
A Deep Reinforcement Learning Framework for UAV
Navigation in Indoor Environments

Ory Walker
Queensland University of Technology

2 George Street
Brisbane City, QLD, 4000

ory.walker@hdr.qut.edu.au

Fernando Vanegas
Queensland University of Technology

2 George Street
Brisbane City, QLD, 4000

+61 (0) 7 3138 1772
fernando.vanegasalvarez@hdr.qut.edu.au

Felipe Gonzalez
Queensland University of Technology

2 George Street
Brisbane City, QLD, 4000

+61 (0) 7 3138 1363
felipe.gonzalez@qut.edu.au

Sven Koenig
University of Southern California

300 Henry Salvatori Computer Science Center
941 Bloom Walk

Los Angeles, CA 90089-0781 4000
213-740-7285

skoenig@usc.edu

Abstract—This paper presents a framework for UAV navigation
in indoor environments using a deep reinforcement learning
based approach. The implementation models the problem as
two seperate problems, a Markov Decision Process (MDP), and
a Partially Observable Markov Decision Processes (POMDP),
separating the search problem into high-level planning and
low-level action under uncertainty. We apply deep learning
techniques to this layered problem to produce policies for the
framework that allow a UAV to plan, act, and react. The
approach is simulated and visualised using Gazebo and is eval-
uated using policies trained using deep-learning. Using recent
deep-learning techniques as the basis of the framework, our
results indicate that it is capable of providin smooth navigation
for a simulated UAV agent exploring an indoor environment
with uncertainty in its position. Once extended to real-world
operation, this framework could enable UAVs to be applied in an
increasing number of applications, from underground mining
and oil refinery surveys and inspections, to search and rescue
missions and biosecurity surveys.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. BACKGROUND . 2
3. FRAMEWORK ARCHITECTURE . 3
4. PROBLEM FORMULATION AND TRAINING 4
5. EVALUATION . 8
6. CONCLUSIONS . 11
REFERENCES . 12
7. BIOGRAPHY . 13
8. APPENDIX . 13

1. INTRODUCTION
An increasing number of applications for Unmanned Aerial
Vehicles (UAV) within society require the capacity for au-
tonomous searching of a known or unknown environment in
the presence of both hazards and sensing limitations. Such
applications include the broad field of search and action
tasks, from search and rescue [24], environmental sampling
and data collection [14], pursuit of targets in complex en-

978-1-5386-6854-2/19/$31.00 c©2019 IEEE

vironments [3], even underground mining and surveying of
confined spaces [8].

A common requirement for such applications is the ability to
search continuous and/or large environments. Representing
large environments discretely is one solution to the problem
of large environments [15], however one must then consider
how a UAV would search each discrete cell.

There are multiple works involving searching or navigating
an unknown environment using UAVs. Most solutions how-
ever do not allow for operation of the UAV under uncertainty
[13] or operation in continuous action spaces, using a discrete
list of actions to control the operation of the UAV [25].

Many works regarding planning of robotic agents apply the
Partially Observable Markov Decision Process (POMDP) or
Markov Decision Process (MDP) framework when formulat-
ing a planning problem [6] [2] [1]. The main reason being
that POMDPs are especially useful for modelling uncertainty
within a system. In the past POMDPs were most effectively
solved by classical algorithms and solvers [17] [22] [12].
However, these approaches had a number of limitations,
including discrete actions spaces [17] or difficulty modelling
continuous actions spaces [17] [22], pauses in operation to
calculate the next optimal trajectory [17] [22] in the case
of online planners, or long pre-planning times for each new
environment.

Such limitations could be detrimental to the completion of
any search task with time constraints. Fortunately, recent de-
velopments in the field of deep learning have shown promise
when applied to POMDP problems [9] [11] [7]. While deep
reinforcement learning of a POMDP model can be quite time
consuming initially, correct formulation of a model and its
training allows for application to a variety of environments,
meaning continuous operation and little to no pre-training of
the model prior to operation. Solutions are also available
for continuous state and action spaces using modern deep
reinforcement learning techniques [18].

Deep learning techniques have recently seen applications
within the field of UAV operation [20] [5], however the
application of such techniques to UAV decision-making re-
mains largely unrepresented, with most efforts being directed

1

toward low-level control [16] and image processing based
obstacle avoidance [23] .

This paper maintains a focus on the problem space of search-
ing inside a building using UAVs. We present the UAV
indoor search problem as two separate problems, a global
planning problem, and a local planning problem. The UAV
must be capable of searching a local environment, while also
being directed between local environments within a global
search space. In order to illustrate the concept, a map of
the search environment is provided. The UAV is assumed to
have an estimation of its velocity, but uncertainty is present
in the UAVs knowledge of its location with respect to the
environment.

We develop a framework to develop models and test the appli-
cation of modern deep reinforcement learning approaches to
the two concurrent problems of global and local planning.The
Deep-RL algorithm, Trust Region Policy Optimization [21] is
used for validation and illustration purposes.

The main contributions of this paper are:

1. A scalable formulation of the UAV search problem
within large environments as two separate problems, an MDP
problem and a POMDP problem. The global MDP using a
discretized map of the environment to provide macro actions
for the system, while the local POMDP problem utilizes
a continuous action and state space to enable a UAV to
smoothly search a local environment in 3 degrees of freedom
while avoiding any obstacles present despite uncertainty in
its measurements. The framework implements the MAVROS-
PX4-Gazebo software in the loop functionality to provide low
level control of a simulated 3DR Iris UAV within gazebo.

2. A framework for the testing of deep reinforcement learn-
ing techniques when applied to the two concurrent POMDP
problems of global and local planning. The framework uses a
modular architecture that permits variable functionality and
testing of the system via software in the loop within the
Gazebo simulator.

