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Abstract

Video-game designers often tessellate continuous 2-
dimensional terrain into a grid of blocked and un-
blocked square cells. The three main ways to calculate
short paths on such a grid are to determine truly short-
est paths, shortest vertex paths and shortest grid paths,
listed here in decreasing order of computation time and
increasing order of resulting path length. We show that,
for both vertex and grid paths on both 4-neighbor and
8-neighbor grids, placing vertices at cell corners rather
than at cell centers tends to result in shorter paths. We
quantify the advantage of cell corners over cell centers
theoretically with tight worst-case bounds on the ratios
of path lengths, and empirically on a large set of bench-
mark test cases. We also quantify the advantage of 8-
neighbor grids over 4-neighbor grids.

Introduction
Video-game designers often tessellate continuous 2-
dimensional terrain to form square grids (Tozour 2004). Ex-
amples include Dawn of War (1 and 2) and Company of
Heroes (Champandard 2010). We assume that each cell is
either completely blocked (grey) or unblocked (white) and
that the traversal costs of unblocked cells are uniform, which
is reasonable for many video games. One ought to study
the properties of path planning on such grids, so that video-
game designers can make informed choices. For example,
if the size of game characters is small relative to the cell
size, then it is reasonable to place the vertices of grid graphs
at either the cell centers or cell corners. In this paper, we
therefore study the effect of two design decisions, namely
vertex placement (at either cell centers or cell corners) and
grid connectivity (either 4 or 8 neighbors) on one particular
metric of interest, namely the lengths of the resulting paths.
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The three main ways to calculate short paths on grids
are to determine truly shortest paths (TSP) in the continu-
ous terrain (Lozano-Pérez and Wesley 1979; Mitchell and
Papadimitriou 1991; Harabor and Grastien 2013), short-
est vertex paths (SVP, sometimes also called shortest any-
angle paths since many any-angle search algorithms, such
as Block A* (Yap et al. 2011), Theta* (Daniel et al. 2010)
and A* with Post-Smoothed Paths (Millington and Funge
2009), strive to find such paths although they are not guar-
anteed to succeed) and shortest grid paths (SGP), listed here
in decreasing order of computation time and increasing or-
der of resulting path length (Uras and Koenig 2015). SVPs
or SGPs, respectively, are determined on the grid graphs that
are constructed from the terrain by placing vertices at either
all cell centers or all cell corners and then connecting any
two vertices or any two neighboring vertices, respectively, if
the line segment between them is unblocked. See (Nash and
Koenig 2013) for more information about TSPs, SVPs and
SGPs and about search algorithms based on A* (Hart, Nils-
son, and Raphael 1968) that determine them. For a given ver-
tex placement, SGPs cannot (by definition) be shorter than
the corresponding SVPs, and SVPs cannot be shorter than
the corresponding TSPs. However, it has not previously been
known how large the ratios among these path lengths can be.
Our theoretical results are a complete set of matching (hence
tight) upper and lower bounds with respect to the worst-case
ratios of the three kinds of paths. Our main contribution is
the analysis of the design decision to place vertices at cell
corners for both grid connectivities, especially since several
of the resulting bounds turn out to be non-trivial.

Table 1 summarizes our theoretical results. All worst-case
ratios are tight (or asymptotically tight), that is, there exist
path-planning problems for which the worst-case ratios have
the given values (or are within any ε > 0 of the given values)
but no path-planning problems for which the worst-case ra-
tios are larger. Values that are only asymptotically tight are
indicated by an asterisk (∗). The table shows that the vertex
placement can indeed dramatically affect the worst-case ra-
tio of the lengths of an SGP and the corresponding TSP and
the worst-case ratio of the lengths of an SVP and the cor-
responding TSP. For example, we prove worst-case ratios
SGP
TSP of ≈ 1.76 (for vertices at cell centers) versus ≈ 1.41
(for vertices at cell corners) on 4-neighbor grids and ≈ 1.24
versus ≈ 1.08 on 8-neighbor grids. We also prove that the



worst-case ratio between the lengths of an SGP and the cor-
responding SVP remains, perhaps surprisingly, unaffected
by the vertex placement for both grid connectivities.

Finally, we compare the influence of vertex placement and
grid connectivity empirically on a large set of benchmark
cases and verify that placing vertices at cell corners rather
than cell centers indeed leads to shorter path lengths. These
results provide valuable information to video-game design-
ers when it comes to making design decisions about vertex
placement and grid connectivity, even if they use search al-
gorithms that only strive to find TSPs, SVPs or SGPs but are
not guaranteed to succeed.

