

5: repeat

6: if MoveToGoal() = false then

7: print(“the agent cannot reach the goal state”);

8: until sroot = sstart;
9: print(“cost-minimal path from start state to goal state: ”);
10: print(path);

path from sroot to sgoal or detects that none exists. There
exists a path from sroot to sgoal iff there exists a path from
sstart to sgoal since the agent moves along undirected edges.
If the A* search finds a path from sroot to sgoal, then the
agent repeatedly follows the parent pointers of its current
states until it is on the path and then traverses the path to
sgoal. The agent is able to follow the parent pointers since
edges are undirected and the agent has traversed the edges
earlier already during the A* search. The agent reaches the
path this way since the agent moves in the A* search tree
and thus reaches sroot by repeatedly following the parent
pointers if it does not reach the path from sroot to sgoal

earlier already. The agent is able to traverse the path to
sgoal since the A* search correctly found a path from sroot

to sgoal and the search algorithm would have started a new
A* search if edge costs on the path had increased during the
A* search.

The following theorem states that RTBA* and TBAA*
eventually find a cost-minimal path from sstart to sgoal if
they reset the agent into sstart whenever it reaches sgoal.
Algorithm 4 defines this process precisely.

Theorem 2. Algorithm 4 prints a cost-minimal path for
RTBA* and TBAA* if a path from sstart to sgoal exists.

Proof. Each time after the search algorithm resets the
agent into sstart and starts a new A* search, it moves the
agent from sstart to sgoal according to Theorem 1. Each time
the search algorithm starts a new A* search while the agent
moves to sgoal, it has observed at least one additional edge
cost. Thus, the number of times it starts a new A* search
while the agent moves to sgoal is bounded, and it eventually
moves the agent from sstart to sgoal without starting a new
A* search while the agent moves to sgoal (implying that
sroot = sstart). The last A* search finds a cost-minimal
path from sstart to sgoal, and there cannot be any edge cost
increases on the path since edges are undirected and the
agent has traversed the edges earlier already during the A*
search. The agent thus traverses a cost-minimal path if it
moves along this path.

8. EXPERIMENTAL EVALUATION
We compare RTBA* and TBAA* against several state-

of-the-art complete and real-time search algorithms, which
we implemented in a similar way, for example, using a stan-
dard binary heap for the OPEN list and breaking ties among
states with the same f-value in favor of larger g-values. All
complete search algorithms first find a complete path for
the agent from the start state to the goal state (over several
time intervals) and then move the agent along it (again over

several time intervals). All real-time search algorithms per-
form only state expansions during the first time interval. In
each subsequent time interval, they compute a path for the
agent, execute one movement for the agent, and then per-
form repeatedly state expansions until the end of the time
interval is reached, implying that all time intervals have ap-
proximately the same length but not necessarily the same
number of state expansions. All real-time search algorithms
perform an h-value update only once the h-value of a state is
needed by the current A* search for the first time. The scal-
ing behavior of the search algorithms is less important than
the hardware and implementation details since the search
problems are small. It is difficult to compare the search algo-
rithms with proxies, such as the number of state expansions,
instead of the runtime itself since they perform different ba-
sic operations. We thus do not know of any better method
for evaluating them than to implement them as best as pos-
sible and let other researchers validate the results with their
own and thus potentially slightly different implementations.

We use known and initially partially or completely un-
known eight-neighbor grids with blocked and unblocked cells
in the experiments. Four-neighbor grids make for good il-
lustrations since they result in integer-valued g-, h-, and
f-values but we believe that eight-neighbor grids are more
realistic for video games [3]. Also, some incremental search
algorithms speed up A* searches less on eight-neighbor grids.
The user-provided h-values are the octile distances, that is,
the costs of cost-minimal paths from the cells to the goal
cell on an eight-neighbor grid without blocked cells. The
agent knows the dimensions of the grid and its start and
goal cells. It can always move from its current unblocked
cell to one of the eight unblocked neighboring cells with cost
one for horizontal or vertical movements and cost

√
2 for di-

agonal movements. We ran the search algorithms with time
intervals whose lengths ranged from 0.3 to 1.5 milliseconds
and report results for the average number of time intervals
and number of movements until the agent reaches the goal
cell for the first time.