2. BACKGROUND
POMDP

The POMDP framework is suitable for modelling sequential
decision making for robotic agents operating in the real
world, as robotic agents rarely if ever have access to mea-
surements and sensing free from uncertainty.

Formally, the POMDP framework can be defined by an 8-
tuple (S, A, T, O, Ω, R, b0, γ). Where:

• S is a set of states,
• A is a set of potential actions,
• T is the transition function, defining the probability of
transition between states,
• O is a set of observations, Ω is the observation function,
defining the probability of observing o from state s after
taking action a,
• R is the reward function,
• b0 is the initial belief,
• and γ is the discount factor.

An agent (UAV) in a POMDP formulation does not have
knowledge of the true state of the environment. The agent
instead maintains a continuous belief b(s) over the potential

states. It updates this belief after taking an action a and
making an observation o . Consider this belief a distribution
of all possible states for the agent given the transition and
observation functions T and Ω, with less certain functions
(modelled for less certain problems) resulting in a larger
belief space, and more uncertainty in the true state of the
agent and environment.

Much like the foundational MDP, the objective of a POMDP
solver is to identify a sequence of actions that maximize the
total expected discounted return of the model. Rather than
calculating for a known true state s however, the POMDP
solver uses an initial belief of potential states b0.

The solution a POMDP solver provides is a policy π that maps
belief space to action space and identifies which action will
maximize the expected discounted reward given a belief b(s).
The optimal policy is then represented by π* which yields the
maximum reward value for each belief state, which is denoted
by V*. V* (b) is therefore the value function that accounts for
the maximum reward value for any given belief b.

Deep Reinforcement Learning and TRPO

Solving the POMDP problems of global and local planning
involves optimizing a policy with respect to a future dis-
counted reward. The primary goal of deep reinforcement
learning within our framework is therefore to learn optimal
policies for both problem formulations. Deep reinforcement
learning leverages the properties of deep neural networks and
reinforcement learning algorithms to produce near-optimal
policies for complex problems. For illustrating the framework
we opted to use the Deep Reinforcement Learning Algorithm,
Trust Region Policy Optimization to solve the global and lo-
cal planning problems. However, the framework is designed
in a modular fashion which permits the use of alternative
algorithms to solve either of the local or global planning
problems, so that other algorithms can also be tested for
performance. A key benefit of applying Deep Reinforcement
Learning to the local control problem is the reduced control
overhead required when implementing a learned policy and
the near-instantaneous response to new information available
to the UAV at any given time, without the need for re-
calculation. This assumes however that an adequate policy
has been trained, but with modern Deep-RL techniques im-
proving rapidly, the problem space a useable policy can be
produced for like-wise improves.

More classical solutions are more applicable to the global
planning problem, where the UAV must visit each node
within a graph map and satisfy a local search condition.
However, for this paper an MDP model was developed and
a policy was trained for the small global planning problem
using the same TRPO algorithm that was used for the local
problem.

Trust Region Policy Optimization:

Trust Region Policy Optimisation (TRPO) [21] is an on-
policy policy gradient method that allows precise control
of the policy imporvement during optimization. At each
iteration k, the algorithm attempts to solve the constrained
optimization problem by optimizing the stochastic policy
π0. The algorithm is able to accomodate both discrete and
continuous action spaces by changing the representation of
the stochastic policy π0. A categorical distribution is used
when the action space is discrete, and a Guassian distribution
is used when the action space is continuous. The algorithm

2

has been shown to learn complex policies for continuous
tasks such as swimming, hopping and walking and further
improvements have shown it can be adapted to learn policies
for multiple agents in continuous tasks [9]. TRPO is well
suited to the local planning problem, being a continuous task,
and is also capable of handling the discrete global planning
MDP.

3. FRAMEWORK ARCHITECTURE
A modular framework was created that can be broken into
four major modules, shown in figure 1. The four modules
run in parallel and interface with each other using the Robotic
Operating System (ROS). They communicate with each other
by publishing and subscribing to ROS topics. Policies of
POMDP and MDP models are trained prior to operation and
executed by the framework modules. Model formulation and
training is outlined further in Section 4.

The four modules are as follows: the Global Planner that
provides macro actions, the Map Management module that
maintains up to date information regarding the environment
and processes the macro actions of the Global Planner,
the Local planner that provides velocity commands for the
UAV, and the Low-Level Control module that carries out the
commands sent by the Local Planner and provides sensor
data for the higher level modules. Because the modules run
in parallel, each module can have its own update rate.

Global Planner Module

This module executes a pre-trained policy for the global MDP
problem. Since the search task has a focus on searching
confined or indoor environments (buildings, under the forest
canopy, etc.) the global environment map is broken into
discrete sub-maps. The Global Planner module receives
observations from the Map Management module. The ob-
servations it receives are model dependent and are outlined
further in Section 4.

The Global Planner module then produces an action (move
to a specific room or search the current room), which is
processed by the Map Management module. This process
repeats until such time as the task is completed. Because
the policies are pre-trained, the planner can use any policy
that shares the same observation and action structure as the
planner. This provides flexibility, so that if a collection of
policies have been trained for common environment struc-
tures and the structure of the global environment is known
(as is assumed for this task), the policy best suited to that
global environment structure can be selected prior to run-time
to maximize performance.

The Global Planner module operates at a pseudo-event-
driven rate. After it gives an action, the planner is suspended
until that action is completed by the system (eg. move, search,
etc.). However, this is only one way to implement the global
planner and the framework was designed with the intended
flexibility to allow any number of Global Planner modules to
function adequately.

The structure of the MDP formulation for the Global Planner
is elaborated on further in Section 4.

Map Management Module

The Map Management module handles all the logic necessary
to enable the Global Planner to effectively control the Local

Planner, it also processes data received from the Low-Level
Control module.

