Towards
Completely Decentralized Mustering
for StarCraft

(Extended Abstract)

Zachary Suffern
Georgia Tech
Atlanta, Georgia
zsuffern0614@gatech.edu

ABSTRACT

We study decentralized agent coordination with performance guarantees by
developing a primitive for mustering teams of agents of minimum accept-
able team sizes for StarCraft using randomization to accurately estimate the
size of the team.

Categories and Subject Descriptors
Computing Methodologies[Artificial Intelligence]: Distributed
Artificial Intelligence - Cooperation and Coordination

General Terms
Algorithms

Keywords
agent mustering, agent coordination, randomization, StarCraft

1. INTRODUCTION

It can be impossible for autonomous agents to perform as ef-
fectively as they theoretically would under omniscient centralized
control. The standard performance measure of effectiveness is the
“price of anarchy” [1], which is the ratio of the productivity of an
idealized centralized system to that of the decentralized one. How-
ever, the system outcome is binary in many situations: the team
either succeeds or fails. The resulting price of anarchy could then
be only 1 or e, which is too crude a range. Instead, let & (and)
be the resource level (here: number of agents) needed for success
with centralized (and decentralized, respectively) control. Then, we
define B/ to be the price of decentralization.

We use the popular game StarCraft as testbed [2] because prop-
erties like robustness and adaptability to change can only be eval-
uated experimentally, not analytically. StarCraft is a well-known
preexisting domain with an API and all the complexity we need.
Creating our own experimental testbed would inevitably be bi-
ased. Decentralized StarCraft agents need the capability to coor-
dinate autonomously with each other, for example in the context of
the self-assembly of teams of agents of minimum acceptable team

*The research at Georgia Tech was supported by NSF Grant CMMI
1335301 and a David M. McKenney Family Professorship. The re-
search at USC was supported by NSF under Grants 1409987 and
1319966.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum

(eds.), May 4-8, 2015, Istanbul, Turkey.

Copyright (©) 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Craig Tovey
Georgia Tech UsC
Atlanta, Georgia

ctovey@gatech.edu

Sven Koenig

Los Angeles, California
skoenig@usc.edu

1. Inmitiation: An initiation message consisting of the minimum acceptable team
size f is sent to one or more agents.

2. First Reception: When an agent receives an initiation message, it checks
its memory to determine if it has previously received an initiation message.
If not, it generates and stores k distinct random integers in the range [0, M].
Otherwise it retrieves its set of kX random integers.

3. Transmission: If the received initiation message does not contain two sets
of k integers, the agent sends an initiation message to each nearby agent
consisting of f and two copies of its set of k integers. If the received initiation
message does contain two sets of k integers, the agent constructs an initiation
message consisting of f and the sets of the k smallest and the k largest distinct
integers from the union of the received sets and its own set.

4. Threshold Test: Let (1,1 ") be the mean values of the k (smallest, largest)
integers in the constructed initiation message. If

~<MED (- Ty

and

wr =i - oo p T,

the agent determines that the mustering is complete and sends a muster-
complete message to all nearby agents. Otherwise, if the constructed initiation
message is different from the most recently transmitted initiation message,
the agent transmits it to each nearby agent.

5. Completion: Upon reception of a muster-complete message, an agent trans-
mits the muster-complete message to all nearby agents and starts working on
the given task.

Figure 1: Agent-Mustering Protocol

sizes (= mustering). Our long-term challenge for this testbed is for
each agent to control itself based only on O(1) sensor range, O(1)
length messages sent within a O(1) communication range, using
only O(1) memory and computation, so as to achieve a O(1) price
of decentralization. We require our methods to scale to very large
numbers of agents without degrading performance guarantees, and
to adjust without intervention to damage, reduction or addition of
agents. In the StarCraft environment, we do not expect to com-
pete well against human experts in scenarios with only hundreds
of agents (to which the game is currently limited) but we do expect
to compete well in scenarios with tens or hundreds of thousands of
agents, even against a team of cooperating human players.

2. AGENT MUSTERING

In agent mustering, each agent must decide whether or not to
work on a given task. The agents as a group must not decide to work
on it unless enough of them do, and they must act simultaneously.
The fundamental difficulty in mustering lies in assessing the ac-
tual number of agents n using only O(1) memory and O(1) length
messages. No agent can sense all of the other agents. Each agent
could have a unique identifier, but n identifiers cannot be stored
in O(1) memory. A single message counting the number of agents

could average Q(n?) time to reach all agents. If there were mul-
tiple counting messages, agents could not detect which one they
had previously incremented. Our solution to these challenges is the
agent-mustering protocol shown in Figure 1, with preset parame-
ters M, p and k. Not shown is a mechanism that prevents agents
from sending messages after a certain amount of time, which can
be set to a worst-case value 10gfT, where T is the sum of the mes-
sage process and transmit times and ¢ is the maximal number of
nearby agents for each agent. In StarCraft and many other applica-
tions where message passing is nearly instantaneous (for example,
by infrared or radio) and processing is asynchronous, any small
constant time bound (for example, one second) will work. Each
message contains less than 2klogM bits of information. Yet, for
f > 25, the following theorem shows that the price of decentraliza-
tion is less than 5 with probability more than 95% because 4.65 f
agents will start to work (but f — 1 agents won’t start to work) on
the given task with probability more than 95%.

THEOREM 1. With M > 14f > 150, k = 1 and p = 0.05, the
probability that the agent-mustering protocol makes an incorrect
decision with fewer than f or more than 12f agents is less than p.
For large values of f (> 25), with M > 5fk?, k=9 and p = 0.05,
the probability of an incorrect decision with fewer than f or more
than 4.65f agents is less than p.