Overview and Related Work
Terrain is modeled as a 4-fold symmetric tessellation of a
finite portion of the plane into unit side length square cells,
each of which is either completely blocked or unblocked.
The standard grid graph corresponding to the terrain has
vertices at either all unblocked cell centers (resulting in a
center grid graph) or all unblocked cell corners (resulting
in a corner grid graph). The edges of the graph connect ev-
ery vertex to each of its 4 or 8 neighboring vertices in the
main compass directions, except that edges that would have
to squeeze between blocked cells are not permitted. Conse-
quently, we distinguish four scenarios, namely 4-corner, 4-
center, 8-corner and 8-center grid graphs. Cardinal direction
edges have length 1, and diagonal edges have length

√
2.

We are interested in computing the worst-case ratio
SGP (s,t)
TSP (s,t) (short: SGP

TSP ) of the lengths of an SGP and the
corresponding TSP (on the same grid and with the same
start and goal vertices), the worst-case ratio SV P (s,t)

TSP (s,t) (short:
SV P
TSP ) of the lengths of an SVP and the corresponding
TSP and the worst-case ratio SGP (s,t)

SV P (s,t) (short: SGP
SV P ) of the

lengths of an SGP and the corresponding SVP, maximized
over all grid sizes, start vertices s, goal vertices t and ar-
rangements of blocked cells, for the four scenarios. Some
relationships are known or obvious:
• If there exists a TSP, there always exists a piecewise

linear TSP that turns only at cell corners (Lee 1978;
Lozano-Pérez and Wesley 1979). Thus, TSPs and SVPs
are equally long if the vertices are placed at cell corners.
Consequently, b = j, d = l and f = h = 1 in Table 1.

• SVPs and TSPs do not depend on the grid connectivity.
Consequently, e = g and f = h in Table 1.

These relationships imply that only the worst-case ratios a,
c, g, i, j, k and l need to be determined in Table 1. Previous
research has studied some of these worst-case ratios under
different assumptions. In particular, worst-case ratios b and
d were previously known to be

√
2 and

√
4− 2

√
2, respec-

tively, if the paths are allowed to pass through diagonally-
touching blocked cells, which was first analyzed under the
assumption that all cells are unblocked (Ferguson and Stentz
2006) and later generalized to the case where cells can be
blocked or unblocked (Nash 2012). Our theoretical results
show that these worst-case ratios do not change even under
our assumption that paths are not allowed to pass through

diagonally-touching blocked cells, which is the more realis-
tic assumption for video games since game characters have
non-zero sizes. Also, some worst-case ratios become infinite
if paths were allowed to pass though diagonally-touching
blocked cells. For example, Figure 1 shows a path-planning
problem on a 4-neighbor grid with vertices at cell centers.
The start vertex is s, and the goal vertex is t. The length
of the TSP would be finite (as shown in Figure 1) while
the length of the SGP is infinite (that is, there is no such
path). The worst-case ratio a would be infinite instead of
1.76. More importantly, it is quite common to place vertices
at cell centers, and this case has not been studied before to
the best of our knowledge, which is why we analyze whether
vertex placement matters for the worst-case ratios.

s

t

Figure 1: If movement between diagonally-touching blocked
cells were permitted, TSP (s, t) =

√
2 but t could not be

reached from s by a grid path on the 4-center grid graph.

Points and Paths
Points are pairs of coordinates. Their first coordinate is the
x-coordinate, which increases to the right. Their second co-
ordinate is the y-coordinate, which increases to the top. We
now define different kinds of paths.

Definition 1. An s-t path is a path in the plane from point
s to point t such that (i) it is contained in the union of un-
blocked cells (where the region of a cell includes its perime-
ter); and (ii) may not pass through diagonally-touching
blocked cells (that is, if it passes through a cell corner c con-
tained in two blocked cells that intersect only at c, it exits c
to the same unblocked cell from which it entered).

Definition 2. TSP (s, t), the length of a truly shortest path
(TSP), is the (Euclidean) length of a shortest s-t path.

For all instances for which no TSPs exist, the lengths of
the TSPs, SVPs and SGPs are all infinity, which is consis-
tent with Table 1. We therefore consider from now on only
instances for which TSPs exist.

