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ABSTRACT
In this paper, we study a simple means for coordinating
teams of simple agents. In particular, we study ant robots
and how they can cover terrain once or repeatedly by leav-
ing markings in the terrain, similar to what ants do. These
markings can be sensed by all robots and allow them to cover
terrain even if they do not communicate with each other ex-
cept via the markings, do not have any kind of memory, do
not know the terrain, cannot maintain maps of the terrain,
nor plan complete paths. The robots do not even need to
be localized, which completely eliminates solving difficult
and time-consuming localization problems. In this paper,
we use real-time heuristic search methods to implement ant
robots and present a simulation study with several real-time
heuristic search methods to study their properties for ter-
rain coverage. Our experiments show that all of the real-
time heuristic search methods robustly cover terrain even
if the robots are moved without realizing this, some robots
fail, and some markings get destroyed. These results demon-
strate that terrain coverage with real-time heuristic search
methods is an interesting alternative to more conventional
terrain coverage methods.
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1. INTRODUCTION
When one builds physical agents (such as robots) one can

either build complex ones or simple ones. In this paper,
we study a simple means for coordinating teams of sim-
ple agents, in the context of terrain coverage, and demon-
strate its advantages. We study both one-time coverage,
where the robots visit every location at least once, and
continuous coverage, where the robots continuously cover
a large terrain without getting switched off, so that every
part of the terrain gets visited once every while. Applica-
tions of terrain-coverage methods include vacuum cleaning,
lawn mowing, crop plowing, contamination cleanup, mine
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sweeping, surveillance, and surface inspection, yet terrain
coverage has been studied far less in the robotics literature
than other navigation tasks [7, 9, 8, 13, 22, 37].

Ant robots are simple robots with limited sensing and
computational capabilities. They have the advantage that
they are simple to design, easy to program, and cheap to
build. However, they cannot use conventional planning or
coordination methods due to their limited sensing and com-
putational capabilities which limit their planning capabili-
ties even for simple planning tasks such as path planning
or the coverage of terrain. Thus, they might not be able
to cover terrain as efficiently as robots with more power-
ful sensing and computational capabilities. On the other
hand, groups of ant robots can take advantage of both their
fault tolerance (since they fail gracefully even if some ant
robots malfunction) and their parallelism (since groups of
ant robots can cover terrain faster than a single ant robot)
[6]. Small ant-like robots that have the capability to vacuum
clean or mow the lawn are already on the consumer market
and others are expected to be on the consumer market soon,
including the Koala robot, DC06 robot, Electrolux robot,
Cye robot, Eureka robot, Robomow robot, Solar Mower
robot, and Dophin robot. The question then arises how
single ant robots can cover terrain once or repeatedly, and
how teams of ant robots can coordinate their activities.

Theoretical work (including some of our own work) sug-
gests that real-time (heuristic) search methods [21] can be
used to cover graphs once or repeatedly [16, 34, 15, 35]. In
this paper, we present a simulation study with several real-
time heuristic search methods to study their properties for
terrain coverage and demonstrate their advantages. Real-
time search methods have been developed in artificial intel-
ligence as an alternative to more traditional search methods,
such as the A* search method [25]. We show that they can
be used by single ant robots as well as groups of ant robots
to cover terrain even if the ant robots have only very limited
computational capabilities and look-aheads. The ant robots
only have to leave markings in the terrain, sense the mark-
ings at their neighboring locations, and change the marking
at their current location. This is what real ants do [1]. Our
experiments show that real-time search methods robustly
cover terrain even if the ant robots are moved without realiz-
ing this (say, by people running into them), some ant robots
fail, and some markings get destroyed. These results demon-
strate that terrain coverage with real-time search methods is
an interesting alternative to more conventional terrain cov-
erage methods.