We use six game maps and generated 300 search problems
with randomly chosen start and goal cells for each game
map, for a total of 1,800 search problems.3 In known grids,
it knows the blockage status of all cells initially. In initially
partially or completely unknown grids, it does not know the
blockage status of some or all, respectively, cells initially but
always observes the blockage status of its eight neighboring
cells. Partially unknown grids are motivated by video games
where the layout of the terrain is known to the agent but
other players can build structures which are initially un-
known to the agent [13]. We randomly blocked 15 percent
of the unblocked cells in the game maps. The agent knows
the blockage status of all blocked cells in the game maps but
does not know the blockage status of the additional blocked
cells.

8.1 Known Terrain
In known terrain, we compare TBA* against the complete

search algorithm (forward) A* and the real-time search algo-
rithms RTAA* and daRTAA*. Table 1 shows the following

3We use three Starcraft maps, namely Enigma of size
768 × 768, Inferno of size 768 × 768, and WheelofWar of
size 768 × 768. We use three Dragon Age: Origins maps,
namely orz103d of size 456× 463, orz702d of size 939× 718,
and orz703d of size 502 × 652.



Table 1: Known Terrain
RTAA* daRTAA* TBA* A*

Length of Time # Time # Move- # Time # Move- # Time # Move- # Time # Move-
Intervals (ms) Intervals ments Intervals ments Intervals ments Intervals ments

0.3 2,193 2,192 1,729 1,728 568 567 584 545
0.6 1,541 1,540 1,303 1,302 556 555 565 545
0.9 1,362 1,361 1,151 1,150 552 551 558 545
1.2 1,196 1,195 1,057 1,056 550 549 555 545
1.5 1,087 1,086 970 969 549 548 553 545

Table 2: Initially Completely Unknown Terrain
RTAA* daRTAA* RTBA* TBAA* Repeated A* Adaptive A* D* Lite

Length of Time # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move-
Intervals (ms) Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments

0.3 3,245 3,244 2,879 2,878 4,613 4,604 2,290 2,286 7,155 2,004 3,230 2,010 2,203 2,027
0.6 2,598 2,597 2,472 2,471 3,368 3,360 2,147 2,144 4,487 2,004 2,572 2,010 2,090 2,027
0.9 2,451 2,450 2,418 2,417 2,918 2,910 2,101 2,099 3,611 2,004 2,361 2,010 2,062 2,027
1.2 2,310 2,309 2,305 2,304 2,695 2,688 2,086 2,083 3,178 2,004 2,260 2,010 2,051 2,027
1.5 2,281 2,280 2,272 2,271 2,560 2,553 2,070 2,068 2,920 2,004 2,202 2,010 2,045 2,027

Table 3: Initially Partially Unknown Terrain
RTAA* daRTAA* RTBA* TBAA* Repeated A* Adaptive A* D* Lite

Length of Time # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move-
Intervals (ms) Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments

0.3 2,694 2,693 2,460 2,459 2,734 2,730 1,505 1,504 6,324 1,409 2,430 1,399 1,659 1,418
0.6 2,039 2,038 1,863 1,862 2,037 2,034 1,442 1,441 3,812 1,409 1,875 1,399 1,532 1,418
0.9 1,840 1,839 1,779 1,778 1,860 1,857 1,431 1,430 2,979 1,409 1,695 1,399 1,490 1,418
1.2 1,707 1,706 1,643 1,642 1,726 1,724 1,421 1,420 2,564 1,409 1,608 1,399 1,470 1,418
1.5 1,620 1,619 1,642 1,641 1,668 1,666 1,415 1,414 2,316 1,409 1,556 1,399 1,458 1,418

relationships for known terrain.