For center grid graphs G = (V,E,U), the vertex set V
contains all cell centers of the unblocked cells. For corner
grid graphs, V contains all cell corners of the unblocked
cells. A point that is the cell corner of more than one un-
blocked cell is represented as a single element of V . For
4-neighbor grids, the edge set E is obtained by connecting
vertex v in V with coordinates (x, y) to each vertex w at co-
ordinates (x±1, y) and (x, y±1) if and only if the line seg-
ment vw between them is a v-w path. For 8-neighbor grids,
E contains additional edges since v is also connected to each
vertex w at coordinates (x± 1, y ± 1) if and only if the line
segment vw between them is a v-w path. The description of
G also includes the list of unblocked cells U .



Worst-Case Ratio 4-Neighbor Grids 8-Neighbor Grids
Vertices at Centers Vertices at Corners Vertices at Centers Vertices at Corners

(4-Center Grid Graphs) (4-Corner Grid Graphs) (8-Center Grid Graphs) (8-Corner Grid Graphs)

shortest grid path/truly shortest path ( SGP
TSP

) a = 6/(2 +
√
2) ≈ 1.7574 b =

√
2 ≈ 1.4142 c = 3

√
2− 3 ≈ 1.2426 d =

√
4− 2

√
2 ≈ 1.0824∗

shortest vertex path/truly shortest path ( SV P
TSP

) e = 3
√
2− 3 ≈ 1.2426 f = 1 g = 3

√
2− 3 ≈ 1.2426 h = 1

shortest grid path/shortest vertex path ( SGP
SV P

) i =
√
2 ≈ 1.4142 j =

√
2 ≈ 1.4142 k =

√
4− 2

√
2 ≈ 1.0824∗ l =

√
4− 2

√
2 ≈ 1.0824∗

Table 1: Theoretical results.

Definition 3. SGP (s, t), the length of a shortest s-t grid
path (SGP), is the (Euclidean) length of a shortest s-t path
in grid graph G.

We want to compare the lengths of s-t SGPs with those
of the corresponding s-t TSPs and s-t SVPs. The latter are
defined in terms of s-t paths on a different graph:
Definition 4. LetG = (V,E,U) be a grid graph. The vertex
graph G′ = (V,E′, U) is defined by edge set E′ consisting
of all (v, w) : v ∈ V,w ∈ V such that the line segment be-
tween them is a v-w path. SV P (s, t), the length of a shortest
s-t vertex path (SVP), is the (Euclidean) length of a shortest
s-t path in graph G′.

For brevity, we omit most proofs of the correctness of the
following definitions and properties. All omitted proofs con-
sist of an enumeration of the possible sets of unblocked cells
incident on a vertex, or the treatment of paths parallel to an
axis separate from paths not parallel to an axis.

For any vertices s and t, if there exist multiple s-t TSPs,
we may select one of those paths and retain in U only a
smallest set of cells that permit it to be an s-t path. The TSP
is then unique. The additional blocked cells do not change
TSP (s, t) and cannot decrease SV P (s, t) or SGP (s, t).
Thus, we assume that the TSP is unique when proving upper
bounds on the worst-case ratios SV P

TSP and SGP
TSP .

Definition 5. Let x1, x2, ..., xn be the points where the s-t
TSP turns. For all 1 ≤ i ≤ n, xi must be on the cell corner
of exactly one blocked cell, denoted Fi. There exists a unique
unblocked cellBi (the one diagonally-touching Fi) such that
Fi ∩ Bi = xi. Define cBi

to be the cell center of Bi. Define
x0 = s and xn+1 = t.

We now introduce the key idea that enables us to prove
upper bounds on the worst-case ratio SGP

TSP . We define a
restricted class of grid paths, called restricted grid paths
(RGP), that stay “close” to the TSP. Since any RGP is a grid
path, an SGP is at least as short as a shortest RGP. Hence any
upper bound on the length of the latter is an upper bound
on the length of the former. Informally, an RGP traverses
only cells that the TSP traverses, traverses all vertices that
the TSP traverses and always turns in a cell where the TSP
turns. Formally:
Definition 6. For any vertex v, let P (v) be the set of
cells that contain v. Similarly, for any line segment vw, let
P (v, w) be the set of cells that intersect vw. For 4-corner,
8-corner and 8-center grid graphs, let yi = xi for all i,
where xi is as in Definition 5. For 4-center grid graphs,
let y0 = x0 = s, yn+1 = xn+1 = t and yi = cBi

for
1 ≤ i ≤ n. An s-t restricted grid path (RGP) is an s-t path
in G that satisfies the following conditions:
• If the TSP contains v ∈ V , the RGP must also contain v.