To summarize, we present robust terrain coverage meth-
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Figure 1: Ant Robots and Real-Time Search

ods that can be used by groups of robots with limited sensing
and computational capabilities. Other researchers have also
been inspired by ants but study very different methods in
the context of “ant colony optimization” to solve discrete
optimization problems [11], including finding good routing
policies in computer networks [10]. While we use ideas from
biology, we use them only at a very high level. We do not
strive to imitate real ants faithfully, as some robotics re-
searchers do [23]. However, our ant robots do leave long-
lived markings in the terrain (just like real ants) while other
robots use only virtual traces [32]. Our ant robots are there-
fore similar to those robot teams where one robot leaves a
short-lived trace in the terrain that another robot then fol-
lows [30, 27, 28]. However, different from our approach,
those approaches have already been demonstrated on real
robots. The purpose of this paper then is to inspire robotics
researchers that are interested in the coordination of teams
of agents to explore the concept of terrain coverage with
real-time search on mobile robots. This includes developing
robots that leave long-lived markings in the terrain. The
long-lived markings need to have the property that they can
be of different intensity (strength) and survive activities such
as robots moving over them. Yet, the robots should be able
to remove them on purpose. We believe that terrain cover-
age with real-time search will be a reality some day because
robotics researchers have already made progress in this di-
rection. For example, as mentioned above, mobile robots
have been built that leave short-lived markings in the ter-
rain such as odor traces [28], heat traces [27], or alcohol
traces [30].

2. TASK
We model terrains as directed graphs, for instance by im-

posing regular grids on them. Figure 1 (left), for example,
shows a regular four-connected grid, and Figure 1 (right)
shows the corresponding graph. However, we could also de-
rive Voronoi diagrams or similar graph representations of
the terrain [24]. The task of the ant robots then is to cover
the graph (visit all vertices) once or repeatedly.

3. REAL-TIME SEARCH
Real-time (heuristic) search methods [21] interleave plan-

ning and plan execution, and allow for fine-grained control
over how much planning to perform between plan execu-
tions. Planning is done via local searches, that is, searches
that are restricted to the part of the graph around the cur-
rent vertex of an agent. The white area of Figure 1 il-
lustrates the limited look-ahead of real-time search meth-

S denotes the finite set of vertices (states) of
the graph, and sstart ∈ S denotes the start vertex.
The number of vertices is n = |S|. A(s) 6= ∅ is
the finite, nonempty set of (directed) edges leaving
vertex s ∈ S (actions that can be executed in state
s). succ(s, a) denotes the successor vertex that
results from the traversal of edge a ∈ A(s) in vertex
s ∈ S. We also use two operators with the following
semantics: Given a finite set X, the expression
“one-ofX” returns an element of X according
to an arbitrary rule. A subsequent invocation
of “one-ofX” can return the same or a different
element. The expression “arg minx∈X f(x)” returns
the elements x ∈ X that minimize f(x), that is, the
set {x ∈ X|f(x) = minx′∈X f(x′)}, where f is a
function from X to the non-negative integers.

Initially, the u-values u(s) are zero for all s ∈ S.

1. s := sstart.

2. a := one-of arg mina∈A(s) u(succ(s, a)).

3. Update u(s) using the value-update rule.

4. Traverse edge a.

5. s := succ(s, a).

6. Go to 2.

Figure 2: Real-Time Search with Look-Ahead One

ods. A good overview of real-time search methods is given
in [14]. Real-time search methods have been developed in
artificial intelligence as an alternative to more traditional
search methods in deterministic and nondeterministic do-
mains. For example, variants of LRTA* have successfully
been used for traditional search [21], STRIPS-type planning
[5], and planning with totally observable Markov decision
processes models [4] and partially observable Markov deci-
sion processes models [12]. In this paper, we apply real-time
search methods in a very different way, namely to terrain
coverage.

We study several real-time search methods that have a
look-ahead of only one edge traversal and fit the algorith-
mic skeleton shown in Figure 2. All of them associate a
u-value u(s) with each vertex s ∈ S and initialize them with
zeroes. The u-values correspond to markings that the ant
robots leave at the vertices of the graphs, see Figure 1. This
is what some insects do. Real ants, for example use chem-
ical (pheromone) traces to guide their navigation [1]. The
ant robots always decide which neighboring vertex to move
to based only on the u-values of the neighboring vertices.
Before moving to that vertex, the ant robots can change
the u-value of their current vertex. The real-time search
methods first decide which edge the ant robots should tra-
verse in their current vertex (Line 2). They look one edge
traversal ahead (larger look-aheads are possible) and always
greedily let the ant robots traverse the edge that leads to
a neighboring vertex with a smallest u-value (ties can be
broken arbitrarily). Then, they update the u-value of their
current vertex using a value-update rule that depends on
the semantics of the u-values and thus the real-time search
method (Line 3). We assume that the ant robots execute
Lines 2 and 3 together and atomically. Finally, all real-time
search methods let the ant robots traverse the selected edge
(Line 4), update the current vertex (Line 5), and iterate the
procedure (Line 6). All real-time search methods can be ex-
ecuted by ant robots without memory, require only a very
limited look-ahead and computational capabilities, and can
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Figure 3: Example: Node Counting

be used by single ant robots as well as groups of ant robots
that share the u-values but do not directly communicate
with each other. These properties match the limited sens-
ing and computational capabilities of ant robots.