This module maintains a working map of the entire global
environment, as well as sub-maps for each area within the
global environment.For illustration purposes each sub-map is
divided into 0.5m x 0.5m cells, with each cell representing
a space of explorable environment. Currently, for illustrative
purposes each sub-map has a maximum size of 10m x 10m
(100 square meters), however this can be adjusted within the
framework.

An rtree [10] index is maintained of all unexplored cells in
each sub-map. Figure 2 shows how a map is divided into sub-
maps and cells. Whenever a cell is explored by the UAV agent
that cell is removed from the rtree index. Figure 3 shows a
sub-map being explored by a UAV agent.

The Map Management module uses these cells to maintain an
awareness of the search status of each sub-map for use by the
Global Planner. It also uses them to produce observations for
the Local Planner module of nearby areas within a sub-map
that remain unexplored, which through the formulation of the
local planner POMDP (discussed further in Section 4) causes
the UAV to navigate to those regions, subsequently exploring
them.

The Map Management module also processes move actions
from the Global Planner. When a move action is received
a transit sub-map is generated that creates a string of un-
explored cells between the current location of the UAV and
the target sub-map to move the UAV to the desired area.
An example of a transit sub-map can be seen in Figure 3
This map behaves similarly to the regular sub-maps but is
created at the instance of a global action. For illustration
purposes the l1-path-finder algorithm [19] is used to generate
a path of cells between two areas and sets them as unexplored,
however other more complex methods can also be used. The
UAV then only receives observations from the transit sub-
map; when the UAV is using the correct policy it will follow
the unexplored path of cells to the desired area, where it is
switched back to that area’s sub-map and can begin exploring
again using a search policy.

To maintain knowledge of the UAV’s position and produce
the correct observations relative to the UAV agent, the Map
Management module receives the global pose from the Low-
Level Control module. In the case of the simulated trials
outlined in section 5, this pose is the ground truth, however
any relatively reliable global pose estimation would suffice.
During testing gaussian noise is added to the ground truth po-
sition and heading in order to emulate noisy pose estimation.

This module operates at a rate of 20 Hz.

Local Planner Module

Much like the Global Planner module, the Local Planner
module acquires observations (o) and produces actions (a)
according to a given pre-trained policy (π).

The Local Planner receives observations of the UAV agent’s
current velocity from the Low-Level Control module, and
receives observations regarding nearby unexplored areas and
hazards from the Map Management module. With these
observations it then outputs command velocities for the UAV
agent in the x, y and yaw axes using its pre-trained policy. By
using pre-trained policies the performance can be maximized
for a given environment, changing search policies on a sub-

3

Figure 1: Module Architecture

Figure 2: Environment Divided into Sub-Maps and Cells.
Green: Unexplored Cells, White: Explored Cells, Grey
Circle: UAV, Blue Circle: UAV View, Grey Arrow:UAV
Heading, Grey Lines: Exploration Observations, Red Lines:
Hazard Observations

map by sub-map basis, or a single general policy can be
used to navigate any number of environment configurations
with reduced performance instead. Multiple POMDPs and
policies are created for the Local Planner module depending
on the problem. The environment searches illustrated by
Cases 3a and 3b of Section 5 use two policies generated by
two POMDP models. One policy is used for transit between
sub-maps, and the other policy is used for searching the sub-
maps. Case 3c implements three (3) policies, one (1) policy
for transit and two (2) policies for searching each of the two
(2) different room types.

A more detailed formulation of the POMDPs for the local
planner is outlined in section 4.

This module produces actions at a rate of 10Hz.

Low-Level Control Module

The Low-Level Control module converts the Local Planner
module velocity commands into motion controls for the UAV
agent using the MAVROS/PX4 firmware. This firmware is
also responsible for producing the velocity estimations for the

Figure 3: UAV Explores Sub-Map Zero. Green: Unexplored
Cells, White: Explored Cells, Grey Circle: UAV, Blue
Circle: UAV View, Grey Arrow:UAV Heading, Grey Lines:
Exploration Observations, Red Lines: Hazard Observations

Local Planner module and the global pose observation for the
Map Management module. This module closes the loop of the
framework and allows a properly configured system to search
a multi-area environment within Gazebo.

The low-level control module also provides an interface for
real-world testing.

4. PROBLEM FORMULATION AND TRAINING
In the proposed framework, the UAV search problem is
seperated into the global planning problem and the local
planning problem and models are formulated for each. The
development of these two models can be further broken down
into training and execution.

To allow for rapid learning of a solution, the models must also
incorporate approximations of the behaviour of the system
during normal operation. This way, each model can be
trained independently of any other nodes, decreasing learning
times. These approximations are handled during the transi-
tion function (T) of each model, and are further outlined in
the respective transition function sections for each problem.

4

Both models, their core parameters, and training parameters
can be altered and adapted to tweak execution and training
performance or produce solutions for different problem con-
figurations. For illustration purposes the following global
planner and local planner model configurations were used.

4.1 Global MDP

The global planning MDP can be defined as an pseudo-
event-driven MDP, as it publishes an action and only receives
observations and produces actions once the prior action is
completed. The global planning MDP is a discrete MDP. The
model is illustrated using a four room environment. Creating
models that handle different sized environments is simply a
matter of scaling the observations and actions as required.

Observations (O):

The set of observations can be broken further into three types:

Observation Type No. Observations required
for map with N rooms

The room map (static) (2*N)/2 - N/2
UAV location 1
Search status of each room N

The room map observation set outlined in the table above is
only necessary for developing a generalized policy that can
handle all unique variations of an N room environment. A
model that was only learning one room layout would only
need the current location of the UAV and the search status
of each room as observations. Figure 4 outlines all the
unique, connected, non-directional graph maps for a four
room environment. The global MDP was trained using
these six configurations to be able to handle any four room
configuration.