• The RGP divides into n + 1 yi-yi+1 paths, respectively
contained in P (xi, xi+1).

SRGP (s, t) is the (Euclidean) length of a shortest s-t re-
stricted grid path (SRGP).

The SRGP and the SGP can be very different in both
shape and length as shown in Figure 2 for a 4-neighbor grid
with vertices at cell centers. The dashed path is the TSP, the
dotted path is the SGP, and the solid path is the SRGP. Points
y1 and y2 are those required in the definition of the RGP.

s

t

y2y1

Figure 2: The SGP and SRGP have different shapes and
lengths for this 4-center grid graph.

We omit the straightforward proof that an SRGP always
exists and make repeated use of the following simple formu-
las for SRGP (s, t) that demonstrate that, under the condi-
tion given, an SGP can stay close to the TSP, resulting in
the SRGP and SGP being equally long. An example for the
construction that proves Lemma 1 for 8-center grid graphs
(Lemma 2 for 4-corner grid graphs) is shown in Figure 3
(Figure 4).

Lemma 1. For any 8-center (8-corner) grid graph G, let s
and t be points in the interior of cells A and B, respectively,
such that st is an s-t path. Let vA and vB be the cell centers
(lower left and upper right corners, respectively) of A and
B, respectively. Let vB − vA = (p, q). If p ≥ q ≥ 0, then
SRGP (vA, vB) =

√
2q + p− q.

Proof. The lower bound follows since this is the length of an
SGP if there are no blocked cells. By translation assume that
vA = (0, 0) and vB = (p, q) where p ≥ q ≥ 0. Let b(i, j) be
the cell with cell center (upper right corner) at (i, j) where
i, j ∈ Z. For all j ∈ {1, ..., q}, let f(j) be the smallest
integer such that st enters the interior of b(f(j), j) and let
g(j) be the maximum of j and f(j). Since p ≥ q ≥ 0,
st enters the interior of b(g(j), j) and must also enter the
interior of b(g(j) − 1, j − 1). The grid path vA = (0, 0) −
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Figure 3: SRGP of Lemma 1 for 8-center grid graphs.
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× = (f(j), j)
◦ = (g(j), j)

Figure 4: SRGP of Lemma 2 for 4-corner grid graphs.

(g(1)− 1, 0)− (g(1), 1)− (g(2)− 1, 1)− (g(2), 2)− ...−
(f(q), q) − (p, q) = vB is a valid RGP with length

√
2q +

p− q.

Lemma 2. For any 4-center (4-corner) grid graph G, let
s, t, A,B, vA, vB be as in Lemma 1. If p ≥ q ≥ 0, then
SRGP (vA, vB) = p + q. In general, SRGP (vA, vB) =
|p|+ |q|.

Proof. The general result is obtained by transforming the
general case via rotation, reflection and translation to the
special case p ≥ q ≥ 0. Therefore, assume that p ≥ q ≥ 0.
The proof is then the same as for Lemma 1 with the follow-
ing addition: For 4-corner grid graphs, each (g(i) − 1, i −
1)− (g(i), i) in the path for 8-corner grid graphs is replaced
by (g(i)−1, i−1)−(g(i), i−1)−(g(i), i), which is possible
since b(g(i), i) must be unblocked. For 4-center grid graphs,
each (g(i)− 1, i− 1)− (g(i), i) in the path for 8-center grid
graphs is replaced by either (g(i)−1, i−1)−(g(i)−1, i)−
(g(i), i) or (g(i)−1, i−1)−(g(i), i−1)−(g(i), i), which is
possible since paths are not allowed to squeeze between two
diagonally-touching blocked cells and thus b(g(i)− 1, i) or
b(g(i), i− 1) must be unblocked.

Tight Bound for Worst-Case Ratio SGP
TSP

for
4-Center Grid Graphs

The proofs of two of the bounds reported here each require
multiple case-by-case analyses. Rather than summarizing
each, we give a fairly detailed proof for the worst-case ratio
a in Table 1. Many of the principles employed here can also
be used to prove the bound for worst-case ratio c in Table 1.
Theorem 3 (Worst-Case Ratio a in Table 1). For 4-center
grid graphs, the worst-case ratio SGP

TSP is a= 6
2+
√
2

.

