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ABSTRACT
The goal of our research is to automatically score radio-
surgery plans. Radiosurgery is a technique for treating brain
lesions with high dose radiation. When selecting a plan, the
clinician must tradeoff between the complexity of executing
the plan and the conformity in delivering the radiation. This
decision depends on the treatment preferences of the clin-
ician. Our research studies whether it is possible to learn
to score radiosurgery plans in the same way the clinician
does. We use regression to learn a preference function that
maps plan properties such as complexity and conformity to
the level of satisfaction that the plan holds for the clinician.
The preference function is then used to predict the level of
satisfaction that the clinician will have for unseen plans. The
preference function makes it possible to either automatically
select a radiosurgery plan for the clinician or make his task
less time-consuming by sorting all plans according to their
scores. We performed experiments with four different classes
of preference functions and were able to identify the best plan
with high reliability. We conclude that using regression to
learn the treatment preferences of clinicians is a promising
approach to automate or support the selection of radiosurgery
plans in a clinician-specific manner.

Introduction
To develop decision-making tools a clinician will be willing
to adopt, we need to take into account the treatment pref-
erences of the clinician. These preferences, however, are
something that clinicians cannot easily describe. They are
based on personality, intuition, and clinical judgment. In this
paper we therefore investigate whether we can learn them
indirectly. We look at previous choices made by the clinician
and see if we can use them to predict future decisions. We
do this in the context of radiosurgery.

Radiosurgery is a specific form of radiation therapy. In it,
high dose radiation is administered to a patient in a sin-
gle treatment session. It has most commonly been used to
treat diseases of the brain such as arteriovenous malforma-
tions, metastatic lesions, pituitary tumors, and acoustic neu-
romas [LFC00]. The document that describes exactly how
the radiation is to be administered is called a radiosurgery
plan. It details the prescription dose to be administered, the
number and location of targets, and the beam orientations

and intensities. Traditionally radiosurgery plans are created
manually by a clinician interacting with planning software.
However, this is a laborious and computation-intensive pro-
cess. Because of this, automated plan generation has become
an active area of research [DM97, MBB+98, LFC00]. Cur-
rent methods can produce multiple candidate plans. One
plan may differ from another by where dose is deposited or
how many targets are used. It is necessary for a clinician
to assess the clinical value of each plan and select the one
which will be used to treat a patient. This decision is inher-
ently clinician-specific, yet it requires the clinician to review
prohibitively large amounts of graphical and numerical data.

Our goal is to automate the identification of the best plan or
plans, in a clinician-specific manner. We want to learn a func-
tion that maps properties of a plan to a level of satisfaction that
the plan holds for the clinician. This functionserves as a pref-
erence model. We train the function on radiosurgery plans
that the clinician has assigned satisfaction scores to. Learn-
ing is performed using regression, a mathematical technique
for determining the parameters of a function that yield the
least error between the function and a dataset. We then use
this function to predict the level of satisfaction that the clin-
ician will have for new, unseen plans. This function makes
it possible to either automatically select a radiosurgery plan
for the clinician or make his task less time-consuming by
sorting all plans according to their scores. We developed the
Automated Plan Evaluator to aid the clinician in the task of
selecting a radiosurgery plan. The Automated Plan Evaluator
uses the function to score the plans, and it then displays the
top plan or plans for the clinician to assess.

Related work
Decision-analytic approaches have been used to automate the
selection of radiation therapy plans [SO85, JK92, JKD+93].
Decision analysis is a method of making decisions based
on the desirability of the outcomes, the probabilities of how
known and unknown events will affect the outcomes, and
the outcomes themselves [RN95]. Jain and Kahn [JK92] de-
veloped a multi-attribute utility model where the component
attributes are the possible clinical complications of treatment.
For each complication, the utility is calculated by combining
the probability that the complication occurs with a weight
representing the morbidity, or seriousness, of that compli-



cation. By assuming that each complication is independent
of the others, they calculate the total utility of a plan by
multiplying the effects of each complication:

utility =

issuesY

i

�
1 � probabilityi � f(prototypical weighti; modifieri)