• The average number of movements until the agent
reaches the goal cell does not depend on the length
of the time intervals for A* since complete search al-
gorithms search first and only then move the agent
along the resulting path.

• The average number of movements until the agent
reaches the goal cell decrease as the length of the time
intervals increases for TBA*, RTAA*, and daRTAA*.

• The average number of time intervals until the agent
reaches the goal cell decreases as the length of the time
intervals increases for all search algorithms.

All real-time search algorithms move the agent in known
terrain from its start cell to its goal cell in about the same
or more time intervals than A*. However, TBA* moves the
agent in known terrain from its start cell to its goal cell in
fewer time intervals than the two real-time search algorithms
RTAA* and daRTAA* and in about the same number of
time intervals as A*. TBA* has the advantage over A* that
the agent moves right away for TBA* (namely, during time
interval 2 in our implementation) rather than only in time
intervals 8 to 40 on average for A*.

8.2 Initially Unknown Terrain
In initially unknown terrain, we compare RTBA* and

TBAA* against the complete search algorithms (forward)
Repeated A*, Adaptive A*, and D* Lite and the real-time
search algorithms RTAA* and daRTAA*. Our implemen-
tation of Repeated A* starts a new A* search only when
edge costs on the path from scurrent to sgoal have increased,
rather than whenever edge costs have increased, different
from [8], which explains the difference in experimental re-
sults compared to [8]. Tables 2 and 3 show the following
relationships for initially completely and partially unknown
terrain, respectively.

• The average number of movements until the agent
reaches the goal cell does not depend on the length of

the time intervals for Repeated A*, Adaptive A* and
D* Lite. Furthermore, they are similar for all search
algorithms, since they execute the same movements
(modulo tie breaking).

• The average number of movements until the agent
reaches the goal cell decreases as the length of the time
intervals increases for RTBA*, TBAA*, RTAA*, and
daRTAA*.

• The average number of time intervals until the agent
reaches the goal cell decreases as the length of the time
intervals increases for all search algorithms.

All real-time search algorithms move the agent in initially
partially or completely unknown terrain from its start cell to
its goal cell in fewer time intervals than Repeated A*. The
game time model is thus able to explain the importance of
real-time search in this case. TBAA* moves the agent in
initially partially or completely unknown terrain from its
start cell to its goal cell in fewer time intervals than the two
complete search algorithms Repeated A* and Adaptive A*,
and the two real-time search algorithms RTAA* and daR-
TAA* and in about the same number of time intervals as the
best compared complete search algorithm D* Lite. TBAA*
seems to have a slight advantage over D* Lite in initially par-
tially unknown terrain and vice versa in initially completely
unknown terrain (although this difference might not be sta-
tistically significant). The reason appears to be that the
h-value surface does not have local minima on grids without
blocked cells, which allows D* Lite to speed up A* searches
significantly during the first searches in initially completely
unknown terrain but not in initially partially unknown ter-
rain. For example, D* Lite is often able to find the very first
path in initially completely unknown terrain in one time in-
terval.