Actions (A):

The action space for the global planner MDP is a discrete
action space whose size is equal to the number of rooms in
the environment, in the case of the four room environment the
actions available are to search the current room, or move to
another room. This can be represented by the following array
[0,1,2,3]. Returning an action value from that array equal to
the current location of the UAV causes the UAV to execute
a search of that room, while returning an the value of a non-
occupied room executes a move to that room.

Transition Function (T):

The transition function used for training the global planner
does not consider uncertainty or the time an action takes. If
a move to another room is requested, the UAV is moved to
that room. If a search action is requested, the status of the
current room is changed from 0 to 1, to indicate the room has
been searched. In real-time operation the global planner is
much the same, with the only exception being that rather than
transition occuring instantly (as it would when learning), it
happens only once the specified action has been completed
by the rest of the system and has been reported as completed
by the Map Management module.

Rewards (R):

The rewards for global planner MDP are as follows:

Figure 4: Unique Four Room Combinations

Rewards
Searching an unsearched room 1
Searching a searched room -1
Move cost -0.1

4.2 Local Planner POMDPs

4.2.1 Search POMDP

The local planning search POMDP model is a more complex
formulation than the global planning model, as the UAV
operates in a continuous state space and has a continuous
action space.

Observations (O):

The observations for the search POMDP can be broken into
the following types:

Observation
Type

No. Observations Observation Range

Hazard Obser-
vations

36 0 to 6

Exploration
Observations

8 0 to submapsize ∗√
2

Velocities
(x,y,yaw)

3 -0.5 to 0.5

Note that the UAV does not ever receive its global or local
pose, as without also receiving a map reference these would
provide no useful information. In an effort to reduce the state
space and create a model that converges on a solution, the
UAV only receives measurements of environmental features
relative to its current position and heading.

The hazard observations are used in the detection of hazards.
This model formulation has the hazard readings spaced at
each 10 degree mark relative to the heading of the UAV. The
same logic is applied to the exploration observations, spaced
at every 45 degrees, as they are not imperative for collision
avoidance. These readings give the UAV some idea of the
shape of its surrounding environment at any given instant,
allowing it to make decisions regarding which unexplored
area it should investigate next, and where hazards it must
avoid are.

The velocity observations are necessary for giving the UAV
an idea of its current trajectory relative to the other observa-

5

tions and are provided in the local frame of the UAV.

In the case of this illustrative model the range of the UAVs
hazard observations is that of an average low-price laser
scanner, the range of the exploration observations is from 0
to the length of hypotenuse of a square sub-map to ensure
that any unexplored cells are never out of range, and the
range of the velocity observations are the limits of the UAV’s
simulated operating velocities.

Actions (A):

The UAV operates with the continuous action space detailed
below:

Action Type Action Space
Accelerate in the X axis -0.25 to 0.25
Accelerate in the Y axis -0.25 to 0.25
Accelerate in the Yaw axis -0.25 to 0.25

This means that at any given step, the UAV can be given
a command to accelerate up to 0.25m/s in any of its three
degrees of freedom. However, the simulated UAV does
not respond to velocity commands instantaneously and has
effective top speeds for each axis. Therefore, a transition
function is necessary when modelling the local planner.

Transition Function (T):

The transition function for the local planner approximates
the UAVs response to the acceleration actions produced by
the planner. First it calculates the difference (Δ) between
the current velocity (vcurrent) and the new desired velocity
(vdesired) and uses two precalculated transition tables (linear
and angular) to determine the response of the system over the
0.1 second time-step. The transition function (T) assumes
a linear change of velocity over this time period, taking the
average of this new speed and the old speed to find the
change in position of UAV in the environment and update the
observations, ready for a new action.

The UAV is also subject to velocity limits within the
transition function, and any acceleration command given to
increase velocity past the maximum or minimum velocity

limits (vlimit), sets the desired velocity at those limits. This
speed limit also exists in the local planning module, to

permit consistent operation across learning and execution.

Calculating the transition tables is not essential to the oper-
ation of the framework, however it can reduce sub-optimal
performance that can be a result of the policy not learning the
approximate physical transition characteristic of the agent,
such as overshoot during maneuvers.

The transition tables were calculated as follows:

• First a range of angular and linear response data is collected
while the UAV agent operates in Gazebo.
• Secondly the data is loaded into matlab and the System
Identification Toolbox is used to generate a discrete state
space model for the linear and angular data sets respectively.
• Finally the step response for each state space model is
generated, shown in Figure 5 and Figure 6.

The following is performed for each step response to create
an approximate transition table:

• Split the step response into approximate logical divisions

Figure 5: Linear Step Response

Figure 6: Angular Step Response

based on the delta of the system from the max response (0.8,
0.7, 0.6, 0.55 etc.) and data available.
• Calculate the response coefficient τ at each time step.

τ = v∆/vinitial

• Find the average response coefficient for all time steps
between each pre-chosen delta and the next, setting this value
as the step response coefficient for the larger of the two.
• Create the transition tables using the average step response
coefficients and delta values.

6

Transition Tables for Simulated 3DR IRIS UAV
Linear Transition Table

v∆(m/s) Response Coefficient τ
1 0.1080

0.7 0.1034
0.6 0.07008

0.55 0.04407
0.5 0.02781

0.45 0.01686
0.4 0.01397

0.35 0.01343
0.3 0.01303

0.25 0.01246
0.2 0.01154

0.15 0.00983
0.1 0.00465

0.05 0.00156
Angular Transition Table

v∆(rad/s) Response Coefficient τ
1 0.3486

0.4 0.3112
0.3 0.1830
0.2 0.0935

0.15 0.0789
0.1 0.0588

0.05 0.02697

The model uses the following to calculate the velocity after
each time step vt+0.1:

v∆ = |vdesired − vt|

vt+0.1 = vt + vt ∗ coefficientresponsevdelta

The transition function is also responsible for calculating
hazard and environment exploration observations, rather than
receiving them from an external node. Calculating these
measurements requires the model to create and maintain an
exploration map and a hazard map for each run. In the
case of both the exploration and hazard maps, the logic for
producing exploration and hazard observations is the same
as the logic within the map management module, with the
current position of the UAV being used to calculate the
distance from the UAV to the unexplored regions and hazards.

