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Abstract

In this article, we describe agent-centered search (sometimes
also called real-time search or local search) and illustrate this
planning paradigm with examples. Agent-centered search
methods interleave planning and plan execution and restrict
planning to the part of the domain around the current state of
the agent, for example, the current location of a mobile robot
or the current board position of a game. They can execute
actions in the presence of time constraints and often have
a small sum of planning and execution cost, both because
they trade-off planning and execution cost and because they
allow agents to gather information early in nondeterministic
domains, which reduces the amount of planning they have
to perform for unencountered situations. These advantages
become important as more intelligent systems are interfaced
with the world and have to operate autonomously in complex
environments. Agent-centered search methods have been
applied to a variety of domains, including traditional search,
STRIPS-type planning, moving-target search, planning with
totally and partially observable Markov decision processes
models, reinforcement learning, constraint satisfaction, and
robot navigation. We discuss the design and properties of
several agent-centered search methods, focusing on robot
exploration and localization.

Overview

Artificial intelligence has studied in detail off-line plan-
ning methods that first determine sequential or conditional
plans (including reactive plans) and then execute them in
the world. However, interleaving or overlapping plan-
ning and plan execution often has advantages for intel-
ligent systems (“agents”) that interact directly with the
world. In this article, we study a particular class of
planning methods that interleave planning and plan execu-
tion, namely agent-centered search methods (Koenig 1996;
Koenig 1997a). Agent-centered search methods restrict
planning to the part of the domain around the current state
of the agent, for example, the current location of a mobile
robot or the current board position of a game. The part of
the domain around the current state of the agent is the part of
the domain that is immediately relevant for the agent in its
current situation (because it contains the states that the agent
will soon be in) and sometimes might be the only part of the

domain that the agent knows about. Figure 1 illustrates this
approach. Agent-centered search methods usually do not
plan all the way from the start state to a goal state. Instead,
they decide on the local search space, search it, and deter-
mine which actions to execute within it. Then, they execute
these actions (or only the first action) and repeat the overall
process from their new state, until they reach a goal state.
They are special kinds of any-time algorithms and share
their advantages. By keeping the planning cost (here: time)
between plan executions small, agent-centered search meth-
ods allow agents to execute actions in the presence of time
constraints. By adapting the planning cost between plan
executions to the planning and execution speeds of agents,
agent-centered search methods allow agents to reduce the
sum of planning and execution cost.

Agent-centered search is not yet a common term in arti-
ficial intelligence, although planning methods that fit its
definition are scattered throughout the literature on artificial
intelligence and robotics. In this article, we illustrate the
concept of agent-centered search in deterministic and non-
deterministic domains, describe which kinds of planning
tasks they are suitable for, and give an overview of some
agent-centered search methods from the literature that solve
real-world planning tasks as part of complete agent architec-
tures. We illustrate agent-centered search in nondetermin-
istic domains using robot-navigation tasks such as repeated
terrain coverage, exploration (map building), and localiza-
tion. These tasks were performed by robots that have been
used in programming classes, entered robot competitions,
guided tours in museums, and explored natural outdoor ter-
rain. By showing that different planning methods fit the
same planning paradigm, we hope to establish a unified
view that helps focus research on what we consider to be an
exciting area of artificial intelligence.

Overview of Agent-Centered Search

The best known example of agent-centered search is prob-
ably game playing, such as playing chess. In this case, the
states correspond to board positions and the current state
corresponds to the current board position. Game-playing
programs typically perform a minimax search with a lim-
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ited lookahead depth around the current board position to
determine which move to perform next. Thus, they perform
agent-centered search even though they are free to explore
any part of the state space. The reason for performing
only a limited local search is that the state spaces of real-
istic games are too large to perform complete searches in
a reasonable amount of time. The future moves of the op-
ponent cannot be predicted with certainty, which makes the
planning tasks nondeterministic. This results in an informa-
tion limitation that can only be overcome by enumerating
all possible moves of the opponent, which results in large
search spaces. Performing agent-centered search allows
game-playing programs to choose a move in a reasonable
amount of time while focusing on the part of the state space
that is the most relevant to the next move decision.

