ABSTRACT

In this paper, we study a simple means for coordinating teams of simple agents. In particular, we study ant robots and how they can cover terrain once or repeatedly by leaving markings in the terrain, similar to what ants do. These markings can be sensed by all robots and allow them to cover terrain even if they do not communicate with each other except via the markings. We do not have any kind of memory, do not know the terrain, cannot maintain maps of the terrain, nor plan complete paths. The robots do not even need to be localized, which completely eliminates solving difficult and time-consuming localization problems. In this paper, we use real-time heuristic search methods to implement ant robots and present a simulation study with several real-time heuristic search methods to study their properties for terrain coverage. Our experiments show that all of the real-time heuristic search methods robustly cover terrain even if the robots are moved without realizing this, some robots fail, and some markings get destroyed. These results demonstrate that terrain coverage with real-time heuristic search methods is an interesting alternative to more conventional terrain coverage methods.

Keywords

Multi-Agent Coordination, Multi-Agent Simulation

1. INTRODUCTION

When one builds physical agents (such as robots) one can either build complex ones or simple ones. In this paper, we study a simple means for coordinating teams of simple agents, in the context of terrain coverage, and demonstrate its advantages. We study both one-time coverage, where the robots visit every location at least once, and continuous coverage, where the robots continuously cover a large terrain without getting switched off, so that every part of the terrain gets visited once every while. Applications of terrain-coverage methods include vacuum cleaning, lawn mowing, crop plowing, contamination cleanup, mine sweeping, surveillance, and surface inspection, yet terrain coverage has been studied far less in the robotics literature than other navigation tasks [7, 9, 8, 13, 22, 37].

Ant robots are simple robots with limited sensing and computational capabilities. They have the advantage that they are simple to design, easy to program, and cheap to build. However, they cannot use conventional planning or coordination methods due to their limited sensing and computational capabilities which limit their planning capabilities even for simple planning tasks such as path planning or the coverage of terrain. Thus, they might not be able to cover terrain as efficiently as robots with more powerful sensing and computational capabilities. On the other hand, groups of ant robots can take advantage of both their fault tolerance (since they fail gracefully even if some ant robots malfunction) and their parallelism (since groups of ant robots can cover terrain faster than a single ant robot) [6]. Small ant-like robots that have the capability to vacuum clean or mow the lawn are already on the consumer market and others are expected to be on the consumer market soon, including the Koala robot, DC06 robot, Electrolux robot, Cye robot, Eureka robot, Robomow robot, Solar Mower robot, and Dophin robot. The question then arises how single ant robots can cover terrain once or repeatedly, and how teams of ant robots can coordinate their activities.

Theoretical work (including some of our own work) suggests that real-time (heuristic) search methods [21] can be used to cover graphs once or repeatedly [16, 34, 15, 35]. In this paper, we present a simulation study with several real-time heuristic search methods to study their properties for terrain coverage and demonstrate their advantages. Real-time search methods have been developed in artificial intelligence as an alternative to more traditional search methods, such as the A* search method [25]. We show that they can be used by single ant robots as well as groups of ant robots to cover terrain even if the ant robots have only limited computational capabilities and look-aheads. The ant robots only have leave markings in the terrain, sense the markings at their neighboring locations, and change the marking at their current location. This is what real ants do [1]. Our experiments show that real-time search methods robustly cover terrain even if the ant robots are moved without realizing this (say, by people running into them), some ant robots fail, and some markings get destroyed. These results demonstrate that terrain coverage with real-time search methods is an interesting alternative to more conventional terrain coverage methods.

To summarize, we present robust terrain coverage meth-
ods that can be used by groups of robots with limited sensing and computational capabilities. Other researchers have also been inspired by ants but study very different methods in the context of “ant colony optimization” to solve discrete optimization problems [11], including finding good routing policies in computer networks [10]. While we use ideas from biology, we use them only at a very high level. We do not strive to imitate real ants faithfully, as some robotics researchers do [23]. However, our ant robots do leave long-lived markings in the terrain (just like real ants) while other robots use only virtual traces [32]. Our ant robots are therefore similar to those robot teams where one robot leaves a short-lived trace in the terrain that another robot then follows [30, 27, 28]. However, different from our approach, those approaches have already been demonstrated on real robots. The purpose of this paper then is to inspire robotics researchers that are interested in the coordination of teams of agents to explore the concept of terrain coverage with real-time search on mobile robots. This includes developing robots that leave long-lived markings in the terrain. The long-lived markings need to have the property that they can be of different intensity (strength) and survive activities such as robots moving over them. Yet, the robots should be able to remove them on purpose. We believe that terrain coverage with real-time search will be a reality some day because robotics researchers have already made progress in this direction. For example, as mentioned above, mobile robots have been built that leave short-lived markings in the terrain such as odor traces [28], heat traces [27], or alcohol traces [30].