9. SUMMARY
In this paper, we introduced the game time model, where

time is partitioned into uniform time intervals, an agent can



execute one action during each time interval, and search
and action execution run in parallel. We then extended
Time-Bounded A* (TBA*) to on-line path planning with
the freespace assumption in initially partially or completely
unknown (but static) terrain, resulting in Time-Bounded
Adaptive A* (TBAA*). Similar to TBA*, TBAA* performs
an A* search from the start location of the agent to its goal
location. At the end of each time interval, the agent exe-
cutes a movement towards a location in the OPEN list with
the smallest f-value. TBAA* starts a new A* search when-
ever the agent observes obstacles on its path to this location.
Similar to Adaptive A*, TBAA* updates the h-values of the
expanded states after each A* search to make them more in-
formed and thus focus future A* searches better. We proved
that TBAA* correctly either moves the agent from its start
location to its goal location or detects that this is impossi-
ble. Many other real-time search algorithms cannot detect
efficiently that no path exists. Furthermore, TBAA* can
eventually move the agent on a cost-minimal path from its
start location to its goal location if it resets the agent into its
start location whenever it reaches its goal location. We then
showed experimentally that TBAA* moves the agent in ini-
tially partially or completely unknown terrain from its start
location to its goal location in fewer time intervals than sev-
eral complete and real-time search algorithms and in about
the same number of time intervals as the best compared
complete search algorithm, even though it has the advan-
tage over complete search algorithms that the agent starts
to move right away. In future work, we intend to let TBAA*
use techniques that speed up daRTAA* over RTAA* [6, 5]
to avoid local minima in the h-value surface. Since TBAA*
uses less than 30 percent of the available time on average, we
also intend to let it use more sophisticated h-value update
techniques to make its h-values even more informed.

Acknowledgments

We thank Nathan Sturtevant for making his game maps
publicly available at www.movingai.com. We also thank
the anonymous reviewers, whose comments resulted in sub-
stantial revisions of our original manuscript. This mate-
rial is based upon research supported by NSF (while Sven
Koenig was serving at NSF). It is also based upon re-
search supported by ARL/ARO under contract/grant num-
ber W911NF-08-1-0468 and ONR in form of a MURI un-
der contract/grant number N00014-09-1-1031. The research
was performed while Carlos Hernández visited the Univer-
sity of Southern California. Jorge Baier was partly funded
by Fondecyt grant number 11110321. The views and con-
clusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring orga-
nizations, agencies or the U.S. government.

10. REFERENCES

[1] Yngvi Björnsson, Vadim Bulitko, and Nathan
Sturtevant. TBA*: Time-bounded A*. In Proceedings
of the 21st International Joint Conference on
Artificial Intelligence (IJCAI), pages 431–436, 2009.

[2] Vadim Bulitko, Yngvi Björnsson, Nathan Sturtevant,
and Ramon Lawrence. Real-time Heuristic Search for
Pathfinding in Video Games. available from:
https://sites.google.com/a/ualberta.ca/ircl/projects/rths.

[3] Vadim Bulitko and Greg Lee. Learning in real time
search: a unifying framework. Journal of Artificial
Intelligence Research, 25:119–157, 2006.

[4] Peter Hart, Nils Nilsson, and Bertram Raphael. A
formal basis for the heuristic determination of minimal
cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

[5] Carlos Hernández and Jorge Baier. Real-Time
Adaptive A* with depression avoidance. In
Proceedings of the 7th International Conference on
Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), pages 146–151, 2011.

[6] Carlos Hernández and Jorge Baier. Real-time heuristic
search with depression avoidance. In Proceedings of
the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pages 578–583, 2011.

[7] Sven Koenig and Maxim Likhachev. D* Lite. In
Proceedings of the 18th National Conference on
Artificial Intelligence (AAAI), pages 476–483, 2002.

[8] Sven Koenig and Maxim Likhachev. Fast replanning
for navigation in unknown terrain. Transactions on
Robotics, 21(3):354–363, 2005.

[9] Sven Koenig and Maxim Likhachev. A new principle
for incremental heuristic search: Theoretical results.
In Proceedings of the 16th International Conference on
Automated Planning and Scheduling (ICAPS), pages
402–405, 2006.

[10] Sven Koenig and Maxim Likhachev. Real-Time
Adaptive A*. In Proceedings of the 5th International
Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 281–288, 2006.

[11] Sven Koenig, Craig Tovey, and Yury Smirnov.
Performance bounds for planning in unknown terrain.
Artificial Intelligence, 147(1-2):253–279, 2003.

[12] Judea Pearl. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley,
Boston (Massachusetts), 1984.

[13] Peter Yap, Neil Burch, Robert Holte, and Jonathan
Schaeffer. Any-angle path planning for computer
games. In Proceedings of the 7th International
Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE), 2011.