In this article, we concentrate on agent-centered search in
single-agent domains. Traditional search methods, such as
A* (Nilsson 1971; Pearl 1985), first determine plans with
minimal execution cost (such as time or power consump-
tion) and then execute them. Thus, they are off-line plan-
ning methods. Agent-centered search methods, on the other
hand, interleave planning and execution and are thus on-line
planning methods. They can have the following two advan-
tages, as shown in Figure 2: They can execute actions in the
presence of time constraints and often decrease the sum of
planning and execution cost.

� Time constraints: Agent-centered search methods can
execute actions in the presence of soft or hard time con-
straints. The planning objective in this case is to approx-
imately minimize the execution cost subject to the con-

straint that the planning cost (here: time) between action
executions is bounded. This objective was the original in-
tent behind developing real-time (heuristic) search (Korf
1990) and includes situations where it is more important
to act reasonably in a timely manner than to minimize
the execution cost after a long delay. Driving, balanc-
ing poles, and juggling devil sticks are examples. For
instance, before an automated car has determined how to
negotiate a curve with minimal execution cost, it has
likely crashed already. Another example is real-time
simulation and animation, which become increasingly
important for training and entertainment purposes, in-
cluding real-time computer games. It is not convincing
if an animated character sits there motionlessly until a
minimal-cost plan has been found and then executes the
plan quickly. Rather, it has to avoid artificial idle times
and move smoothly. This objective can be achieved by
keeping the amount of planning between plan executions
small and approximately constant.

� Sum of planning and execution cost: Agent-centered
search methods often decrease the sum of planning and
execution cost compared to planning methods that first
determine plans with minimal execution cost and then ex-
ecute them. This property is important for planning tasks
that need to be solved only once. The planning objective
in this case is to approximately minimize the sum of plan-
ning and execution cost. Delivery is an example. If I ask
my delivery robot to fetch me a cup of coffee, then I do
not mind if the robot sits there motionlessly and plans for
a while, but I do care about receiving my coffee as quickly
as possible, that is, with a small sum of planning and ex-
ecution cost. Since agents that perform agent-centered
search execute actions before they know that the actions
minimize the execution cost, they are likely to incur some
overhead in execution cost but this increase in execution
cost is often outweighed by a reduction in planning cost,
especially since determining plans with minimal execu-
tion cost is often intractable, such as for the localiza-
tion problems discussed in this article. How much (and
where) to plan can be determined automatically (even
dynamically), using either techniques tailored to spe-
cific agent-centered search methods (Ishida 1992) or gen-
eral techniques from limited rationality and deliberation
scheduling (Boddy and Dean 1989; Horvitz et al. 1989;
Zilberstein 1993). Applications of these techniques to
agent-centered search are described in (Russell and We-
fald 1991).

To make our discussion more concrete, we now describe an
example of an agent-centered search method in single-agent
domains. We will relate all of the following agent-centered
search methods to this one.

Learning Real-Time A* (LRTA*) (Korf 1990) is an agent-
centered search method that stores a value in memory for
each state that it encounters during planning and uses tech-
niques from asynchronous dynamic programming (Bert-
sekas and Tsitsiklis 1997) to update the state values as plan-
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Figure 3: LRTA* in a Simple Grid World

ning progresses. We refer to agent-centered search methods
with this property in the following as LRTA*-like real-time
heuristic search methods. The state values of LRTA* ap-
proximate the goal distances of the states. They can be
initialized using a heuristic function, such as the straight-
line distance between a location and the goal location on a
map, which focuses planning towards a goal state. LRTA*
and LRTA*-like real-time search methods improve on ear-
lier agent-centered search methods that also used heuristic
functions to focus planning but were not guaranteed to ter-
minate (Doran 1967). A longer overview of LRTA*-like
real-time search methods is given in (Ishida 1997) and cur-
rent research issues are outlined in (Koenig 1998).