2. TASK

We model terrains as directed graphs, for instance by imposing regular grids on them. Figure 1 (left), for example, shows a regular four-connected grid, and Figure 1 (right) shows the corresponding graph. However, we could also derive Voronoi diagrams or similar graph representations of the terrain [24]. The task of the ant robots then is to cover the graph (visit all vertices) once or repeatedly.

3. REAL-TIME SEARCH

Real-time (heuristic) search methods [21] interleave planning and plan execution, and allow for fine-grained control over how much planning to perform between plan executions. Planning is done via local searches, that is, searches that are restricted to the part of the graph around the current vertex of an agent. The white area of Figure 1 illustrates the limited look-ahead of real-time search methods. A good overview of real-time search methods is given in [14]. Real-time search methods have been developed in artificial intelligence as an alternative to more traditional search methods in deterministic and nondeterministic domains. For example, variants of LRTA* have successfully been used for traditional search [21], STRIPS-type planning [5], and planning with totally observable Markov decision processes models [4] and partially observable Markov decision processes models [12]. In this paper, we apply real-time search methods in a very different way, namely to terrain coverage.

We study several real-time search methods that have a look-ahead of only one edge traversal and fit the algorithmic skeleton shown in Figure 2. All of them associate a u-value u(s) with each vertex s ∈ S and initialize them with zero. The u-values correspond to markings that the ant robots leave at the vertices of the graphs, see Figure 1. This is what some insects do. Real ants, for example use chemical (pheromone) traces to guide their navigation [1]. The ant robots always decide which neighboring vertex to move to based only on the u-values of the neighboring vertices. Before moving to that vertex, the ant robots can change the u-value of their current vertex. The real-time search methods first decide which edge the ant robots should traverse in their current vertex (Line 2). They look one edge traversal ahead (larger look-aheads are possible) and always greedily let the ant robots traverse the edge that leads to a neighboring vertex with a smallest u-value (ties can be broken arbitrarily). Then, they update the u-value of their current vertex using a value-update rule that depends on the semantics of the u-values and thus the real-time search method (Line 3). We assume that the ant robots execute Lines 2 and 3 together and atomically. Finally, all real-time search methods let the ant robots traverse the selected edge (Line 4), update the current vertex (Line 5), and iterate the procedure (Line 6). All real-time search methods can be executed by ant robots without memory, require only a very limited look-ahead and computational capabilities, and can
be used by single ant robots as well as groups of ant robots that share the u-values but do not directly communicate with each other. These properties match the limited sensing and computational capabilities of ant robots.

We study four real-time search methods that differ only in their value-update rules, see Table 1. (For the notation, see Figure 2.) For example, Node Counting always moves its ant robot to the adjacent vertex that has been visited the least number of times by all ant robots. Figure 3 demonstrates how three ant robots that each use Node Counting cover a regular four-connected grid. The ant robots can move to the four neighboring cells of their current cell provided that the destination cell is traversable (white). The ant robots share the u-values but do not directly communicate with each other. The cells are marked with their u-values, and the markings play the role of a communication channel. An overview of this kind of indirect communication is given in [2]. For simplicity, we assume in the figure that the ant robots move in a given sequential order and that several ant robots can be in the same location at the same time. If a cell contains an ant robot, one of its corners is marked. Different corners represent different ant robots.

4. TERRAIN COVERAGE

A strongly connected graph is a directed graph which has a path from each vertex to every other vertex. In this section, we show that ant robots that use one of the four real-time search methods cover strongly connected graphs repeatedly and thus avoid cycling forever in parts of the graphs, despite their limited sensing and computational capabilities. We prove this first for Node Counting, by contradiction, using arguments similar to those used in [26, 29]. Assume that, from some point in time on, the ant robots do not cover the graphs. Then, there is some (possibly later) point in time when they only visit those vertices again that they visit infinitely often; they cycle on part of the graphs. The u-values of all vertices in the cycle then increase beyond every bound since Node Counting increases the smallest u-value of the vertices in the cycle by at least one every time an ant robot leaves the vertex. But then the u-values of all vertices in the cycle increase above the u-values of all vertices that border the cycle. Such vertices exist according to our assumptions that the graph is strongly connected but will not be covered again. Then, however, at least one ant robot is forced to leave the cycle, which is a contradiction. The same argument also applies unchanged to ant robots that use the other real-time search methods. This argument holds no matter in which order the ant robots move even if some ant robots move less often than others. Thus, the real-time search methods cover graphs repeatedly. Furthermore, they have advantages over other search methods that also cover graphs repeatedly. For example, they are far more systematic than random walks and, different from chronological backtracking (depth-first search), can be suspended and restarted elsewhere, without even knowing where they get restarted. This is important for terrain coverage with ant robots because sometimes the ant robots might get pushed accidentally to a different location. Most of the time they will not even realize this. Ant robots that use real-time search methods handle these situations automatically. Different from most coverage path planning approaches, they do not need to know (or learn) a map of the terrain.