�

Issues are the potential clinical complications such as a brain
infarction or formation of a cataract in the lens of one eye.
Prototypical weight is a measure of the consensual institu-
tional conception of how important the issue is. The modifier
is a weight that takes into consideration how the patient’s
case or the preference of the clinician differs from the insti-
tutional norms. Probability is the chance that a patient will
suffer from that particular complication. A decision-analytic
approach to scoring plans needs a probabilistic model of how
radiation causes complications, and the model must be ac-
curate. This approach tries to establish a score by reasoning
about how radiation results in disease. In contrast, our ap-
proach based on a preference function attempts to strictly
mimic the decision-making of a clinician. No attempts are
made to reason about the correctness of the decision. Along
similar lines, Willoughby, Starkschall et al. [WSJR96] have
used artificial neural networks to score candidate plans. They
train their network on a physician-assigned score and data on
the volumes of tissue that receive different levels of radiation.
In contrast, we look at different features of the plans and use
regression techniques to score the plans to keep the amount
of training data required to a minimum.

Description of Approach
Our method requires that we map properties of a plan to a
satisfaction score. One question is what these properties are.
We cannot choose too many of them because learning would
then require too many training examples, and we want our
Automated Plan Evaluator to quickly acquire the preferences
of the clinician. If we select too few of them, we risk not
conveying enough information about the plan. There are a
number of figures of merit used in the field that summarize
attributes of a plan, namely, conformity, complexity, homo-
geneity, and coverage [Rad96]. These figures of merit are
promising candidates to be properties that map a plan to a
satisfaction score. In this first study we use only two of them,
conformity and complexity.

Conformity is an approximate measure of how well a plan
delivers the prescribed level of dose to the tumor volume and
nowhere else. Conformity, also called PITV (for prescription
isodose over tumor volume) [Rad96], is defined as the volume
of tissue receiving radiation at the dose prescribed or greater,
divided by the volume of the tumor. The assumption is
that the tumor volume is completely enclosed by the volume
receiving high dose or that the volume receiving high dose
is completely enclosed by the tumor volume. Volume is
measured from the medical images of the patient. Images,
referred to as slices, are acquired at various depths. The
area of the region of interest is measured on each slice. This
measure is converted to a volume by multiplying it by the
slice separation distance. Achieving a conformity value of

one is the ideal as neither subjecting healthy tissue to high-
dose radiation nor neglecting to treat part of the tumor volume
with the prescribed dose is desirable. Complexity is a measure
of how expensive it is to execute a plan. In this research, it is
defined as the number of targets included in the plan. A target
is the point where radiation is focused. Each additional target
incurs a high cost in how difficult it is to execute the plan. In
weighing conformity and complexity, there is a clear tradeoff
that the clinician needs to make. The closer the conformity
is to one, the better the plan is considered to be. The closer
the complexity is to one, the easier the plan is to execute.
Unfortunately, to improve conformity one generally needs to
increase complexity. Looking at this tradeoff allows us to
study the decision-making of a clinician in an area clearly
subject to clinician-specific treatment preferences.

At this point we have defined the plan properties that will
be used to map a plan to the level of satisfaction that the
clinician holds for that plan. A schematic overview of our
process is shown in Figure 1. The upper tier of modules de-
picts the training process by which we acquire the clinician’s
preference function. The lower tier of modules depicts how
the Automated Plan Evaluator is used to evaluate plans. The
training process requires multiple training examples. Each
training example is comprised of the plan figures of merit
described here plus a score of the clinician’s level of satisfac-
tion with the plan. How we elicit the clinician’s satisfaction
level, and thus his treatment preferences, is described in the
next section.

Eliciting the preferences of the clinician
The clinician is asked to both rank order and assign a numer-
ical score to each plan according to, specifically, which plan
he would most likely use to treat the patient. This forces the
clinician to make the tradeoff between technical superiority
of the plan and feasibility of executing the plan in the clinic.
The clinician is asked to assign a score of 0 to 9 to each plan.
A score of 0 indicates a poor plan, a plan the clinician would
not likely use to treat the patient; a score of 9 indicates an
excellent plan, a plan the clinician would be pleased to use to
treat the patient. The extrema of the scale are fixed, but the
rest of the scale is intentionally left undefined to allow the
clinician to allocate individual meaning to the values. The
clinician could realistically assign a different score to two
plans with the same values of complexity and conformity be-
cause the plans differ in ways that are not summarized by the
two figures of merit. For this investigation, we address this
problem by restricting the clinician to knowledge of the two
figures of merit and no other plan data. Having the clinician
rank the plans in addition to assigning scores gave us a way
to immediately validate the scoring. In some cases the scores
did not reflect the order in which the plans were ranked, and
the clinician was asked to reconsider his rankings and scores.
By correcting these inconsistencies, the clinician was forced
to better understand the specific criterion by which he was
being asked to score the plans and to think deeply about what
the scores meant to him. The output of this phase is n scored
plans. Plan i in 1:::n has complexity Xi, conformity Yi,
and clinician-assigned score scorei. These are the training
examples that are used to learn the preference function.