Figure 3 illustrates the behavior of LRTA* using a simplified
goal-directed navigation problem in known terrain without
uncertainty about the initial location. The robot can move
one location (cell) to the north, east, south, or west, unless
that location is untraversable. All action costs are one. The
robot has to navigate to the given goal location and then
stop. In this case, the states correspond to locations, and
the current state corresponds to the current location of the
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robot. The state values are initialized with the Manhattan
distance, that is, the goal distance of the corresponding
location if no obstacles were present. For example, the
Manhattan distance of the start state C1 is three. Figure 4
visualizes the value surface formed by the initial state values.
Notice that a robot does not reach the goal state if it always
moves to the successor state with the smallest value and
thus performs steepest descent on the initial value surface.
It moves back and forth between locations C1 and C2 and
thus gets trapped in the local minimum of the value surface
at location C2. There are robot-navigation methods that use
value surfaces in form of potential fields for goal-directed
navigation, often combined with randomized movements
to escape the local minima (Arkin 1998). LRTA* avoids
this problem by increasing the state values to fill the local
minima in the value surface. Figure 5 shows how LRTA*
performs a search around the current state of the robot to
determine which action to execute next if it breaks ties
among actions in the following order: north, east, south,
and west. It operates as follows:

1. (Search Step:) LRTA* decides on the local search space.
The local search space can be any set of nongoal states
that contains the current state (Barto et al. 1995).
LRTA* typically uses forward search to select a con-
tinuous part of the state space around the current state
of the agent. For example, it could use A* to deter-
mine the local search space. This would make it an
on-line variant of A* since LRTA* then interleaves in-
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Figure 6: Example with a Larger Local Search Space

complete A* searches from the current state of the agent
with plan executions. Some researchers have also ex-
plored versions of LRTA* that do not perform agent-
centered search, for example in the context of reinforce-
ment learning with the DYNA architecture (Sutton 1990;
Moore and Atkeson 1993). In the example of Figure 3,
the local search spaces are minimal, that is, contain only
the current state. In this case, LRTA* can construct a
search tree around the current state. The local search
space consist of all nonleaves of the search tree. Figure 5
shows the search tree for deciding which action to execute
in the initial location.

2. (Value-Calculation Step:) LRTA* assigns each state in
the local search space its correct goal distance under the
assumption that the values of the states just outside of
the local search space correspond to their correct goal
distances. In other words, it assigns each state in the
local search space the minimum of the execution cost
for getting from it to a state just outside of the local
search space plus the estimated remaining execution cost
for getting from there to a goal location, as given by the
value of the state just outside of the local search space.
Since this lookahead value is a more accurate estimate
of the goal distance of the state in the local search space,
LRTA* stores it in memory, overwriting the existing value
of the state. In the example, the local search space is
minimal and LRTA* can simply update the value of the
state in the local search space according to the following
rule provided that it ignores all actions that can leave the
current state unchanged. LRTA* first assigns each leaf
of the search tree the value of the corresponding state.
The leaf that represents B1 is assigned a value of four
and the leaf that represents C2 is assigned a value of two.
This step is marked (1) in Figure 5. The new value of
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Figure 7: Eight Puzzle

the root node C1 then is the minimum of the values of
its children plus one, because LRTA* chooses moves that
minimize the goal distance and the robot has to execute
one additional action to reach the child (2). This value
is then stored in memory for C1 (3). Figure 6 shows
the result of one value-calculation step for a different
example where the local search space is non-minimal.

3. (Action-Selection Step:) LRTA* selects an action for
execution that is the beginning of a plan that promises to
minimize the execution cost from the current state to a
goal state (ties can be broken arbitrarily). In the example,
LRTA* selects the action that moves to a child of the root
node of the search tree that minimizes the value of the
child plus one. Since the estimated execution cost from
the current state to a goal state is three when moving east
(namely, one plus two) and five when moving north (one
plus four), LRTA* decides to move east.