5. THEORETICAL PROPERTIES

Several research groups (including ours) have studied theoretical properties of real-time search methods, most notably how quickly they reach a goal vertex. If a real-time search method needs x steps in the worst case to reach a goal vertex on a given graph (where an adversary can determine which vertex is the goal vertex), then its cover time is also x steps in the worst case, and vice versa. Thus, the theoretical results transfer to the cover time of real-time search methods and thus the application studied in this paper. We are able to unify the previous theoretical results with the following theorem.

Theorem 1. Let s1 denote the current vertex of a single ant robot at point in time t, and s_{t+1} the vertex of the ant robot after it has traversed the chosen edge. Let u_t(s) denote the u-value of vertex s immediately before the ant robot updates the u-value of s_t, and u_{t+1}(s) the same u-value immediately after the update. The time it takes the single ant robot to cover strongly connected graphs with n vertices is at most (f(n)+1)f(n)n^2 if all of the following conditions hold.

1. At every point in time t, the u-values u_t(s) are integers.
2. At every point in time t, it holds that u_t(s_t) ≤ u_{t+1}(s_t).
3. At every point in time t where u_t(s_t) ≤ \min_{a \in A(s_t)} u_t(\text{succ}(s_t,a)), it holds that u_t(s_t) + 1 ≤ u_{t+1}(s_t).
4. At every point in time t, it holds that |u_t(s) − u_t(\text{succ}(s,a))| ≤ f(n) for all vertices s \in S and a \in A(s), where f(n) ≥ 1 is a function of the number of vertices n.

We prove this theorem in [20]. It is then easy to show that the theorem holds for LRTA* on undirected graphs with f(n) = 1 and directed graphs with f(n) = n − 1 using previous results in [17, 34], for Wagner’s Value-Update Rule on undirected graphs with f(n) = 1 using previous results in [33], and for Thrun’s Value-Update Rule with f(n) = n using previous results in [31]. Consequently, the cover time of these three real-time search methods is polynomial in the number of vertices in the worst case. It is known that the cover time of Node Counting can be exponential in the number of vertices in the worst case [18] even on undirected graphs [19]. We are also able to generalize these results to groups of ant robots.
Table 1: Different Real-Time Search Methods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(s) := 1 + u(s)$</td>
<td>$u(s) := 1 + u(succ(s, a))$.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if $u(s) \leq u(succ(s, a))$ then $u(s) := 1 + u(s)$</td>
<td>$u(s) := \max(1 + u(s), 1 + u(succ(s, a)))$.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Terrain

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(s) := 1 + u(s)$</td>
<td>$u(s) := 1 + u(succ(s, a))$.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if $u(s) \leq u(succ(s, a))$ then $u(s) := 1 + u(s)$</td>
<td>$u(s) := \max(1 + u(s), 1 + u(succ(s, a)))$.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Cover Time for Eight Ant Robots with Individual and Shared Markings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(s) := 1 + u(s)$</td>
<td>$u(s) := 1 + u(succ(s, a))$.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if $u(s) \leq u(succ(s, a))$ then $u(s) := 1 + u(s)$</td>
<td>$u(s) := \max(1 + u(s), 1 + u(succ(s, a)))$.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Cover Time

While a polynomial cover time is certainly desirable, these theoretical properties are not sufficient to suggest that terrain coverage with ant robots is a good idea. For example, vacuum cleaning ant robots should visit each cell approximately equally often in the long run and the visits should be spaced approximately equally far apart. Furthermore, they have to be robust in the presence of failures, such as when ant robots are moved without realizing this (say, by people running into them) or markings get destroyed. In the following we therefore present a simulation study with the four real-time search methods that investigates these properties.