We study four real-time search methods that differ only in
their value-update rules, see Table 1. (For the notation, see
Figure 2.) For example, Node Counting always moves its ant
robot to the adjacent vertex that has been visited the least
number of times by all ant robots. Figure 3 demonstrates
how three ant robots that each use Node Counting cover a
regular four-connected grid. The ant robots can move to
the four neighboring cells of their current cell provided that
the destination cell is traversable (white). The ant robots
share the u-values but do not directly communicate with
each other. The cells are marked with their u-values, and
the markings play the role of a communication channel. An
overview of this kind of indirect communication is given in
[2]. For simplicity, we assume in the figure that the ant
robots move in a given sequential order and that several ant
robots can be in the same location at the same time. If a cell
contains an ant robot, one of its corners is marked. Different
corners represent different ant robots.

4. TERRAIN COVERAGE
A strongly connected graph is a directed graph which has

a path from each vertex to every other vertex. In this
section, we show that ant robots that use one of the four
real-time search methods cover strongly connected graphs
repeatedly and thus avoid cycling forever in parts of the
graphs, despite their limited sensing and computational ca-
pabilities. We prove this first for Node Counting, by con-
tradiction, using arguments similar to those used in [26, 29].
Assume that, from some point in time on, the ant robots do
not cover the graphs. Then, there is some (possibly later)
point in time when they only visit those vertices again that
they visit infinitely often; they cycle on part of the graphs.
The u-values of all vertices in the cycle then increase beyond
every bound since Node Counting increases the smallest u-
value of the vertices in the cycle by at least one every time
an ant robot leaves the vertex. But then the u-values of all
vertices in the cycle increase above the u-values of all ver-
tices that border the cycle. Such vertices exist according to
our assumptions that the graph is strongly connected but
will not be covered again. Then, however, at least one ant
robot is forced to leave the cycle, which is a contradiction.
The same argument also applies unchanged to ant robots
that use the other real-time search methods. This argument
holds no matter in which order the ant robots move even
if some ant robots move less often than others. Thus, the

real-time search methods cover graphs repeatedly. Further-
more, they have advantages over other search methods that
also cover graphs repeatedly. For example, they are far more
systematic than random walks and, different from chrono-
logical backtracking (depth-first search), can be suspended
and restarted elsewhere, without even knowing where they
get restarted. This is important for terrain coverage with ant
robots because sometimes the ant robots might get pushed
accidentally to a different location. Most of the time they
will not even realize this. Ant robots that use real-time
search methods handle these situations automatically. Dif-
ferent from most coverage path planning approaches, they
do not need to know (or learn) a map of the terrain.

5. THEORETICAL PROPERTIES
Several research groups (including ours) have studied the-

oretical properties of real-time search methods, most no-
tably how quickly they reach a goal vertex. If a real-time
search method needs x steps in the worst case to reach a goal
vertex on a given graph (where an adversary can determine
which vertex is the goal vertex), then its cover time is also
x steps in the worst case, and vice versa. Thus, the theo-
retical results transfer to the cover time of real-time search
methods and thus the application studied in this paper. We
are able to unify the previous theoretical results with the
following theorem.

Theorem 1. Let st denote the current vertex of a single
ant robot at point in time t, and st+1 the vertex of the ant
robot after it has traversed the chosen edge. Let ut(s) de-
note the u-value of vertex s immediately before the ant robot
updates the u-value of st, and ut+1(s) the same u-value im-
mediately after the update. The time it takes the single ant
robot to cover strongly connected graphs with n vertices is at
most (f(n)+1)f(n)n2 if all of the following conditions hold.

1. At every point in time t, the u-values ut(s) are inte-
gers.

2. At every point in time t, it holds that ut(st) ≤
ut+1(st).

3. At every point in time t where ut(st) ≤
mina∈A(st) ut(succ(st, a)), it holds that ut(st) + 1 ≤
ut+1(st).

4. At every point in time t, it holds that |ut(s) −
ut(succ(s, a))| ≤ f(n) for all vertices s ∈ S and
a ∈ A(s), where f(n) ≥ 1 is a function of the number
of vertices n.