4. (Action-Execution Step:) LRTA* executes the selected
action, updates the state of the robot, and repeats the
overall process from the new state of the robot until the
robot reaches a goal state.

The left column of Figure 3 shows the result of the first
couple of steps of LRTA* for the example. The values in
parentheses are the new state values calculated by the value-
calculation step because the corresponding states are part of
the local search space. The robot reaches the goal location
after nine action executions.

If there are no goal states, then LRTA* is guaranteed to visit
all states repeatedly if the state space is finite and strongly
connected, that is, where every state can be reached from
every other state. Strongly connected state spaces guarantee
that the agent can still reach every state no matter which
actions it has executed in the past. This property of LRTA*
is important for covering terrain (visitingall locations) once
or repeatedly such as for lawn mowing, mine sweeping,
and surveillance. If there are goal states, then LRTA* is
guaranteed to reach a goal state in state spaces that are finite
and safely explorable, that is, where the agent can still reach
a goal state no matter which actions it has executed in the
past. This property of LRTA* is important for goal-directed
navigation (moving to a goal location).

An analysis of the execution cost of LRTA* until it
reaches a goal state and how it depends on the in-
formedness of the initial state values and the topology of
the state space is given in (Koenig and Simmons 1995;
Koenig and Simmons 1996a). This analysis yields insights
into when agent-centered search methods solve planning



tasks in deterministic domains efficiently. For example,
LRTA* tends to be more efficient the more informed the
initial state values are and thus the more the initial state
values focus the search well, although this correlation is
not perfect (Koenig 1998). LRTA* also tends to be more
efficient the smaller the average goal distance of all states
is. Consider, for example, sliding-tile puzzles, which are
sometimes considered to be hard search problems because
they have a small goal density. Figure 7, for example, shows
the eight puzzle, a sliding-tilepuzzle with 181,440 states but
only one goal state. However, the average goal distance of
the eight puzzle is only 21.5 and its maximal goal distance
is only 30 (Reinefeld 1993). This implies that LRTA* can
never move far away from the goal state even if it makes a
mistake and executes an action that does not decrease the
goal distance, which makes the eight puzzle state space easy
to search relative to other domains with the same number of
states.

If the initial state values are not completely informed and
the local search spaces are small, then it is unlikely that
the execution cost of LRTA* is minimal. In Figure 3, for
example, the robot could reach the goal location in seven
action executions. However, LRTA* improves its execution
cost, although not necessarily monotonically, as it solves
planning tasks with the same goal states in the same state
spaces until its execution cost is minimal, under the follow-
ing conditions: its initial state values are admissible (that
is, do not overestimate the goal distances) and it maintains
the state values between planning tasks. If LRTA* breaks
ties always in the same way, then it eventually keeps fol-
lowing the same minimal-cost path from a given start state.
If it breaks ties randomly, then it eventually discovers all
minimal-cost paths from the given start state. Thus, LRTA*
can always have a small sum of planning and execution cost
and still minimize the execution cost in the long run.

Figure 3 (all columns) illustrates this aspect of LRTA*. In
the example, LRTA* breaks ties among successor states in
the following order: north, east, south, and west. Even-
tually, the robot always follows a minimal-cost path to the
goal location. LRTA* is able to improve its execution cost
by making the state values better informed. Figure 8 visual-
izes the value surface formed by the final state values. The
robot now reaches the goal state on a minimal-cost path if it
always moves to the successor state with the smallest value
(and breaks ties in the order given above) and thus performs
steepest descent on the final value surface.