Figure 5: Worst-case ratio SGP
TSP for 4-center grid graphs.

We first prove that, for 4-center grid graphs, the worst-case
ratio SRGP

TSP is 6
2+
√
2

. Figure 5 establishes by example the

lower bound α = 6
2+
√
2

on the worst-case ratio SRGP
TSP . To

prove that this lower bound is tight (that is, to prove an up-
per bound of α), we repeatedly utilize the lower bound. The
lower bound is helpful because, throughout the proof, we
consider any instance where SRGP (s,t)

TSP (s,t) ≥ α for its start
vertex s and goal vertex t since only such an instance can
possibly achieve the worst-case ratio. We then try to move
either s or t to another vertex to reduce TSP (s, t) by at
least b > 0 and SRGP (s, t) by a > 0. This procedure is
called α-worsening if and only if a

b ≤ α because of the
following property: Given that the ratio SRGP (s,t)

TSP (s,t) of the
instance was originally at least α, the procedure has made
the ratio no smaller while decreasing TSP (s, t) by b > 0.
Thus, the instance at hand cannot be an instance that comes
within ε of the worst-case ratio with minimal TSP (s, t),
called a smallest instance. Eventually, we will characterize
the unique smallest instance (up to symmetry) as the one
shown in Figure 5.

Consider any instance where SRGP (s,t)
TSP (s,t) ≥ α. We proceed

by breaking the problem into cases based on the number of
turns of the s-t TSP for the instance.

Zero Turns
Suppose that s and t are the respective cell centers of cells
A andB such that s− t = (p, q), and that the TSP is the line
segment st. Then, TSP (s, t) =

√
p2 + q2 and, by Lemma

2, SRGP (s, t) = |p| + |q|. Thus, SRGP (s,t)
TSP (s,t) ≤

√
2, a con-

tradiction.

One or More Turns
Let xi indicate the ith turn that the TSP makes, and let yi be
as described in Definition 6. The pair comprising an xi-xi+1

path and yi-yi+1 path is a segment. The pair comprising the
s-x1 and s-y1 paths is the head. If xn is the last vertex where
the TSP makes a turn, then the pair comprising the xn-t and
yn-t paths forms the tail.

Heads and Tails
Lemma 4. Subject to rotation and reflection, every smallest
instance for 4-center grid graphs must have the tail shown
in Figure 6 if the TSP for the instance has at least one turn.
Similarly, every smallest instance for 4-center grid graphs
must have the head corresponding to the tail shown in Fig-
ure 6 under the same conditions.

Proof. By reversing the roles of s and t it suffices to ana-
lyze only the tail. Through rotation and reflection, we may



xn
yn

t

Figure 6: Tail for smallest instance.

assume that the last turn, xn, is the upper right cell corner of
the blocked cell Fn that causes xn and that there is a right
turn at xn. For any tail, we may move t in order to create the
tail shown in Figure 6 since every tail requires the unblocked
cells shown in Figure 6.
Suppose that t − xn = (p, q). Our assumptions imply that
p ≥ 1

2 and q ≤ − 1
2 , which means that |p|, |q| ≥ 1

2 .
TSP (xn, t) =

√
p2 + q2. Consider the point s′ reached

by moving ε along xnt, and let A and B be the cells
containing s′ and t, respectively. Then, SRGP (yn, t) =
|p| + |q| since both SRGP (yn, t) ≤ SRGP (vA, t) + 1 =
SRGP (vA, vB)+1 = (|p|−1/2)+(|q|−1/2)+1 = |p|+|q|
by Lemma 2 and SRGP (yn, t) ≥ SGP (yn, t) ≥ |p| + |q|.
By moving t to the vertex shown in Figure 6, the TSP is
shortened by

√
p2 + q2− 1√

2
and the SRGP is shortened by

|p|+ |q| − 1. This is α-worsening if |p|+ |q| ≥ 2 since then
|p|+|q|−1√
p2+q2− 1√

2

≤
√
2 < 6

2+
√
2
= α. If |p|+ |q| = 1, we have

the tail shown in Figure 6. As a result, a smallest instance
must use only the tail shown in Figure 6 and the head shown
in Figure 7.