Rewards (R):

The rewards for the local planning model are as follows:

Rewards
Exploring an unexplored cell 10
Colliding with a hazard -500

4.2.2 Transit POMDP

The Transit POMDP is used for controlling the UAV during
sub-map transits. It has the same formulation as the Search
POMDP except it has an altered observation space. All
actions, rewards and the transition function remain the same.

Observations (O):

The observations for the Transit POMDP can be broken into
the following sets:

Observation
Type

No. Observations Observation Range

Hazard Obser-
vations

36 0 to 2.5

Nearest
Distance
to Nearest
Transit Cell

8 0 to submapsize ∗√
2

Angle to Near-
est Transit Cell

1 -π to π

Velocities 3 -0.5 to 0.5

The Transit POMDP has the same number of hazard obser-
vations, but they are reduced in range, as the UAV agent only
cares about hazards when collision is imminent. Also, rather
than generate observations for all cells in the transit sub-map
the agent only receives the distance and angle to the nearest
cell in the sub-map, as transit sub-map consists of a string of
cells to the desired location.

4.3 Training

Both the global planning and local planning model have
been implemented using the Open AI Gym [4] environment
structure, so that any number of learning algorithms can be
tested for performance.

For validation purposes we chose to use the deep reinforce-
ment learning algorithm, TRPO, implemented in rllab to
train policies for both models. When training both models,
the initial starting conditions are randomized. In the case
of the global planner, this means selecting 1 of 6 of the
available map types and randomizing the starting location of
the UAV. In the case of the local planner, the UAV location is
randomized within a 10m x 10m sub-map.

Randomizing the initial conditions of the models when train-
ing a policy allows for better policy generation. Due to
the nature of the observations the local planner receives
(relative measurements to environmental features) a policy
can be learnt that searches a 10m x 10m environment with
no obstacles, and with a single obstacle.

The models also incorporated noise in the pose of the UAV,
to simulate uncertain sensing during operation.

Global Planner MDP:

The neural net model for the planner has two (2) hidden
layers, each with eight (8) neurons. A 2 layer neural net was
selected as the system is not complex enough to warrant any
more layers, and the number of neurons was based around the
number of input observations and output actions of the model.
The TRPO algorithm is also used for developing the control
policy (π), with the following training parameters:

Parameter Value
Batch Size 2000
No. Iterations 500
Discount Factor 0.99
Step Size 0.01
No. Parallel 4

Local Planner POMDPs:

The neural net model for the planner has two (2) hidden
layers, each with 32 neurons. The TRPO algorithm is used for
developing the control policy (π) and the training parameters

7

are as follows:

Parameter Value
Batch Size 2000
No. Iterations 2000
Discount Factor 0.99
Step Size 0.01
No. Parallel 6

These training parameters were used for the Transit and all
Search POMDP models.

The Search POMDP was trained in a number of configura-
tions. The configuration can be broken down into approxi-
mate or basic, and then further broken down into specialised
or general.

The approximate configurations used the transition tables
outlined above for calculating the change in velocity over
a time step whereas the basic configurations assumed all
desired changes in velocity are met over one time step.

The general and specialised configurations determined the
generation of the environment during training. A general
configuration assumes the agent will be operating in an
environment containing one or zero obstacles and generates
random environments for training accordingly. A specialised
configuration assumes the agent will be operating in an
environment containing either no obstacles or one obstacle.
Between the approximate and basic, and generalised and
specialised training configuration distinctions, six (6) Search
policies were trained for testing in Case 1 (Section 5):

Search Policies
Approximate Basic

General General
Specialised: 0 Obstacles Specialised: 0 Obstacles
Specialised: 1 Obstacle Specialised: 1 Obstacle

The Transit model was trained using only one configuration.
The environment was static, but the agent had to follow
randomly generated paths (Transit Sub-Maps) through the
static environment.

Low Batch and Iteration sizes for the model training was a
consequence of limited training time available and resulted in
policies that could be improved(outlined in section 5).

5. EVALUATION
Case 1: Testing the Search Policies

The first test case was conducted to compare the performance
of the six types of trained search policies in a simulated
Gazebo environment. This assists in determining the ef-
fectiveness of the approximate/basic and general/specialised
configurations.

There are two test environments. An empty 10m x 10m area,
and a 10m x 10m area with a single obstacle in the middle.
All policies were trained with the following parameters. Only
the environment generation and transition function differed
between configurations.

Key Model Parameters
Parameter Value
Environment Observations 8
Hazard Observations 36
Penalty for collision 500
Reward for explored cell 10
Time Limit 180 Seconds (1800 steps)

Training Parameters
Parameter Value
Batch Size 2000
No. Iterations 2000
Discount Factor 0.99
Step Size 0.01
No. Parallel 6

The specialised policies were tested only in their trained
environment, while the general policies were tested in both
environments. Each policy was tested five (5) times per
testing environment to get an idea of policy performance.
Each test was run for three (3) minutes (180 seconds) or
until the agent collided with a hazard. The percentage of the
environment searched before the time limit had been reached
or until the agent crashed has been listed along with whether
the agent collided with the environment. Full tabulated results
for the trials can be found in APPENDIX A. Below are
the averages and totals for the environment tests per policy.
Policies were tested without noise in the UAV agent’s pose,
and then tested again with noise present. The UAV is assumed
to only have a downward facing camera and the ability to
estimate its pose within the environment.