LRTA* always moves in the direction in which it believes the
goal state to be. While this might be a good action-selection
strategy for reaching the goal state quickly, recent evi-
dence suggests that it might not be a good action-selection
strategy for converging to a minimal-cost path quickly.
Consequently, researchers have studied LRTA*-like real-
time search methods that improve their execution cost
faster than LRTA* (Thorpe 1994; Ishida and Shimbo 1996;
Edelkamp 1997; Furcy and Koenig 2000). For example,
while LRTA* focuses its value updates on what it believes
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Figure 8: Value Surface after Convergence

to be a minimal-cost path from its current state to a goal
state, FAst Learning and CONverging Search (FALCONS)
(Furcy and Koenig 2000) focuses its value updates on what
it believes to be a minimal-cost path from the start state to
a goal state, and often finds minimal-cost paths faster than
LRTA* in undirected state spaces.

In the following sections, we discuss the application of
agent-centered search methods to deterministic and nonde-
terministic planning tasks, and relate these agent-centered
search methods to LRTA*.

Deterministic Domains

In deterministic domains, the outcomes of action execu-
tions can be predicted with certainty. Many traditional do-
mains from artificial intelligence are deterministic, includ-
ing sliding-tile puzzles and blocks worlds. Agent-centered
search methods can solve off-line planning tasks in these
domains by moving a fictitious agent in the state space
(Dasgupta et al. 1994). In this case, the local search
spaces are not imposed by information limitations. Agent-
centered search methods thus provide alternatives to tradi-
tional search methods, such as A*. They have, for example,
successfully been applied to optimization and constraint-
satisfaction problems and are often combined with random
restarts. Examples include hill climbing, simulated anneal-
ing, tabu search, some SAT-solution methods, and some
scheduling methods (Selman 1995; Aarts and Lenstra 1987;
Gomes et al. 1998). Agent-centered search methods
have also been applied to traditional search problems
(Korf 1990) and STRIPS-type planning problems (Bonet
et al. 1997). For instance, LRTA*-like real-time search
methods easily determine plans for the twenty-four puz-
zle, a sliding-tile puzzle with more than 1024 states (Korf
1993), and blocks worlds with more than 1027 states
(Bonet et al. 1997). For these planning problems, agent-
centered search methods compete with other heuristic search
methods such as greedy (best-first) search (Russell and
Norvig 1995), that can find plans faster than agent-centered
search, or linear-space best-first search (Russell 1992;
Korf 1993), that can consume less memory (Korf 1993;
Bonet and Geffner 2001).



Nondeterministic Domains

Many domains from robotics, control, and scheduling are
nondeterministic. Planning in nondeterministic domains is
often more difficult than planning in deterministic domains
since their information limitation can only be overcome
by enumerating all possible contingencies, which results in
large search spaces. Consequently, it is even more impor-
tant that agents take their planning cost into account to solve
planning tasks efficiently. Agent-centered search in nonde-
terministic domains has an additional advantage compared
to agent-centered search in deterministic domains, namely
that it allows agents to gather information early. This is
an enormous strength of agent-centered search because this
information can be used to resolve some of the uncertainty
and thus reduce the amount of planning performed for un-
encountered situations. Without interleaving planning and
plan execution, an agent has to determine a complete con-
ditional plan that solves the planning task, no matter which
contingencies arise during its execution. Such a plan can
be large. When interleaving planning and plan execution,
on the other hand, the agent does not need to plan for every
possible contingency. It has to determine only the beginning
of a complete plan. After the execution of this subplan, it
can observe the resulting state and then repeat the process
from the state that actually resulted from the execution of
the subplan instead of all states that could have resulted from
its execution. We have already described this advantage of
agent-centered search in the context of game playing. In the
following, we illustrate the same advantage in the context
of mobile robotics. Consider, for example, a mobile robot
that has to localize itself, that is, to gain certainty about
its location. As it moves in the terrain, it can acquire addi-
tional information about its current environment via sensing.
This information reduces its uncertainty about its location,
which makes planning more efficient. Thus, sensing during
plan execution and using the acquired knowledge for re-
planning, often called sensor-based planning (Choset and
Burdick 1995), is one way to make the localization problem
tractable.