We prove this theorem in [20]. It is then easy to show
that the theorem holds for LRTA* on undirected graphs
with f(n) = 1 and directed graphs with f(n) = n− 1 using
previous results in [17, 34], for Wagner’s Value-Update Rule
on undirected graphs with f(n) = 1 using previous results
in [33], and for Thrun’s Value-Update Rule with f(n) =
n using previous results in [31]. Consequently, the cover
time of these three real-time search methods is polynomial
in the number of vertices in the worst case. It is known that
the cover time of Node Counting can be exponential in the
number of vertices in the worst case [18] even on undirected
graphs [19]. We are also able to generalize these results to
groups of ant robots.



Table 1: Different Real-Time Search Methods

Value-Update Rules (Line 3)
u(s) := 1 + u(s). Node Counting [26, 3]

u(s) := 1 + u(succ(s,a)). Learning Real-Time A* (LRTA*) [21, 17]
if u(s) ≤ u(succ(s,a)) then u(s) := 1 + u(s). Wagner’s Value-Update Rule [33]
u(s) := max(1 + u(s),1 + u(succ(s,a))). Thrun’s Value-Update Rule [31]

start

Figure 4: Terrain

individual markings shared markings
µ σ µ σ

Wagner’s Rule 884.75 230.09 481.00 86.479
LRTA* 853.09 212.10 458.09 81.456
Node Counting 868.92 219.07 458.96 80.474
Thrun’s Rule 839.96 216.64 439.06 73.950

Table 2: Cover Time for Eight Ant Robots with
Individual and Shared Markings

While a polynomial cover time is certainly desirable, these
theoretical properties are not sufficient to suggest that ter-
rain coverage with ant robots is a good idea. For example,
vacuum cleaning ant robots should visit each cell approxi-
mately equally often in the long run and the visits should be
spaced approximately equally far apart. Furthermore, they
have to be robust in the presence of failures, such as when
ant robots are moved without realizing this (say, by people
running into them) or markings get destroyed. In the fol-
lowing we therefore present a simulation study with the four
real-time search methods that investigates these properties.

6. SIMULATION STUDY
In this section, we report simulation results for the cover

times of vacuum-cleaning ant robots in part of an office
building that contains three offices and a small waiting area,
see Figure 4 (the results for different terrains were similar).
We imposed a regular four-connected grid over the terrain,
resulting in 40 × 30 cells. The ant robots could move to
each of the four neighboring cells of their current cell pro-
vided that the destination cell was traversable (white). Cells
were untraversable if they contained either walls (black) or
furniture (grey). All ant robots started near the cell marked
“start” and used the same real-time search method, break-
ing ties randomly. The ant robots executed Lines 2 and 3
together and atomically, and changed the markings of their
current cells just before they moved. Each ant moved once
during each time step in a given sequential order.1

1We also performed experiments where the ants moved asyn-
chronously or in random order but this led to results similar
to the ones reported here.
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Figure 5: Cover Time
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Figure 6: Cover Time for Node Counting with Indi-
vidual and Shared Markings

In our first three experiments, we studied the cover times
of the four real-time search methods for one-time vacuum
cleaning and their visit frequencies for continuous vacuum
cleaning. In our first experiment, we measured the number
of time steps until the ant robots covered the terrain for the
first time (cover time), averaged over 2,000 runs. This is im-
portant for one-time vacuum cleaning since each cell has to
be vacuumed at least once. We assume that each move of an
ant robot takes one time step and that each ant robot moves
once during each time step. Figure 5 shows the results. The
trend was the same for all real-time search methods. The
cover times improved as more ant robots were added al-
though the rate of improvement decreased. The question
arises whether sharing the markings actually helps the ant
robots to cover terrain faster and thus how effective a means
of communication the markings are. We therefore compared
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Figure 7: Total Number of Moves to First Coverage