Segments When examining segment i, described by the
xi-xi+1 path and yi-yi+1 path, we assume that there is a
right turn at xi and that xi is located at the upper right cell
corner of Fi. We begin by analyzing segment 1:
Lemma 5. Segment 1, if it exists, in a smallest instance for
4-center grid graphs must be as shown in Figure 8.

x1
y1s

Figure 7: Prefix of path up to x1.

x1
y1s

y2
x2

Figure 8: Prefix of path up to x2.

Proof. For all segments except the one shown in Figure 8,
we give an α-worsening procedure. By Lemma 4, s, x1 and
y1 are located as shown in Figure 7.
Case 1, x1x2 is not parallel to the y-axis: Suppose that
x2 − x1 = (p, q). We have TSP (x1, x2) =

√
p2 + q2 and

SRGP (y1, y2) = |p|+ |q| by Lemma 2. By moving s such
that s, x2 and y2 form the head shown in Figure 6, we es-
sentially remove segment 1 and thereby reduce the TSP by√
p2 + q2 and the SRGP by |p| + |q|. This procedure is α-

worsening, implying that these types of segments cannot oc-
cur in a smallest instance.
Case 2, Left turn at x2 and x1x2 is parallel to the y-axis:
Suppose that x1 − x2 = (0, q) and TSP (x1, x2) = |q|.
Since x1x2 is parallel to the y-axis, the y1-y2 SRGP is able
to use only the columns containing s or y1. The y1-y2 SRGP
starts in the right column and may zig into the left column
and zag into the right column in order to avoid blocked cells.
Since y2 is in the left column, the path must zig one more
time than it zags. Let m be the number of times the y1-y2
SRGP zigs into the left column. Then SRGP (y1, y2) =
|q| + 2m. If zw and zw+1 denote two consecutive turns in
the SRGP where zw and zw+1 are in the same column, then
SRGP (zw, zw+1) ≥ 2 and thusm ≤ b |q|+1

4 c. Furthermore,
|q| ≥ 3 since otherwise we cannot travel in a straight line
from x1 to x2. It now follows that it is α-worsening to move
s such that s, x2 and y2 form the head shown in Figure 6, im-
plying that these types of segments cannot occur in a small-
est instance.
Case 3, Right turn at x2 and x1x2 is parallel to the y-axis:
Suppose that x1 − x2 = (0, q) and TSP (x1, x2) = |q|.
Again, the y1-y2 SRGP is only able to use the columns
containing s or y1. There now must be an equal num-
ber of zigs and zags. Using the same notation as before,
SRGP (y1, y2) = |q|+2m+1. Again, SRGP (zw, zw+1) ≥
2 and thus m ≤ b |q|−14 c, where |q| ≥ 1. It is α-worsening
to move s such that s, x2 and y2 form the head shown in
Figure 6 if |q| ≥ 2, implying that these types of segments
cannot occur in a smallest instance. If |q| = 1, the segment
is as shown in Figure 8 and the lemma is proven.

Lemma 6. Segment 2, if it exists, in a smallest instance
for 4-center grid graphs must be geometrically similar
to segment 1; in particular, SRGP (y2, y3) = 2 and
TSP (x2, x3) = 1.

The proof of this lemma follows in the same fashion as
the proof of Lemma 5. The key difference is that here, in
essence, we remove both segments 1 and 2. Then, for any
possible segment 2, except the one shown in Figure 9, we
are able to give an α-worsening procedure.

Lemma 7. There is no segment 3 in a smallest instance for
4-center grid graphs.

Proof. By Lemmata 4, 5 and 6, s, x1, y1, x2, y2, x3 and
y3 are located as shown in Figure 9. The center right cell
cannot be blocked since there could not be a right turn at x3
otherwise. In addition, the lower right cell shown must be
blocked since otherwise there is a shorter path from s to x3.
Case 1, x3x4 is not parallel to the y-axis: Suppose that
x3 − x4 = (p, q). We have TSP (x3, x4) =

√
p2 + q2 and

SRGP (y3, y4) = |p| + |q| by Lemma 2. It is α-worsening
to move s such that s, x4 and y4 form the head shown in
Figure 6, implying that these types of segments cannot occur
in a smallest instance.



x3
y3

x2
y2

x1
y1 s

Figure 9: Prefix of path up to x3.

Case 2, x3x4 is parallel to the y-axis: Because the lower
right cell must be blocked (as argued above), this case cannot
occur in a smallest instance.