Mobile robots are perhaps the class of agents that have
been studied the most, and agent-centered search methods
have been used as part of several independently developed
robot architectures that robustly perform real-world navi-
gation tasks in structured or unstructured terrain. Naviga-
tion often has to combine path planning with map build-
ing or localization (Nehmzow 2000). Consequently, we
study two different navigation tasks. First, we discuss ex-
ploration (map building) and goal-directed navigation in
initially unknown terrain but without uncertainty about the
initial location. Then, we discuss localization and goal-
directed navigation in known terrain with uncertainty about
the initial location. Agent-centered search methods have
also been used in other nondeterministic domains from mo-
bile robotics, including moving-target search, the task of
catching moving prey (Ishida and Korf 1991; Ishida 1992;
Koenig and Simmons 1995).

We are only interested in the navigation strategy of the robots
(not precise trajectory planning). We therefore attempt to
isolate the agent-centered search methods from the overall
robot architectures, which makes it sometimes necessary to
simplify the agent-centered search methods slightly. We
assume initially that there is no actuator or sensor noise and
that every location can be reached from every other loca-
tion. All of the following agent-centered search methods
are guaranteed to solve the navigation tasks under these
assumptions. Since the assumptions are quite strong, we
discuss in a later section how to relax them.

Exploration of Unknown Terrain

We first discuss exploration (map building) and goal-
directed navigation in initially unknown terrain without un-
certainty about the initial location. The robot does not
know a map of the terrain. It can move one location to
the north, east, south, or west, unless that location is un-
traversable. All action costs are one. On-board sensors
tell the robot in every location which of the four adjacent
locations (north, east, south, west) are untraversable and,
for goal-directed navigation, whether the current location
is a goal location. Furthermore, the robot can identify the
adjacent locations when it observes them again at a later
point in time. This assumption is realistic, for example,
if dead-reckoning works perfectly, the locations look suffi-
ciently different, or a global positioning system is available.
For exploration, the robot has to visit all locations and then
stop. For goal-directed navigation, the robot has to navigate
to the given goal location and then stop.

The locations (and how they connect) form the initially un-
known state space. Thus, the states correspond to locations
and the current state corresponds to the current location of
the robot. Although all actions have deterministic effects,
the planning task is nondeterministic because the robot can-
not predict the outcomes of its actions in the unknown part
of the terrain. For example, it cannot predict whether the lo-
cation in front of it will be traversable after it moves forward
in unknown terrain. This information limitation is hard to
overcome since it is prohibitively time-consuming to enu-
merate all possible obstacle configurations in the unknown
part of the terrain. This problem can be avoided by restrict-
ing planning to the known part of the terrain, which makes
the planning tasks deterministic and thus efficient to solve.
In this case, agent-centered search methods for deterministic
state spaces, such as LRTA*, can be used unchanged for ex-
ploration and goal-directed navigation in initially unknown
terrain.

We now discuss several of these agent-centered search meth-
ods. They all impose grids over the terrain. However, they
could also use Voronoi diagrams or similar graph represen-
tations of the terrain (Latombe 1991). Although they have
been developed independently by different researchers, they
are all similar to LRTA*, which has been used to transfer
analytical results among them (Koenig 1999). They differ in
two dimensions, namely how large their local search spaces



Ant robots are simple robots with limited sensing and computa-
tional capabilities. They have the advantage that they are easy
to program and cheap to build. This makes it feasible to de-
ploy groups of ant robots and take advantage of the resulting fault
tolerance and parallelism (Brooks and Flynn 1989). Ant robots
cannot use conventional planning methods due to their limited
sensing and computational capabilities. To overcome these limi-
tations, ant robots can use LRTA*-like real-time search methods
(such as LRTA* or Node Counting) to leave markings in the ter-
rain that can be read by the other ant robots, similar to what real
ants do (Adler and Gordon 1992). Ant robots that each run the
same LRTA*-like real-time search method on the shared markings
(where the locations correspond to states and the markings cor-
respond to state values) cover terrain once or repeatedly even if
they move asynchronously, do not communicate with each other
except via the markings, do not have any kind of memory, do not
know the terrain, cannot maintain maps of the terrain, nor plan
complete paths. The ant robots do not even need to be localized,
which completely eliminates solving difficult and time-consuming
localization problems. The ant robots robustly cover terrain even
if they are moved without realizing that they have been moved
(say, by people running into them), some ant robots fail, and some
markings get destroyed (Koenig et al. 2001b). This concept has
not yet been implemented on robots although mobile robots have
been built that leave markings in the terrain. However, so far these
markings have only been short-lived such as odor traces (Russell
et al. 1994), heat traces (Russell 1997), or alcohol traces (Sharpe
and Webb 1998).