the cover times of ant robots that share their markings, the
case discussed so far, and ant robots that each use their
individual markings. Figure 6 shows the results for Node
Counting. Sharing the markings cuts the cover time ap-
proximately in half. The result is similar for the other real-
time search methods. Table 2, for example, contains the
means and standard deviations of the cover times for eight
ant robots. From now on, we consider only shared markings.
Figure 5 showed that the cover times of all real-time search
methods were similar. To differentiate better between the
real-time search methods, Figure 7 shows the total num-
ber of moves made by all ant robots, that is, (roughly) the
number of ant robots times the cover time. It appears that
the difference in the total number of moves of the different
real-time search methods was independent of the number of
ant robots. Thrun’s Value-Update Rule was best, followed
by LRTA* and Node Counting (that were almost indistin-
guishable), and finally followed by Wagner’s Value-Update
Rule. The cover time of single ant robots was between 3,200
and 3,500 with a standard deviation between 600 and 700.
Thus, the difference in performance was dominated by the
standard deviation. This experimental result is interesting
because of the theoretical results that show that the cover
time of Node Counting can be exponential while the cover
time of LRTA* is guaranteed to be polynomial in the num-
ber of vertices. We also experimented with random walks
but their cover time was much larger than those of the real-
time search methods above. For example, the cover time of
single ant robots that use random walks was approximately
49,000 with a standard deviation of about 20,000.

In our second experiment, we measured the frequency
with which the ant robots visited each cell of the terrain
when they covered the terrain repeatedly. This is important
for continuous vacuum cleaning because one probably wants
to vacuum each cell equally often in the long run (although
one could argue that most dirt accumulates where people
walk and thus that one wants to vacuum cells close to ob-
stacles less often). It is also of theoretical interest [36]. We
stopped the ant robots after 2,000,000 time steps. The visit
frequencies did not change significantly as the number of ant
robots increased, no matter which real-time search methods
were used. We therefore report the visit frequencies for sin-
gle ant robots only. Figure 8 shows the results. Darker

LRTA* Node Counting

Wagner’s Value-Update Rule Thrun’s Value-Update Rule

Figure 8: Visit Frequencies for Repeated Coverage
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Figure 9: Difference of Largest and Smallest Mean
Time between Visits for Repeated Coverage

cells in the figure were visited less frequently. As the figure
shows, some real-time search methods visited the cells more
uniformly than others. For example, Node Counting visited
the cells much more uniformly than LRTA*. This is in-
teresting because the total number of movements of LRTA*
and Node Counting was similar in our first experiment. One
measure for the uniformity of the visit frequencies is their
entropy. The larger the entropy − �

s P (s) log2 P (s), the
closer to uniform the visit frequencies P (s) are. The entropy
of uniform visit frequencies is 9.7830 and the entropies of the
visit frequencies of the real-time search methods were: Node
Counting (9.7829), Wagner’s Value-Update Rule (9.7779),
Thrun’s Value-Update Rule (9.7772), and LRTA* (9.7727).
Another measure for the uniformity of the visit frequencies
is the difference between the mean times between visits to
the cells with the largest and smallest mean time between
visits. The smaller this value, the closer to uniform the visit
frequencies. Figure 9 shows the results, that were similar
to those for the entropies. Only the positions of Thrun’s
Value-Update Rule and LRTA* were switched.

In our third experiment, we measured whether the times
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Figure 10: Standard Deviation of the Time between
Visits for Repeated Coverage
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Figure 11: Total Number of Moves for First Cover-
age if the Ant Robots Were Kicked

between visits to the cells were spread out evenly. This is
important for continuous vacuum cleaning because it seems
better if a cell gets visited every 100 time steps than if it
gets visited every 10 time steps for 9 times in a row and
then again only after 910 time steps. One measure of how
evenly the times between visits are spread out is the average
of the standard deviations of the times between visits over
all cells, weighted with their visit frequencies. The closer
to zero this value, the more evenly spread out the times be-
tween visits. We stopped the ant robots after 2,000,000 time
steps. Figure 10 shows the results. The times between visits
were very unevenly spread out for Node Counting and more
evenly spread out for all other real-time search methods,
with almost no difference among them. This is interesting
because Node Counting had very uniform visit frequencies
in our second experiment.