Construction of Smallest Instance
Under the justified assumption that the upper bound of the
worst-case ratio SRGP

TSP is at least α = 6
2+
√
2

, we have
proved that, if the TSP has zero turns, the worst-case ratio
is at most

√
2 < α. – a contradiction. If the TSP has only

one turn, by Lemma 4, the unique smallest instance (up to
symmetry) can consist of only a head and tail as shown in
Figure 10, which results in the TSP having zero turns – a
contradiction. If the TSP has two turns, by Lemmata 4 and
5, the unique smallest instance (up to symmetry) is as shown
in Figure 11, resulting in a worst-case ratio of 4

1+
√
2
< α

– again a contradiction. If the TSP has three turns, then,
by Lemmata 4, 5 and 6, the unique smallest instance (up
to symmetry) is as shown in Figure 5, resulting in a worst-
case ratio of 6

2+
√
2
= α. By Lemma 7, the TSP cannot have

four or more turns. This completes the proof of the upper
bound 6

2+
√
2

on the worst-case ratio SRGP
TSP . Note that Fig-

ures 10 and 11 illustrate the worst-case ratios if the TSP
has fewer than two turns and two turns, respectively, but we
don’t prove this property since it is not required for the proof
of Theorem 3 due to the assumption that the upper bound of
the worst-case ratio is at least α.

Figure 5 establishes by example also the lower bound
6

2+
√
2

on the worst-case ratio SGP
TSP . An upper bound on the

worst-case ratio SRGP
TSP is also an upper bound on the worst-

case ratio SGP
TSP . Thus, the worst-case ratio is SGP

TSP is 6
2+
√
2

(as illustrated in Figure 5, which completes the proof of The-
orem 3.

Figure 10: Smallest instance for 4-center grid graphs if the
TSP has fewer than two turns.

Figure 11: Smallest instance for 4-center grid graphs if the
TSP has two turns.

Tight Bounds for Other Worst-Case Ratios
Theorem 8 (Worst-Case Ratios c and g in Table 1). For 8-
center grid graphs, the worst-case ratios SGP

TSP and SV P
TSP are

c = g = 3
√
2

2+
√
2
2−
√
2

2−
√
2
= 3
√
2− 3.

Proof. The proof of the upper bound on the worst-case ratio
SGP
TSP follows from the same steps as the proof of Theorem 3.
The upper bound on the worst-case ratio SGP

TSP is also an up-
per bound on the worst-case ratio SV P

TSP since SVPs are never
longer than the corresponding SGPs. The lower bound for
both worst-case ratios is shown in Figure 12 and coincides
with the upper bound.

Figure 12: Worst-case ratios SGPTSP and SV P
TSP for 8-center grid

graphs.

For Theorems 9 and 10, we alter Definitions 5 and 6 and
replace every instance of TSP with SVP. Specifically, we re-
quire in the proofs of Theorems 9 and 10 that the SRGP
traverses only cells that the SVP traverses, traverses all ver-
tices that the SVP traverses and always turns in a cell where
the SVP turns.

Theorem 9 (Worst-Case Ratios i and j in Table 1). For 4-
center and 4-corner grid graphs, the worst-case ratio SGP

SV P

is i = j =
√
2.

Proof. The s-t SVP of an instance that comes within ε
of the worst-case ratio with minimal SV P (s, t), called a
smallest instance, cannot turn. If it turned at some ver-
tex u, then the SVP and the SRGP would intersect at
u. However, SRGP (s,t)

SV P (s,t) = SRGP (s,u)+SRGP (u,t)
SV P (s,u)+SV P (u,t) implies

max{SRGP (s,u)
SV P (s,u) ,

SRGP (u,t)
SV P (u,t) } ≥

SRGP (s,t)
SV P (s,t) , and the in-

stance at hand cannot be smallest. Consequently, the s-t
SVP of a smallest instance must be the line segment st.
Through rotation, reflection and translation, we may assume
that s = (0, 0) and t = (p, q) where p ≥ q ≥ 0. If q = 0, st
is a valid grid path, yielding a worst-case ratio of 1. If q ≥ 1,
by Lemma 2, SGP (s,t)

SV P (s,t) ≤
SRGP (s,t)
SV P (s,t) = |p|+|q|√

p2+q2
≤
√
2. An

upper bound on the worst-case ratio SRGP
SV P is also an upper

bound on the worst-case ratio SGP
SV P . We achieve this upper

bound if all cells are unblocked and p = q.