Figure 1: Plan figures of merit (FOMs) and the score assigned to the plan by a clinician are collected for several plans.
The parameters of a clinician-specific preference function are learned by training a pre-selected class of functions on this
data. This preference function becomes the core of the Automated Plan Evaluator. When given the figures of merit of
an unseen group of plans, the Automated Plan Evaluator filters out the unsuitable plans and calculates a score for the
remaining plans. It then identifies and displays the best plan or plans for review by the clinician based on this score.

Selecting the class of functions for regression

We want to learn a function from complexity and confor-
mity to the clinician-assigned score from examples. In so
doing, we want to generalize from known examples of the
mapping to the mapping itself. The mapping can then be
used to predict the scores of plans with a never-before-seen
combination of complexity and conformity. We first need
to select a class of functions that captures how the clinician
makes the tradeoff between complexity and conformity. We
then use regression to learn the parameters of the function.
We thereby identify the single function that performs the
mapping of the figures of merit to the score. Having more
parameters in the function may allow us to fit the preferences
of the clinician better. However, there is a tradeoff. More
training examples are then needed to learn the parameters
without over-fitting them, and training examples are expen-
sive to obtain. Each one requires a significant investment
of time by multiple clinicians. A physician must review
the patient case and define exactly what volume needs to be
treated and with what level of radiation. An assistant must
format the patient and treatment data so that it can be read by
an automated plan generator. Once the plans are generated,
the figures of merit must be calculated. The last step is to
have the clinician whose preferences are being studied score
each plan. Because of this costly procedure, we would like
to learn with a small number of training examples. Exactly
what the class of functions must look like is not known a
priori. We performed initial experiments to gain insight into
what classes contain functions that can adequately mimic the
decisions of the clinicians. In the experiments, which are
described later, we tested four classes of functions having
different numbers of parameters. In the training process de-
picted in Figure 1, the parameters of each class of functions
were found using regression. The resulting functions were
tested in the Automated Plan Evaluator. The single, best-
performing function is subsequently used in the Automated
Plan Evaluator to predict the scores of unseen plans.

Learning parameters by regression
In the previous section, we described how we select the class
of functions to be trained on past cases. In this section, we
describe how we use regression to specify its parameters.
Regression is a mathematical technique for determining the
parameters of a function that result in the smallest error be-
tween the function and a set of training examples. If we are
given m training examples, where scorei is the score given
by the clinician to the ith training example, Xi is the com-
plexity of the ith training example, Yi is the conformity of
the ith training example, and score(Xi; Yi) is the score of
the ith training example predicted by the learned function,
then the error is defined as

mX

i=1

(score(Xi ; Yi)� scorei)
2

Once the parameters are specified, we have identified the one
function out of the class of functions that will be used to
predict the score of unseen plans.

At this point, the Automated Plan Evaluator will take the
complexity and conformity of an unseen plan and, using
this function, map it to a score that predicts the level of
satisfaction a clinician will feel for the plan. For the purpose
of creating a clinically useful tool, we are interested in how
plans score relative to one another. We compare against
each other the plans that are candidates to treat a particular
patient case. We call this group of plans a batch. In each
batch of plans there can be plans that clearly would not be
identified as the best. For example, they would have the same
complexity as another plan in the batch, but they would have
worse conformity. These plans are said to be dominated,
and they are eliminated in a preliminary filtering step. A
schematic drawing of how the Automated Plan Evaluator
takes an unseen batch of plans, filters it, calculates the scores,
and returns the best plan or plans for review by the clinician
is shown in the lower tier of modules in Figure 1. The next



sections describe the experiments we conducted.

Experiments
The objective of our experiments was two-fold. We wished
to evaluate how well our technique performed at identifying
the best plan or plans from a group of candidates. We also
wished to compare the performance of different classes of
functions on this task. We had a clinician score a number of
plans for different cases. We then had the Automated Plan
Evaluator predict how the clinician would order the plans,
and we compared the two. We did this for four different
classes of functions.