6. SIMULATION STUDY

In this section, we report simulation results for the cover times of vacuum-cleaning ant robots in part of an office building that contains three offices and a small waiting area, see Figure 4 (the results for different terrains were similar). We imposed a regular four-connected grid over the terrain, resulting in 40×30 cells. The ant robots could move to each of the four neighboring cells of their current cell provided that the destination cell was traversable (white). Cells were untraversable if they contained either walls (black) or furniture (grey). All ant robots started near the cell marked “start” and used the same real-time search method, breaking ties randomly. The ant robots executed Lines 2 and 3 together and atomically, and changed the markings of their current cells just before they moved. Each ant moved once during each time step in a given sequential order.\(^1\)

\(^1\)We also performed experiments where the ants moved asynchronously or in random order but this led to results similar to the ones reported here.

In our first three experiments, we studied the cover times of the four real-time search methods for one-time vacuum cleaning and their visit frequencies for continuous vacuum cleaning. In our first experiment, we measured the number of time steps until the ant robots covered the terrain for the first time (cover time), averaged over 2,000 runs. This is important for one-time vacuum cleaning since each cell has to be vacuumed at least once. We assume that each move of an ant robot takes one time step and that each ant robot moves once during each time step. Figure 5 shows the results. The trend was the same for all real-time search methods. The cover times improved as more ant robots were added although the rate of improvement decreased. The question arises whether sharing the markings actually helps the ant robots to cover terrain faster and thus how effective a means of communication the markings are. We therefore compared...
the cover times of ant robots that share their markings, the case discussed so far, and ant robots that each use their individual markings. Figure 6 shows the results for Node Counting. Sharing the markings cuts the cover time approximately in half. The result is similar for the other real-time search methods. Table 2, for example, contains the means and standard deviations of the cover times for eight ant robots. From now on, we consider only shared markings. Figure 5 showed that the cover times of all real-time search methods were similar. To differentiate better between the real-time search methods, Figure 7 shows the total number of moves made by all ant robots, that is, (roughly) the number of ant robots times the cover time. It appears that the difference in the total number of moves of the different real-time search methods was independent of the number of ant robots. Thrun’s Value-Update Rule was best, followed by LRTA* and Node Counting (that were almost indistinguishable), and finally followed by Wagner’s Value-Update Rule. The cover time of single ant robots was between 3,200 and 3,500 with a standard deviation between 600 and 700. Thus, the difference in performance was dominated by the standard deviation. This experimental result is interesting because of the theoretical results that show that the cover time of Node Counting can be exponential while the cover time of LRTA* is guaranteed to be polynomial in the number of vertices. We also experimented with random walks but their cover time was much larger than those of the real-time search methods above. For example, the cover time of single ant robots that use random walks was approximately 49,000 with a standard deviation of about 20,000.

In our second experiment, we measured the frequency with which the ant robots visited each cell of the terrain when they covered the terrain repeatedly. This is important for continuous vacuum cleaning because one probably wants to vacuum each cell equally often in the long run (although one could argue that most dirt accumulates where people walk and thus one wants to vacuum cells close to obstacles less often). It is also of theoretical interest [36]. We stopped the ant robots after 2,000,000 time steps. The visit frequencies did not change significantly as the number of ant robots increased, no matter which real-time search methods were used. We therefore report the visit frequencies for single ant robots only. Figure 8 shows the results. Darker cells in the figure were visited less frequently. As the figure shows, some real-time search methods visited the cells more uniformly than others. For example, Node Counting visited the cells much more uniformly than LRTA*. This is interesting because the total number of movements of LRTA* and Node Counting was similar in our first experiment. One measure for the uniformity of the visit frequencies is their entropy. The larger the entropy $-\sum P(s) \log P(s)$, the closer to uniform the visit frequencies $P(s)$ are. The entropy of uniform visit frequencies is 9.7830 and the entropies of the visit frequencies of the real-time search methods were: Node Counting (9.7829), Wagner’s Value-Update Rule (9.7779), Thrun’s Value-Update Rule (9.7772), and LRTA* (9.7727). Another measure for the uniformity of the visit frequencies is the difference between the mean times between visits to the cells with the largest and smallest mean time between visits. The smaller this value, the closer to uniform the visit frequencies. Figure 9 shows the results, that were similar to those for the entropies. Only the positions of Thrun’s Value-Update Rule and LRTA* were switched.

In our third experiment, we measured whether the times...
between visits to the cells were spread out evenly. This is important for continuous vacuum cleaning because it seems better if a cell gets visited every 100 time steps than if it gets visited every 10 time steps for 9 times in a row and then again only after 910 time steps. One measure of how evenly the times between visits are spread out is the average of the standard deviations of the times between visits over all cells, weighted with their visit frequencies. The closer to zero this value, the more evenly spread out the times between visits. We stopped the ant robots after 2,000,000 time steps. Figure 10 shows the results. The times between visits were very unevenly spread out for Node Counting and more evenly spread out for all other real-time search methods, with almost no difference among them. This is interesting because Node Counting had very uniform visit frequencies in our second experiment.