Zero Obstacle Environment Totals
Approximate General Policy

Avg Time (Sec) Avg % Area Searched Collisions
Clean Pose

111.5 57.2 3
Noisy Pose

90.9 61.2 5
Basic General Policy

Avg Time (Sec) Avg % Area Searched Collisions
Clean Pose

149.316 73.8 1
Noisy Pose

180 88.2 0
Approximate Zero Obs Specialised Policy

Avg Time (Sec) Avg % Area Searched Collisions
Clean Pose

168.508 57.8 1
Noisy Pose

151.038 52 1
Basic Zero Obs Specialised Policy

Avg Time (Sec) Avg % Area Searched Collisions
Clean Pose

35.8 39.6 5
Noisy Pose

42.4 42.4 5

8

Single Obstacle Environment Totals
Approximate General Policy

Avg Time Avg % Area Searched Collisions
Clean Pose

111 36.6 2
Noisy Pose

111.1 26.4 2
Basic General Policy

Avg Time Avg % Area Searched Collisions
Clean Pose

70 48.6 4
Noisy Pose

66.5 42.8 4
Approximate Single Obs Specialised Policy

Avg Time Avg % Area Searched Collisions
Clean Pose

180 69 0
Noisy Pose

166 64.2 1
Basic Single Obs Specialised Policy

Avg Time Avg % Area Searched Collisions
Clean Pose

21.2 23 5
Noisy Pose

24.3 30.6 5

In the zero obstacle test the Basic General Policy was the
most performant policy, resulting in a single collision and
searching on average the most area in the alloted 180 second
flight time. The Approximate Zero Obstacle Specialised Pol-
icy was the next most cautious, colliding twice. However, the
cautious behaviour resulted in a lower average area searched
over the flight time than the Basic General Policy. The
Approximate General Policy underperformed, with neither
positive characteristic of these policies. This is likely due
to the the randomisation of the obstacle generation during
training and the low batch size. While the Basic General
Policy had been able to develop comparatively aggressive
search behaviour for zero obstacle environments and the abil-
ity to avoid collisions the Approximate General Policy had
not yet developed this performance. The Basic Zero Obstacle
Specialised Policy also underperformed. The Basic Gen-
eral Policy was selected for illustration when searching zero
obstacle environments during Test-Case 3, as it empirically
has the best performance characteristics for that environment
type.

The single obstacle environment tests indicate the benefit
of specialised policies, with the general policies underper-
forming in this testing environment. The only standout of
the policies was the Approximate Single Obstacle Specialised
Policy, searching on average over 50% of the single obstacle
environment and colliding with hazards only once. The other
policies exhibited low search capabilities and inconsistent
obstacle avoidance. The Approximate Single Obstacle Spe-
cialised Policy was selected for illustration when searching
single obstacle environments during Test-Case 3.

Case 2: Transit Evaluation

The second test case was conducted to determine the func-
tionality of the Transit Policy. A four room environment was
used, shown in Figure 7. The UAV started in the upper left of
the map (Sub-Map 1), and had to traverse to the bottom right
of the map (Sub-Map 2). Figure 8 illustrates the initial transit
sub-map generated by the Map Management module.

Figure 7: Transit Test Environment

Ten (10) trials were run, five (5) with noisy pose readings and
five (5) with clean pose readings, with the UAV traversing
from Sub-Map 2 to Sub-Map 1, until the UAV collided with
the environment or reached the destination. The results can
be seen below:

Transit Test Results
Clean Pose

Trial Time (Sec) Destination Reached?
1 59.3 Yes
2 83.2 Yes
3 69.6 Yes
4 81.9 Yes
5 57.38 Yes

Noisy Pose
1 75 Yes
2 77.1 Yes
3 58.7 Yes
4 87.8 Yes
5 80.6 Yes

As can be seen by these results, the transit policy combined
with the Map-Management module is capable of traversing
to desired rooms, enabling the functionality of the Global
Planning module.

Case 3: Framework Evaluation

The final case was conducted to determine the functionality
of the framework, combining the functionality of all modules
to perform a searh of multi-room environments. This test
involves searching 3 different environments, shown in Figure
9. For illustration purposes, in each environment the UAV
has to search a sub-map to at least 50% completion before
the Map Management module marks it as searched. Once
the current action (search or move) has been completed the
Global Planning module provides another macro action to
the Map Management module. The Local Planning module
implements a policy for searching or moving as necessary.
When searching a zero obstacle room the Local Planning

9

Figure 8: Transit Sub-Map

module uses the Basic General Policy, uses the Approximate
Single Obstacle Specialised Policy when searching single
obstacle environments and uses the Transit Policy when mov-
ing between sub-maps. The framework was validated on
the three different environments with clean and noisy pose
configurations. The time taken to complete a search of the
environment to at least 50 % in each sub-map is listed below.

Framework Validation Results
Four Room Environment with Central Walls

Time to Completion (Sec) Noisy Pose?
355 No

305.1 Yes
Hall Environment with Adjoined Room

Time to Completion (Sec) Noisy Pose?
298.8 No

341.97 Yes
Four Room Environment with Central Walls and Obstacles
Time to Completion (Sec) Noisy Pose?

357.02 No
358.18 Yes

For illustrative purposes Figure 10 outlines the progress of the
UAV through the first environment from the perspective of the
map-management module. Figure 10(a) shows the UAV at the
beginning of the search. All Sub-Maps remain unexplored.
Figure 10(b) shows the search progress of the UAV in Sub-
Map 0. At this time the search threshold of 50 % is reached
and the Transit Sub-Map show in Figure 10(c) is generated to
move the UAV to Sub-Map 2. The framework then repeats
this process, moving the UAV and having it search each Sub-
Map until at least half of each Sub-Map has been explored.