Classes of preference functions
The four classes of functions we tested are listed below. In
each, X is complexity, Y is conformity, and ak is a parameter
whose value regression estimates.

Log Model

score(X;Y ) = a0 + a1 logX + a2 logY

Linear Model

score(X;Y ) = a0 + a1X + a2Y

Quadratic Model

score(X;Y ) = a0 + a1X + a2X
2 +

a3Y + a4Y
2 + a5XY

Cubic Model

score(X;Y ) = a0 + a1X + a2X
2 + a3Y +

a4Y
2 + a5XY + a6X

3 + a7Y
3 +

a8XY 2 + a9X
2Y

We chose the log function because similar functions ap-
pear in utility theory applications describing human deci-
sions [KR93]. The other three are polynomial expressions
of increasing complexity. We selected them in order to ob-
serve how increasing the number of parameters affects the
accuracy of the Automated Plan Evaluator. All four classes
are comprised of functions that are linear in the parameters
making it simple to solve for them using regression.

Description of the data
Fifteen batches of plans were created for this study, a batch
being a group of candidate plans created for a single pa-
tient case. Each batch contained the five plans that were
not eliminated in the filtering step. Each of these have a
unique number of targets, the number ranging from one to
five. As the complexity of the plan is measured by the num-
ber of targets, each plan in the batch has a unique value of
complexity.

The plans were generated by the mixed integer programming
technique described in [LFC00]. A single clinician was asked
to order and score all the plans. A total of five separate patient

cases with unique anatomy and disease were used to generate
the plans. Fifteen distinct batches of plans were acquired
from this data, however, by varying other aspects of how
the plans were generated. For the plan generation technique
used here, a large number of candidate target points must
first be identified. Only a fraction of them will ultimately be
used in the resulting plan. The candidate targets are selected
by sampling the treatment volume in a grid-like manner.
The various batches differ in the number and spacing of
candidate targets given to the plan generator. Additionally,
two different algorithms, referred to asA andB, were used to
computationally search for the best plan. Four batches were
generated using a sampling grid spacing of 6 mm and search
algorithm A. Five batches were generated using a sampling
grid spacing of 6 mm and search algorithmB. Three batches
each were generated using a sampling grid spacing of 4 mm
and search algorithms A and B, respectively.

Validation method
Before the Automated Plan Evaluator can be used to pre-
dict plan preference, it must learn the preference function.
Due to the small amount of data available to us, we could
not partition the training examples into a group to use for
training and another group to use for testing and still get
meaningful results. Instead, we used leave-one-out cross-
validation [Koh95]. In this technique the parameters are
learned using the examples from all the batches, minus one.
We use the single, reserved batch to test the performance of
the Automated Plan Evaluator on unseen data and measure
how well it does. The batch is subsequently returned to the
set of batches used for training, and a different batch is re-
moved to serve as the test batch. The process is repeated until
each batch is withheld from the group of training examples
one time. The error is the average across all iterations.

Metrics
There are two ways in which the Automated Plan Evaluator
can be used. It could be used to select the treatment plan
autonomously. In this case, the closeness in score between
the plan the Automated Plan Evaluator identified as best and
the plan the clinician defined as best is important. How
suboptimal the treatment plan identified by the Automated
Plan Evaluator is in the eyes of the clinician is measured by
the regret. If score(plan) is the score assigned to plan plan

by the clinician, planA is the plan identified as best by the
Automated Plan Evaluator, and planC is the plan defined as
best by the clinician, then the regret is defined as

regret = jscore(planA) � score(planC)j

The regret is zero if the plan identified as best by the Auto-
mated Plan Evaluator is given the same score as the plan the
clinician ranked best.