Theorem 10 (Worst-Case Ratios k and l in Table 1). For 8-
center and 8-corner grid graphs, the worst-case ratio SGP

SV P

is asymptotically tight at k = l =
√

4− 2
√
2.

Proof. As in the proof of Theorem 9, assume that the s-t
SVP is the line segment st with endpoints s = (0, 0) and
t = (p, q) where p ≥ q ≥ 0. If q = 0, st is a valid grid



4-Neighbor Grids 8-Neighbor Grids
Game Random Game Random

average SGP (center)
SGP (corner)

1.00427 1.03791 1.00193 1.01832

average SGP (center)
TSP (center)

1.2592 1.3106 1.0520 1.0662

average SGP (corner)
TSP (corner)

1.2536 1.2640 1.0496 1.0466

worst-case SGP (center)
TSP (center)

1.6569 1.7574 1.1716 1.2426

worst-case SGP (corner)
TSP (corner)

1.4142 1.4142 1.0824 1.0823

% SGP (center) > SGP (corner) 57.66% 67.34% 59.58% 74.43%
% SGP (corner) > SGP (center) 0.00% 0.00% 0.00% 2.71%

Table 2: Experimental results.

path, yielding a worst-case ratio of 1. If q ≥ 1, by Lemma
1, SGP (s,t)

SV P (s,t) ≤
SRGP (s,t)
SV P (s,t) =

√
2q+p−q√
p2+q2

=
√
2+(β−1)√
β2+1

where

β = p/q. Setting the derivative to zero, we find that the ratio

is maximized at β = 1+
√
2, with value 2

√
2√

4+2
√
2

√
4−2
√
2√

4−2
√
2
=√

4− 2
√
2. An upper bound on the worst-case ratio SRGP

SV P

is also an upper bound on the worst-case ratio SGP
SV P . We get

arbitrarily close to this upper bound if all cells are unblocked
and p = d(

√
2 + 1)qe as q grows large.

Experimental Results
We compare the lengths of paths on both random and game
maps in Nathan Sturtevant’s repository1. For center grid
graphs, the start and goal vertices are placed at cell cen-
ters. For corner grid graphs, the start and goal vertices are
shifted to the upper left cell corners. Table 2 reports the av-
erage ratio of the lengths of an SGP on a center grid graph
and the SGP on the corresponding corner grid graph, the
average and worst-case ratios of the lengths of the SGP and
the corresponding TSP (separately for center and corner grid
graphs), and the percentages of instances where the SGP on
a center grid graph is strictly longer or shorter than the SGP
on the corresponding corner grid graph.

All ratios in Table 2 show that, on average and in the
worst-case, SGPs on center grid graphs are longer than SGPs
on the corresponding corner grid graphs. In fact, they are on
average 0.193%-3.791% longer, which makes sense since
they cannot “hug” obstacles formed by blocked cells as
closely. They are never strictly shorter, except for 2.71%
of the instances for 8-neighbor random maps (which is due
to the slightly different start and goal vertices on the corre-
sponding center and corner grid graphs). However, they are
strictly longer for 57.66%-74.43% of the instances. The ran-
dom maps contain many small obstacles formed by blocked
cells, while the game maps consist of large empty spaces
(since the game maps model the terrain but not buildings or
units), which might explain why the disadvantage of an SGP
on a center grid graph over the SGP on the corresponding
corner grid graph is typically larger for random maps than
game maps. We expect the gap to decrease as the game maps
are populated with building and units. Similarly, all ratios in
Table 2 show that, on average and in the worst-case, SGPs
on 4-neighbor grids are longer than SGPs on the correspond-
ing 8-neighbor grids, which makes sense since they traverse

1http://movingai.com/benchmarks/

obstacle-free areas less effectively and cannot “hug” obsta-
cles formed by blocked cells as closely. For all combinations
of vertex placement and grid connectivity, the experimental
worst-case ratios on random maps agree to 4 significant dig-
its with the corresponding theoretical worst-case ratios in
Table 1.

Conclusions
We have determined how the worst-case ratios between the
lengths of a truly shortest path, a shortest vertex path and
a shortest grid path vary. Our theoretical results (Table 1)
quantify the advantage of placing vertices at cell corners
rather than cell centers when finding shortest grid paths on 4-
and 8-neighbor square grids. Our experimental results (Ta-
ble 2) confirm these qualitative relationships. It is future re-
search to extend our results to other tessellations, such as
triangles, hexagons and texes (Björnsson et al. 2003).
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