A video of the environment searches is available at the
following link: https://youtu.be/V5pFpt8cD1M.

(a) Test Environment One: Four Rooms with Central
Walls

(b) Test Environment Two: Hall with Adjoined Room

(c) Test Environment Three: Four Rooms with Cen-
tral Walls and Obstacles

Figure 9: Case 3 Test Environments

10

(a) Begin Search of Sub-Map 0 (b) Finish Search of Sub-Map 0 (c) Begin Transit to Sub-Map 2 (d) Begin Search of Sub-Map 2

(e) Finish Search of Sub-Map 2 (f) Begin Transit to Sub-Map 3 (g) Begin Search of Sub-Map 3 (h) Finish Search of Sub-Map 3

(i) Begin Transit to Sub-Map 1 (j) Finish Four Room Search

Figure 10: Case 3: Four Room Search, Map-Management View

6. CONCLUSIONS
The framework detailed by this paper has been shown to
enable a simulated agent to search a multi-room environment
using policies generated using deep reinforcement learning.
Test Case 1 shows that a briefly trained policies were capable
of searching zero and single obstacle environments. Test Case
2 shows that with the correct framework configuration and
policy the UAV is able to transit between rooms, and Test
Case 3 shows that the framework supports searching multiple
room environments by combining high level and low level
planning.

Further work will include improving performance of the local
planner policy, determining good policy generation practices
through testing and investigation of real-time policy switch-
ing for increased range of agent operation. Future work will
also include testing the framework on different simulated
UAV platforms, validation testing of the framework on hard-
ware in real-world environments, increasing the number of
agents supported by the global-planner, and testing the search
capability of the framework using multiple simulated UAVs.

11

REFERENCES
[1] Christopher Amato, George Konidaris, Gabriel Cruz,

Christopher A Maynor, Jonathan P How, and Leslie P
Kaelbling. Planning for decentralized control of mul-
tiple robots under uncertainty. In 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 1241–1248. IEEE, 2015.

[2] Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and
Wee Sun Lee. Intention-aware online pomdp planning
for autonomous driving in a crowd. In Robotics and Au-
tomation (ICRA), 2015 IEEE International Conference
on, pages 454–460. IEEE, 2015.

[3] Richard Borie, Craig Tovey, and Sven Koenig. Algo-
rithms and complexity results for graph-based pursuit
evasion. Autonomous Robots, 31(4):317, 2011.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Wo-
jciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[5] Adrian Carrio, Carlos Sampedro, Alejandro Rodriguez-
Ramos, and Pascual Campoy. A review of deep learning
methods and applications for unmanned aerial vehicles.
Journal of Sensors, 2017, 2017.

[6] Min Chen, Emilio Frazzoli, David Hsu, and Wee Sun
Lee. Pomdp-lite for robust robot planning under uncer-
tainty. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pages 5427–5433. IEEE,
2016.

[7] Yan Duan, Xi Chen, Rein Houthooft, John Schulman,
and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Con-
ference on Machine Learning, pages 1329–1338, 2016.

[8] Pascal Gohl, Michael Burri, Sammy Omari, Joern Re-
hder, Janosch Nikolic, Markus Achtelik, and R Sieg-
wart. Towards autonomous mine inspection. In Applied
Robotics for the Power Industry (CARPI), 2014 3rd
International Conference on, pages 1–6. IEEE, 2014.

[9] Jayesh K Gupta, Maxim Egorov, and Mykel Kochen-
derfer. Cooperative multi-agent control using deep
reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems, pages 66–
83. Springer, 2017.

[10] Antonin Guttman. R-trees: A dynamic index structure
for spatial searching, volume 14. ACM, 1984.

[11] Matthew Hausknecht and Peter Stone. Deep recur-
rent q-learning for partially observable mdps. CoRR,
abs/1507.06527, 7(1), 2015.

[12] Ruijie He, Emma Brunskill, and Nicholas Roy. Puma:
Planning under uncertainty with macro-actions. In
AAAI, 2010.

[13] Yufeng He, Qinghua Zeng, Jianye Liu, Guili Xu, and
Xiaoyi Deng. Path planning for indoor uav based
on ant colony optimization. In Control and Decision
Conference (CCDC), 2013 25th Chinese, pages 2919–
2923. IEEE, 2013.

[14] Amanda Hodgson, Natalie Kelly, and David Peel. Un-
manned aerial vehicles (uavs) for surveying marine
fauna: a dugong case study. PloS one, 8(11):e79556,
2013.

[15] Geoffrey Hollinger, Athanasios Kehagias, and Sanjiv
Singh. Probabilistic strategies for pursuit in cluttered
environments with multiple robots. In Robotics and

Automation, 2007 IEEE International Conference on,
pages 3870–3876. IEEE, 2007.

[16] Klaas Kelchtermans and Tinne Tuytelaars. How hard
is it to cross the room?–training (recurrent) neural net-
works to steer a uav. arXiv preprint arXiv:1702.07600,
2017.

[17] Hanna Kurniawati and Vinay Yadav. An online pomdp
solver for uncertainty planning in dynamic environment.
In Robotics Research, pages 611–629. Springer, 2016.

[18] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971,
2015.

[19] Mikola Lysenko. l1-path-finder algorithm.
https://mikolalysenko.github.io/
l1-path-finder/www/. Accessed: 2018-09-
24.

[20] Huy X Pham, Hung M La, David Feil-Seifer, and
Luan V Nguyen. Autonomous uav navigation using re-
inforcement learning. arXiv preprint arXiv:1801.05086,
2018.

[21] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy op-
timization. In International Conference on Machine
Learning, pages 1889–1897, 2015.

[22] David Silver and Joel Veness. Monte-carlo planning
in large pomdps. In Advances in neural information
processing systems, pages 2164–2172, 2010.