However, it is unwise to completely remove the clinician
from the decision process. A different way of using the Au-
tomated Plan Evaluator is to display all plans ranked in the
same order as the clinician would rank them. This way, the
Automated Plan Evaluator never excludes the best plan but
still simplifies the work of the clinician by sorting them ac-
cording to their scores. Thus, if the clinician has confidence



Log Linear Quadratic Cubic
Batch Model Model Model Model

A 1 1 0 0
B 3 3 0 0
C 0 0 0 0
D 0 0 0 0
E 0 0 0 0
F 0 0 0 0
G 1 1 0 0
H 0 0 0 0
I 1 1 0 0
J 1 0 0 0

K 0 0 0 1
L 2 2 0 0

M 2 0 1 0
N 2 2 0 0
O 1 0 0 0

Max 3 3 1 1
Min 0 0 0 0

Mean 0.93 0.67 0.07 0.07

Table 1: Regret for the four functions fit using regres-
sion. Each batch is a group of five plans created for
a particular patient case. The smaller the regret, the
closer the match is between the score of the best plan
of the five as identified by the preference function and
the best plan of the five as defined by the clinician. A
regret of 0 indicates the plans are scored equally.

in the capabilities of the Automated Plan Evaluator, he only
needs to concentrate on the best-ranked plans. In this case,
it is important that the Automated Plan Evaluator rank all
plans in an order similar to that of the clinician, otherwise
it would not be credible in the eyes of the clinician. This is
evaluated by the rank correlation coefficient (RCC) [HH97].
We use it to measure the degree to which the plans have been
ranked similarly by the Automated Plan Evaluator and the
clinician. If a = (a1; a2; :::; an) and b = (b1; b2; :::; bn) are
two permutations of 1; 2; :::; nwhere ai is the ranking of plan
i by the Automated Plan Evaluator and bi is the ranking of
plan i by the clinician,

RCC(a; b) = 1 �
6
P

n

i=1(ai � bi)
2

n3
� n

The RCC can range from 1 to �1. An RCC of 1 results
when the two orderings are identical. An RCC of �1 results
when one ordering is the reverse of the other. To evaluate
how well the Automated Plan Evaluator performs, we look at
both the regret and the rank correlation coefficient on several
test examples.

Results
Table 1 shows the regret data for the four preference func-
tions we tested. In all fifteen examples, the average regret
was less than a single point. Two preference functions, log
and linear, performed less well than the quadratic and cubic
functions. In only one case each did the quadratic and cubic
preference functions identify as best a plan that was not the
best plan determined by the clinician. In those two cases,

Log Linear Quadratic Cubic
Batch Model Model Model Model

A 0.60 0.60 0.90 0.90
B 0.30 0.40 1.00 1.00
C 1.00 1.00 1.00 1.00
D 1.00 1.00 1.00 0.90
E 1.00 1.00 0.90 0.80
F 1.00 1.00 1.00 0.90
G 0.60 0.60 0.70 0.70
H 1.00 0.90 0.40 0.30
I 0.60 0.70 0.90 0.90
J 0.90 1.00 0.90 0.90

K 0.40 0.70 0.70 0.80
L -0.60 -0.30 0.70 0.90

M 0.30 0.90 0.90 1.00
N 0.10 0.20 1.00 0.90
O -0.80 -0.60 0.50 0.90

Max 1.00 1.00 1.00 1.00
Min -0.80 -0.60 0.40 0.30

Mean 0.49 0.61 0.83 0.85

Table 2: Rank correlation coefficients (RCC) for the
four functions fit using regression. Each batch is a
group of five plans created for a particular patient case.
Values can range from 1 to �1. The closer the value
to 1, the greater the agreement is between the rank
ordering of the plans by the preference function and
by the clinician.

the identified plans were the clinician’s second choice plans
which were scored a single point lower than the first choice
plans. Table 2 shows the rank correlation coefficients for the
four preference functions we tested. The mean rank corre-
lation coefficient was positive for all preference functions.
The positive mean values indicate that the four preference
functions are performing well above random in ordering the
plans from best to worst. Again, we notice that the log and
linear functions performed less well than the quadratic and
cubic functions.

Discussion
According to both metrics, the quadratic and cubic preference
functions performed better than the log and linear functions.
The cubic preference function has ten parameters that are
learned. The quadratic function has six. The two poorer-
performing functions, log and linear, have three parameters
each. More parameters allow us to fit the preference model of
the clinician better. This is especially true if the preference
model is complicated. However, more parameters require
more training examples to learn them without over-fitting
them. The risk is fitting the function to the noise of the data
rather than the data as a whole. At this point, it is unclear
whether the true preference model of the clinician is simple or
not. It may be possible to reason that certain qualities charac-
terize how the clinician makes his tradeoff decisions. These
qualities could be captured in a cleverly chosen preference
function without the ensuing need to increase the number of
parameters to be fit. This might be possible by studying the
preference functions themselves. Figure 2 shows the four
preference functions that were determined from the training
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Figure 2: Plots of the four classes of preference functions that were fit using regression. Indifference curves, the curves
indicating the combination of attributes the clinician is indifferent to, are projected onto the conformity-complexity plane.
The models exhibiting greater curvature in their indifference curves, Quadratic (Quad) and Cubic, yielded better results in
identifying the best plans in a clinician-specific manner.