PROOF. Let n be the actual number of agents. For both statements,
the probability of at least one tied value among kn values is approximately
(kn)? /2M. The conditional probability that there is a tie among the k largest
or k smallest values, given that there is a tie, is approximately 2k/kn =2 /n.
Therefore, the probability of a tie affecting the agent-mustering protocol
is approximately k?n/M, which by assumption is negligibly small. For
k=1 and n < f the probability of an incorrect decision is maximum at
n = f— 1. Approximate the random integers as uniformly distributed vari-
ables on [0,1] scaled by M. In this approximation, the probability that

U~ < aM equals 1 — (1 — o)1, Setting o0 = 1 — (1 — \/ﬁ)ﬁ makes
the probability of this event /p. With f > 10, the correlation between the
first and last order statistics of n independent uniformly distributed vari-
ables is negligible. Therefore, we can accurately approximate by treating
the event that u* is not smaller than its threshold as independent. By
symmetry of the uniform distribution, the probability of this event is also
\/D- The probability of both events occurring is therefore approximately
(\/13)2 = p, as desired. For k = 1 and n > 12, the probability of an incor-
rect decision is maximum at n = 12f. Then, P(incorrect decision|n = 12f)
=Pu” >aMorpt < (1 —a)M|n=12f) <2P(u~ > aM|n = 12f)
=2(1-a) < (1-a)?V=1) = (1 - /p)"? < (0.7764)'2 < 0.05.

The proof of the bound for f > 25 is more complicated. We sketch it
here. Let X; be the ith order statistic of n i.i.d. U[0,1] variables. Then, X;
is known to have a f(i,n —i+ 1) distribution with mean E[X;] = ;7 and
%. Supposing that we used the median rather than the

mean of the first k order statistics in the threshold test step, £t~ would have a

beta distribution with parameters ("erl n— b) As n — oo, this distribution

variance

converges to a standard gamma distribution with parameter k“ Atk=09,
the left and right 5% tails of the distribution occur at 1.97 and 9.15, which
gives a ratio of 4.65.

We now explain why using the mean is superior to the median in the
threshold test step.

LEMMA 1. For any set of random variables Yi,...,Y,, it holds that

oypr v, S Xj o)
Proof: This follows from the Cauchy-Schwartz inequality and some alge-
braic manipulation. W

From the properties of beta distributions above, the standard deviations
of the X; are proportional to m . The first and second derivatives
(with respect to i) are therefore proportional to (n+1—2i)/+/i(n+1—1)

and
—2/i(n+1—i)— (n+1-2i) 1 (n+1-2i)/\/i(n+1-1)
(<n+1—z)) ’

Trial ‘ f k Agents(n) Runs Failures
1 25 9 24 10,000 47 (<0.5%)
2 25 9 115 10,000 43 (< 0.5%)

Figure 2: Experimental Results 1

——100% 90% =—tr==50% ==pe=25%

SUCCESS
)

10 20 30 40 50 60 70 80
NUMBER OF ZERGLINGS

Figure 3: Experimental Results 2

respectively. The former is > 0 for i < n/2. The latter is < 0 for i < n/2.
Hence, the deviations are a concave function of i. Therefore, for odd m,

m

ZGXi <mox,,,, -
i=1 2
Combining this inequality with the lemma gives o1 X < C)';(mTH . This

implies that the variability of the mean of the first m order statistics is less
than the variability of their median, which is the reason why we use the
mean rather than the median to determine the threshold. [

3. EXPERIMENTAL EVALUATION

Experiment 1: We simulated 10,000 trials of the agent-
mustering protocol for f = 25 and, in one case, n = f —1 =24
and, in the other case, n = 4.6f = 115. In all trials, we used
M = 1,000,000 and, as in Theorem 1, p =0.05 and k =9 . An
incorrect decision (= failure) for n < f is the decision to start the
given task; a incorrect decision for n > f is the decision not to
start the given task. Figure 2 shows that the fraction of incorrect
decisions is about one tenth of that assured by Theorem 1. Hence,
Theorem 1 appears to be a conservative guarantee, which is an en-
couraging outcome.

Experiment 2: We also simulated 200 trials each of the agent-
mustering protocol for m = 1,000,000, f = 20,40 and 80 and n
varied from f/2 to 2f. Figure 3 shows the results for /' = 40 with
n on the horizontal axis. As expected, the percentage of correct
decisions (= success) is high at the extremes and low when 7 is
close to f. The results for other values of f were very similar.
For all values of f tested with n = f/2 and with n = 2f, at least
90% of the decisions were correct. Therefore, our protocol in ef-
fect achieved a price of decentralization equal to 2 with probability
> 90%. We also tested the resilience of the agent-mustering pro-
tocol for communication reliabilities 0.90, 0.50, and 0.25 (shown
in different colors). A communication reliability of r was defined
as the probability that an agent fails to send any messages when
it attempts to transmit messages to nearby agents. We thought this
to be a more stringent and realistic model of failure than to fail to
transmit each message with a given independent failure probability.
Figure 3 shows that our mustering algorithm is strongly resistant to
communication failures since the probabilities of making correct
decisions are quite similar for all values of r tested. Correct deci-
sions for n < f tend to be slightly more likely for small » because
the apparent number of agents is decreased when some of them fail
to communicate. Even so, the percentages of correct decisions for
n > f are not greatly lower even for r = 0.25.

REFERENCES

[1] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In
Proceedings of the Annual Symposium on Theoretical Aspects of
Computer Science, pages 404—413, 1999.

[2] G. Robertson and I. Watson. A review of real-time strategy game Al.
Al Magazine, 35(4):75-204, 2014.