[23] Lei Tai, Shaohua Li, and Ming Liu. A deep-network
solution towards model-less obstacle avoidance. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 2759–2764. IEEE,
2016.

[24] Teodor Tomic, Korbinian Schmid, Philipp Lutz,
Andreas Domel, Michael Kassecker, Elmar Mair,
Iris Lynne Grixa, Felix Ruess, Michael Suppa, and
Darius Burschka. Toward a fully autonomous uav:
Research platform for indoor and outdoor urban search
and rescue. IEEE robotics & automation magazine,
19(3):46–56, 2012.

[25] Fernando Vanegas, Duncan Campbell, Markus Eich,
and Felipe Gonzalez. Uav based target finding and
tracking in gps-denied and cluttered environments. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 2307–2313. IEEE,
2016.

12

7. BIOGRAPHY

Ory Walker received their B.S. in
Aerospace Engineering from Queens-
land University of Technology in 2015
and is currently a PhD candidate affil-
iated with the Australian Research Cen-
tre for Aerospace Automation (ARCAA)
at Queensland University of Technology
(QUT). Their research focuses on UAV
planning and control problems for single
and multiple agents in indoor environ-

ments, modelled as POMDPs.

Fernando Vanegas is a Mechatronics
Engineering from UMNG in 2004. He
holds a M.Sc. in Electrical Engineering
from Halmstad University in 2008 and
a Ph.D. in Aerial Robotics in 2017 from
Queensland University of Technology.
His current research activities include
motion planning for UAV in cluttered
and uncertain environments modelled as
POMDPs for ecological applications.

Felipe Gonzalez is an Associate Profes-
sor (UAV) in the Science and Engineer-
ing Faculty, QUT and the QUT UAV Re-
mote Sensing Group. He holds a BEng
(Mech) and a PhD from the University
of Sydney. His research explores bioin-
spired optimization, uncertainty based
UAV path planning and UAV for environ-
mental monitoring. He currently leads
the ARC DP project UAV flying under the

canopy and urban jungle. Felipe is a Chartered Professional
Engineer and member of professional organizations includ-
ing the RAS,IEEE and AIAA.

Sven Koenig is a professor in computer
science at the University of Southern
California. Most of his research centers
around techniques for decision making
(planning and learning) that enable sin-
gle situated agents (such as robots or
decision-support systems) and teams of
agents to act intelligently in their envi-
ronments and exhibit goal-directed be-
havior in real-time, even if they have

only incomplete knowledge of their environment, imperfect
abilities to manipulate it, limited or noisy perception or
insufficient reasoning speed. Additional information about
Sven can be found on his webpages: idm-lab.org.

8. APPENDIX
APPENDIX A - Case 1 Results

Zero Obstacle Environment Results
Approximate General Policy

Clean Pose
Trial Time (Sec) % Area Searched Collided?

1 180 71 No
2 56.96 40 Yes
3 59.67 50 Yes
4 180 70 No
5 81.02 55 Yes

Noisy Pose
1 92.3 56 Yes
2 119.1 84 Yes
3 113.7 87 Yes
4 33.5 31 Yes
5 95.97 48 Yes

Basic General Policy
Clean Pose

Trial Time (Sec) % Area Searched Collided?
1 180 87 No
2 180 86 No
3 180 87 No
4 26.5 30 Yes
5 180 79 No

Noisy Pose
1 180 86 No
2 180 95 No
3 180 85 No
4 180 87 No
5 180 88 No

Approximate Zero Obs Specialised Policy
Clean Pose

Trial Time (Sec) % Area Searched Collided?
1 180 50 No
2 180 66 No
3 180 54 No
4 122.5 61 Yes
5 180 58 No

Noisy Pose
1 180 51 No
2 35.1 43 Yes
3 180 52 No
4 180 55 No
5 180 59 No

Basic Zero Obs Specialised Policy
Clean Pose

Trial Time (Sec) % Area Searched Collided?
1 28.7 33 Yes
2 35.06 40 Yes
3 29.8 34 Yes
4 29 33 Yes
5 56.4 58 Yes

Noisy Pose
1 42.1 45 Yes
2 28.9 36 Yes
3 29.8 36 Yes
4 30.9 35 Yes
5 52.69 60 Yes

13

Single Obstacle Environment Results
Approximate General Policy

Clean Pose
Trial Time (Sec) % Area Searched Collided?

1 7.5 15 Yes
2 180 64 No
3 180 56 No
4 180 38 No
5 7.13 10 Yes

Noisy Pose
1 180 51 No
2 180 20 No
3 7.3 10 Yes
4 180 40 No
5 8.1 11 Yes

Basic General Policy
Clean Pose

Trial Time (Sec) % Area Searched Collided?
1 23.3 26 Yes
2 32.9 38 Yes
3 55.7 55 Yes
4 180 70 No
5 57.3 54 Yes

Noisy Pose
1 22.9 28 Yes
2 32 34 Yes
3 75.4 62 Yes
4 180 63 No
5 22.1 27 Yes

Approximate Single Obs Specialised Policy
Noisy Pose

Trial Time (Sec) % Area Searched Collided?
1 180 66 No
2 180 71 No
3 180 63 No
4 180 69 No
5 180 76 No

Noisy Pose
1 180 55 No
2 180 70 No
3 180 65 No
4 111.4 66 No
5 180 65 No

Basic Single Obs Specialised Policy
Clean Pose

Trial Time (Sec) % Area Searched Collided?
1 18.7 23 Yes
2 26 15 Yes
3 22.8 27 Yes
4 21.9 29 Yes
5 16.7 21 Yes

Noisy Pose
1 31.7 41 Yes
2 21.8 27 Yes
3 21.1 30 Yes
4 24.3 29 Yes
5 22.7 26 Yes

14