data using regression. The predicted score as a function of
complexity and conformity is shown on the vertical axis. It is
also shown in the gray tones of the surfaces, lighter tones rep-
resenting greater scores. Indifference curves are the contour
lines of the surface projected onto the complexity-conformity
plane, as seen in Figure 2. An indifference curve is a line that
indicates all combinations of attributes that bring the same
level of satisfaction to the subject, hence the subject is indif-
ferent between these combinations. Examining Figure 2, one
will notice that the two preference functions that produced
better results, quadratic and cubic, have highly non-linear
indifference curves. This indicates a highly non-linear trade-
off between the two attributes, complexity and conformity.
The indifference curves of the quadratic function are concave
over the region shown. The indifference curves of the cubic
function are also concave except in the region of high com-
plexity and high conformity where they are convex. Very
few training examples were available for this range of the
attribute space which makes it impossible to say whether the
convexity of the indifference curves capture a true feature of
the preference model. Instead, it could be an artifact of the
small number of training examples we had in this range. The
fact that the predicted scores in this region are quite inaccu-

rate, in fact negative, supports the idea that the results in this
region are spurious. If this is indeed the case, it may suggest
that concavity truly characterizes the indifference curves of
the clinician’s preference function. Using results from utility
theory [KR93], it may be possible to translate the curvature
information into characteristics of an applicable preference
function.

In our experiments, we tested two extreme cases in how we
could use the Automated Plan Evaluator. Using regret, we
looked at how well it can identify the best plan. Using the
rank correlation coefficient, we looked at how well it can
identify all the plans in order from best to worst. We got
encouraging results under both metrics. In reality, however,
we would most likely use the Automated Plan Evaluator in
a manner that falls somewhere between these two extremes.
We want to make the task of the clinician easier and less time-
consuming, yet not remove him entirely from the decision
process. We can do this by displaying, say, just the top
three or five plans, in the order we predict that the clinician
would rank them. This way the clinician has to evaluate
only a small number of plans, yet it is very likely that the
best plan is among them. When the clinician notices that the



Automated Plan Evaluator ranks the plans in the same way
he does, the clinician will gain trust in it and begin to use it
as a clinical tool.

Future work
This research was conducted under the premise that if a clin-
ician’s preference model can be quantified, it can be used
to predict his selection of plans. The results gathered are
promising. Utility theory may help us select a class of func-
tions that will better capture the clinician’s preferences, using
as few parameters as possible. We also need to investigate
whether the addition of other figures of merit or other plan
attributes will allow us to make better predictions. Addi-
tionally, we wish to investigate how to learn the preference
function using rankings of plans, rather than their scores.
A weakness of the present technique of eliciting preference
data as a score is that 1) the tradeoffs that must be made in
the clinician’s mind are not easily condensed into a single
score, and 2) the scores may be context-dependent. That
is, the clinician may consider the other plans in the batch
when assigning a score. If, instead, rank data alone could be
used to learn the parameters of the preference function, these
difficulties could be avoided.

Conclusion
In this work, we examined how to automatically score radio-
surgery plans while accounting for the individual preferences
of the clinician. Our method is simple yet yields good results.
We use regression to learn a preference function that maps
properties of the radiosurgery plans to the level of satisfaction
that the plans hold for the clinician. This preference function
is then used to predict the level of satisfaction that the clin-
ician will have for unseen plans. Our experiments showed
that quadratic and cubic models were able to predict the best
radiosurgery plans well and, to a lesser degree, rank-order all
radiosurgery plans in a manner similar to that of the clinician.
Our technique makes it possible to either automatically se-
lect a radiosurgery plan for the clinician or make his task less
time-consuming by sorting all plans according to the level
of satisfaction the clinician will likely assign to them. The
work reported here is a first step in developing decision aids
for clinicians, and it demonstrates the significant promise of
using regression techniques for scoring plans and assisting
clinicians in their decision making.
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