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ABSTRACT
Multi-Agent Path Finding (MAPF) is an NP-hard problem with
many real-world applications. However, existing MAPF solvers are
deterministic and perform poorly on MAPF instances where many
agents interfere with each other in a small region of space. In this
paper, we enhance MAPF solvers with randomization and observe
that their runtimes can exhibit heavy-tailed distributions. This in-
sight leads us to develop simple Rapid Randomized Restart (RRR)
strategies with the intuition that multiple short runs will have a bet-
ter chance of solving such MAPF instances than one long run with
the same runtime limit. Our contribution is to show experimentally
that the same RRR strategy indeed boosts the performance of two
state-of-the-art MAPF solvers, namely M* and ECBS.
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1 INTRODUCTION AND BACKGROUND
The runtimes of search algorithms can exhibit heavy-tailed distri-
butions [6]. These distributions have tails that decay according to
a power law. Their means, variances or other higher moments may
not be finite due to the large probability mass in their tails that
allows outliers to have a substantial impact on their moments [4].
Heavy-tailed distributions in the runtimes of randomized search
algorithms can be exploited with Rapid Randomized Restart (RRR)
strategies [5]. RRR strategies generally exploit the property that,
given hard instance of an NP-hard problem, multiple short runs
have a better chance of solving it than one long run with the same
runtime limit.

We apply this idea to the Multi-Agent Path Finding (MAPF)
problem, which is defined as follows: Given a graph and a set of
agents with unique start and goal vertices each, find collision-free
paths for all agents from their respective start vertices to their
respective goal vertices. The agents traverse edges in discrete time
steps with the possibility of waiting at vertices. Minimizing the
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solution cost given by the sum of travel times of the agents along
their paths is NP-hard [8]. We enhance two state-of-the-art search-
basedMAPF solvers, namelyM* [7] and ECBS [1], by replacing some
of the arbitrary, but deterministic, decisions that shape their search
trees with random ones. Our contribution is to show experimentally
that the distribution of runtimes can be heavy-tailed and that the
same RRR strategy indeed boosts the performance of M* and ECBS.

2 RANDOMIZED MAPF SOLVERS
M* is an optimal A*-based MAPF solver that uses subdimensional
expansion to initially create a one-dimensional search space embed-
ded in the joint configuration space of the multi-agent system. In
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Figure 1: Distribution of runtimes.

Top three rows: Runtimes before, in

and after the phase transition (see

Section 5), respectively. Each of these

figures shows the runtimes of 10 runs

of a randomized solver for each of 5

MAPF instances. Right: Heavy-tailed

distribution of runtimes for a 140

agent MAPF instance.
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Figure 2: Left: Automated warehousing domain. Center and Right: Success rates of RRR strategies for M* and ECBS(2).

case of collisions, it increases the dimensionality of the search space
locally to ensure that an alternative path can be found. The way in
which M* breaks ties among search nodes with equal д-values has
a significant effect on its runtime because one node may lead to a
complete resolution of a collision while another node may either
fail to fully resolve the collision or even lead to new collisions. The
expansion order of nodes with equal д-values depends on the or-
der in which they were inserted into the OPEN list which, in turn,
depends on the labeling of the agents (that is, the order in which
they are considered). Therefore, we randomized the labeling of the
agents.

ECBS(2) is a bounded-suboptimal A*-based MAPF solver (that is,
produces solutions whose costs are within a factor 2 of minimum)
and is thus able to solve larger MAPF instances than optimal MAPF
solvers like M*. It, too, avoids operating in the joint configuration
space but does so using a two-level search. The low-level search
plans paths for all agents from their respective start vertices to
their respective goal vertices that satisfy a given set of constraints.
The high-level search performs a search on a constraint tree whose
nodes contains paths for all agents. It imposes more and more
constraints on the paths during the search until the paths no longer
result in collisions. The collisions in the root node of the constraint
tree have a significant effect on the runtime of ECBS(2) because
the shape and size of its constraint tree heavily depend on them.
The collisions depend on the labeling of the agents since the low-
level search plans paths for the agents in the order of their labeling
and always tries to avoid collisions with agents whose paths it has
already planned. Therefore, we again randomized the labeling of
the agents.

3 EXPERIMENTAL SETUP
We performed experiments on a cluster of 38Amazon EC2 c4.xlarge
instances running on Intel CPUs E5-2666 v3 @ 2.90GHz with 4
VCPUs (2 physical cores) and 7.5GB RAM per instance. ECBS(2)
used 2 workers per instance and a 5 minute runtime limit per run.
M* used 1worker per instance and a 1minute runtime limit per run
(due to the high memory consumption of our M* implementation).
We averaged over 100 randomly generated MAPF instances in the
automated warehousing domain from Figure 2 (left). We varied
the number of agents in increments of 10. Half of the agents were
assigned a random start vertex in the left open space and a random
goal vertex in the right open space, and vice-versa for the other
half of the agents. The resulting MAPF instances are generally
considered to be a hard to solve for MAPF solvers because many
agents interfere with each other in the narrow passageways [2].

4 DISTRIBUTION OF RUNTIMES
Figure 1 suggests that the resulting runtimes can indeed exhibit
heavy-tailed distributions, as has been suggested before [3]. We
validated experimentally that the distribution of runtimes is heavy-
tailed by using the Pareto-Levy distribution, defined as:

P(T > t) =

{
1 if t < tmin(

tmin
t

)α
otherwise,

where tmin > 0 is the minimum possible value of T and 0 < α < 2.
Figure 1 also shows the log-log plot of P(T > t) (in blue) for a MAPF
instance with 140 agents. Here,T is a random variable representing
the runtime of the MAPF solver. We computed the slope of the
approximately linear decay to provide an estimate of α . We used
an external library to fit the data and show the fitted curve in red
(corresponding to α = 1.771 and tmin = 10.759s). The distribution
is heavy-tailed since α < 2. (In fact, its variance is not finite.)

5 SUCCESS RATES OF RAPID RANDOM
RESTARTS

Figures 2 (center) and (right) report the success rates of M* and
ECBS(2) (that is, the percentage of MAPF instances solved within
the runtime limit) for different numbers of runs and increasing
numbers of agents. Two runs, for example, mean that the MAPF
solvers processed each instance twice, each time with half of the
runtime limit. A sharp decline in the success rate is characteristic
of a phase transition. MAPF instances on its left side require little
coordination among the agents, which means that a MAPF solver
can easily recover from bad decisions in the search process and
likely solve them within the runtime limit. MAPF instances on its
right side require a significant amount of coordination among the
agents, which means that many of them are not solvable within
the runtime limit. MAPF instances in the phase transition require
a critical amount of coordination and can therefore serve as good
test cases for comparing MAPF solvers.

Our RRR strategy generally boosts the success rates of both
MAPF solvers. However, simply increasing the number of runs
does not always increase their success rates since they cannot
find solutions arbitrarily fast and the runtime limit thus cannot
be arbitrarily short. Smaller numbers of runs can result in higher
success rates for larger numbers of agents.
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