Ant Robotics

are and whether their initial state values are uninformed or
partially informed:

Sizes of the Local Search Spaces: We call the local search
spaces of agent-centered search methods for deterministic
state spaces maximal in unknown state spaces if they contain
all of the known part of the state space, for example, all
visited states. We call the local search spaces minimal if
they contain only the current state.

Informedness of the Initial State Values: Heuristic functions
that can be used to initialize the state values are often un-
available for exploration and for goal-directed navigation if
the coordinates of the goal location are unknown, such as
when searching for a post office in an unknown city. Oth-
erwise, the Manhattan distance of a location can be used as
an approximation of its goal distance.

In the following, we discuss the three of the four resulting
combinations that have been used on robots:

� Approach 1: Uninformed LRTA* with minimal local
search spaces can be used unchanged for exploration and
goal-directed navigation in initially unknown terrain and,
indeed, LRTA*-like real-time search methods have been
used for this purpose.
Several LRTA*-like real-time search methods differ from
LRTA* with minimal local search spaces only in their
value-calculation step (Korf 1990; Russell and Wefald
1991; Thrun 1992; Wagner et al. 1997). Consider,

for example, Node Counting, an LRTA*-like real-time
search method that always moves the robot from its cur-
rent location to that adjacent location that it has visited
the smallest number of times so far. It has been used
for exploration by several researchers, either in pure or
modified form (Pirzadeh and Snyder 1990; Thrun 1992;
Balch and Arkin 1993). For example, it is similar to
Avoiding the Past (Balch and Arkin 1993), that has been
used on a nomad-class Denning mobile robot that placed
well in AAAI autonomous robot competitions. Avoid-
ing the Past differs from Node Counting in that it sums
over vectors that point away from locations that are ad-
jacent to the robot with a magnitude that depends on
how often these locations have been visited so far, which
simplifies its integration into schema-based robot archi-
tectures (Arkin 1998). It has also been suggested that
Node Counting mimics the exploration behavior of ants
(Wagner et al. 1999) and can thus be used to build ant
robots (Koenig et al. 2001b), see the side bar.

Node Counting and uninformed LRTA* with minimal
local search spaces differ only in their value-calculation
step (if all action costs are one). The state values of Node
Counting count how often the states have been visited.
Consequently, Node Counting moves the robot to states
that have been visited fewer and fewer number of times
with the planning objective of getting it as fast as possi-
ble to a state that has not been visited at all, that is, an
unvisited state (where the robot gains information). The
state values of uninformed LRTA*, on the other hand,
approximate the distance of the states to a closest un-
visited state. Consequently, LRTA* moves the robot to
states that are closer and closer to unvisited states with
the planning objective of getting it as fast as possible
to an unvisited state. Experimental evidence suggests
that Node Counting and uninformed LRTA* with min-
imal local search spaces perform about equally well in
many (but not all) domains. However, it is also known
that LRTA* can have advantages over Node Counting.
For example, it has a much smaller execution cost in
the worst case, can use heuristic functions to focus its
search, and improves its execution cost as it solves sim-
ilar planning tasks. An analysis of the execution cost of
Node Counting is given in (Koenig and Simmons 1996a;
Koenig and Szymanski 1999).