In the next three experiments, we studied the cover times
of the real-time search methods for one-time vacuum clean-
ing under various failure conditions. (We also performed
experiments where we studied the visit frequencies of the
real-time search methods for continuous vacuum cleaning
but the effect of the failure conditions on the visit frequen-
cies was small.) In our fourth experiment, we measured the
robustness of the real-time search methods when the ant
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Figure 12: Cover Time for First Coverage if Ant
Robots Malfunction (recover probability varies)
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Figure 13: Total Number of Moves for First Cover-
age if Ant Robots Malfunction (recover probability
varies)

robots were moved away from their current cell without re-
alizing this. This is important because people can easily run
into small vacuum-cleaning ant robots and accidentally push
them to a different location. During each time step, with a
given probability exactly one ant robot was moved (other-
wise no ant robot was moved). If an ant robot was moved,
exactly one ant robot and its new cell were chosen with uni-
form probability, with the restriction that the ant robot was
moved by at most two cells. Figure 11 shows the total num-
ber of moves until eight ant robots covered the terrain for
the first time, averaged over 2,000 runs. All real-time search
methods continued to cover the terrain, and the number of
movements increased gracefully as the probability of being
moved increased. The order of the real-time search methods
remained unaffected by this failure condition.

In our fifth experiment, we measured the robustness of the
real-time search methods when the ant robots failed. This
is important because robots can malfunction. During each
time step, each functional ant robot failed with a given fail-
ure probability and each failed ant robot can recovered with
a given recovery probability. Failed robots did not move.
Figures 12 shows the cover time and Figure 13 shows the
total number of moves until eight ant robots covered the ter-
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Figure 14: Cover Time for First Coverage if Ant
Robots Malfunction (failure probability varies)
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Figure 15: Total Number of Moves for First Cover-
age if Ant Robots Malfunction (failure probability
varies)

rain for the first time, averaged over 2,000 runs. We kept the
failure probability constant at 0.01 and varied the recovery
probability from 0.01 to 0.10 (implying that it took a failed
ant robot an average of 10 to 100 time steps to recover).
Figures 14 and 15 show the results of a similar experiment
where we kept the recovery probability constant at 0.10 and
varied the failure probability from 0.00 to 0.10. All real-time
search methods continued to cover the terrain as long as the
failure probability was no larger than the recovery probabil-
ity. The number of movements remained roughly the same
and the cover time increased gracefully as the failure prob-
ability increased or the recovery probability decreased. The
order of the real-time search methods remained unaffected
by this failure condition.

In our sixth and last experiment, we measured the robust-
ness of the real-time search methods when the markings were
erased. This is important because physical markings can get
destroyed. During each time step, with a given probability
exactly one marking was erased (otherwise no marking was
erased). If a marking was erased, exactly one cell was chosen
with uniform probability and its u-value was set to zero (be-
cause ant robots cannot distinguish between a cell without a
marking and a cell whose marking was destroyed). Figure 16
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Figure 16: Total Number of Moves for First Cover-
age if Markings Were Erased

shows the total number of moves until eight ant robots cov-
ered the terrain for the first time, averaged over 2,000 runs.
All real-time search methods continued to cover the terrain,
and the number of movements increased gracefully as the
probability with which markings were erased increased. The
order of the real-time search methods remained unaffected
by this failure condition.

7. CONCLUSIONS
In this paper, we studied a simple means for coordinat-

ing teams of simple agents. In particular, we studied ant
robots and how they can cover terrain once or repeatedly
(as required for vacuum cleaning, lawn mowing, crop plow-
ing, contamination cleanup, mine sweeping, surveillance,
and surface inspection) by leaving markings in the terrain,
similar to what ants do. These markings can be sensed by
all robots and allow them to cover terrain even if they do not
communicate with each other except via the markings, do
not have any kind of memory, do not know the terrain, can-
not maintain maps of the terrain, nor plan complete paths.
The robots do not even need to be localized, which com-
pletely eliminates solving difficult and time-consuming lo-
calization problems. We presented a simulation study that
demonstrates that terrain coverage with real-time search
methods is an interesting alternative to more conventional
terrain coverage methods. All real-time search methods ro-
bustly cover terrain even if the robots are moved without re-
alizing this (say, by people running into them), some robots
fail, and some markings get destroyed. Our results also re-
veal some trade-offs between the different real-time search
methods. For example, Thrun’s Value-Update Rule mini-
mized the total number of moves to first coverage. Node
Counting had the most uniform visit frequencies but, un-
fortunately, spread out the times between visits to a loca-
tion more unevenly than the other real-time search methods.
These results provide a first step towards an implementation
of terrain coverage with ant robots on real robots since they
supplement existing theoretical results about the cover time
of real-time search methods with data for more realistic sce-
narios than those that can be analyzed formally.
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