In the next three experiments, we studied the cover times of the real-time search methods for one-time vacuum cleaning under various failure conditions. (We also performed experiments where we studied the visit frequencies of the real-time search methods for continuous vacuum cleaning but the effect of the failure conditions on the visit frequencies was small.) In our fourth experiment, we measured the robustness of the real-time search methods when the ant robots were moved away from their current cell without realizing this. This is important because people can easily run into small vacuum-cleaning ant robots and accidentally push them to a different location. During each time step, with a given probability exactly one ant robot was moved (otherwise no ant robot was moved). If an ant robot was moved, exactly one ant robot and its new cell were chosen with uniform probability, with the restriction that the ant robot was moved by at most two cells. Figure 11 shows the total number of moves until eight ant robots covered the terrain for the first time, averaged over 2,000 runs. All real-time search methods continued to cover the terrain, and the number of movements increased gracefully as the probability of being moved increased. The order of the real-time search methods remained unaffected by this failure condition.

In our fifth experiment, we measured the robustness of the real-time search methods when the ant robots failed. This is important because robots can malfunction. During each time step, each functional ant robot failed with a given failure probability and each failed ant robot can recovered with a given recovery probability. Failed robots did not move. Figures 12 shows the cover time and Figure 13 shows the total number of moves until eight ant robots covered the ter-
rain for the first time, averaged over 2,000 runs. We kept the
failure probability constant at 0.01 and varied the recovery
probability from 0.01 to 0.10 (implying that it took a failed
ant robot an average of 10 to 100 time steps to recover).
Figures 14 and 15 show the results of a similar experiment
where we kept the recovery probability constant at 0.10 and
varied the failure probability from 0.00 to 0.10. All real-time
search methods continued to cover the terrain as long as the
failure probability was no larger than the recovery probabil-
ity. The number of movements remained roughly the same
and the cover time increased gracefully as the failure prob-
ability increased or the recovery probability decreased. The
order of the real-time search methods remained unaffected
by this failure condition.

In our sixth and last experiment, we measured the robust-
ness of the real-time search methods when the markings were
erased. This is important because physical markings can get
destroyed. During each time step, with a given probability
exactly one marking was erased (otherwise no marking was
erased). If a marking was erased, exactly one cell was chosen
with uniform probability and its u-value was set to zero (be-
cause ant robots cannot distinguish between a cell without a
marking and a cell whose marking was destroyed). Figure 16
shows the total number of moves until eight ant robots cov-
ered the terrain for the first time, averaged over 2,000 runs.
All real-time search methods continued to cover the terrain,
and the number of movements increased gracefully as the
probability with which markings were erased increased. The
order of the real-time search methods remained unaffected
by this failure condition.

7. CONCLUSIONS

In this paper, we studied a simple means for coordinat-
ing teams of simple agents. In particular, we studied ant
robots and how they can cover terrain once or repeatedly
(as required for vacuum cleaning, lawn mowing, crop plow-
ing, contamination cleanup, mine sweeping, surveillance,
and surface inspection) by leaving markings in the terrain,
similar to what ants do. These markings can be sensed by
all robots and allow them to cover terrain even if they do not
communicate with each other except via the markings, do
not have any kind of memory, do not know the terrain, can-
nnot maintain maps of the terrain, nor plan complete paths.
The robots do not even need to be localized, which com-
pletely eliminates solving difficult and time-consuming lo-
calization problems. We presented a simulation study that
demonstrates that terrain coverage with real-time search
methods is an interesting alternative to more conventional
terrain coverage methods. All real-time search methods ro-
bustly cover terrain even if the robots are moved without re-
alizing this (say, by people running into them), some robots
fail, and some markings get destroyed. Our results also re-
veal some trade-offs between the different real-time search
methods. For example, Thrun’s Value-Update Rule mini-
imized the total number of moves to first coverage. Node
Counting had the most uniform visit frequencies but, un-
fortunately, spread out the times between visits to a loca-
tion more unevenly than the other real-time search methods.
These results provide a first step towards an implementation
of terrain coverage with ant robots on real robots since they
supplement existing theoretical results about the cover time
of real-time search methods with data for more realistic sce-
narios than those that can be analyzed formally.
8. ACKNOWLEDGMENTS

The Intelligent Decision-Making Group is partly supported by an NSF Award to Sven Koenig under contract IIS-9984827. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. All experiments were performed by Yaxin Liu.

9. REFERENCES