� Approach 2: Uninformed LRTA* with maximal local
search spaces can be used unchanged for exploration and
goal-directed navigation in initially unknown terrain. It
results in the following behavior of a robot that has to
explore unknown terrain. The robot always moves from
its current location with minimal execution cost to an
unvisited location (where it gains information), until it
has explored all of the terrain (Greedy Mapping). It
has been used on a nomad-class tour-guide robot that
offered tours to museum visitors (Thrun et al. 1998). An
analysis of the execution cost of uninformed LRTA* with
maximal local search spaces is given in (Koenig 1999;
Koenig et al. 2001c).
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Figure 9: Exploration with Maximal Local Search Spaces

� Approach 3: Partially informed LRTA* with maximal
local search spaces can be used unchanged for goal-
directed navigation in initially unknown terrain. This
approach has been called incremental best-first search
(Pemberton and Korf 1992). It results in the following
behavior of a robot that has to move to a goal location in
unknown terrain. It always moves from its current loca-
tion to an unvisited location (where it gains information)
so that it minimizes the sum of the execution cost for
getting from its current location to the unvisited location
and the estimated remaining execution cost for getting
from the unvisited location to the goal location, as given
by the value of the unvisited location, until it has reached
the goal location.

The heuristic function of incremental best-first search can
also be changed dynamically as parts of the terrain get dis-
covered. D* (Stentz 1995) and D* Lite (Likhachev and
Koenig 2000), for example, exhibit the following behav-
ior: The robot repeatedly moves from its current location
with minimal execution cost to a goal location, assuming
that unknown terrain is traversable. (Other assumptions are
possible.) When it observes during plan execution that a par-
ticular location is untraversable, it corrects its map, uses the
updated map to recalculate a minimal-cost path from its cur-
rent location to the goal location (again making the assump-

Goal PosePossible Start Poses  (Start Belief)
1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D

1 2 3 4 5 6 7 8 9 10 11 12

Figure 10: Navigation Task with Unknown Initial Pose

tion that unknown terrain is traversable), and repeats this
procedure until it reaches the goal location. D* is an exam-
ple of an assumptive planning method (Nourbakhsh 1997)
that exhibits optimism in the face of uncertainty (Moore
and Atkeson 1993) because the path that it determines can
be traversed only if it is correct in its assumption that un-
known terrain is traversable. If the assumption is indeed
correct, then the robot reaches the goal location. If the as-
sumption is incorrect, then the robot discovers at least one
untraversable location that it did not know about and thus
gains information. D* has been used on an autonomous
high-mobility multi-wheeled vehicle (HMMWV) that nav-
igated 1,410 meters to the goal location in an unknown area
of flat terrain with sparse mounds of slag as well as trees,
bushes, rocks, and debris (Stentz and Hebert 1995).

D* is similar to incremental best-first search with the ex-
ception that it changes the heuristic function dynamically,
which requires it to have initial knowledge about the pos-
sible connectivity of the graph, for example, geometrical
knowledge of a two-dimensional terrain. Figure 9 illus-
trates this difference between D* and incremental best-first
search. In the example, D* changes the state value of loca-
tion C1 (even though this location is still unvisited and thus
has not been part of any local search space) when it dis-
covers that locations C3 and D3 are untraversable because
the layout of the environment implies that it takes now at
least eight moves to reach the goal location instead of the
six moves suggested by the heuristic function. Dynamically
recomputing the heuristic function makes it better informed
but takes time, and the search is no longer restricted to the
part of the terrain around the current location of the robot.
Thus, different from incremental best-first search, D* is not
an agent-cetnered search method and its searches are not
restricted to the known part of the terrain, which results in
an information limitation. D* avoids this problem by mak-
ing assumptions about the unknown terrain, which makes
the planning tasks again deterministic and thus efficient to
solve. D* shares with incremental best-first search that it
improves its execution cost as it solves planning tasks with
the same goal states in the same state spaces until it follows a
minimal-cost path to a goal state under the same conditions
described for LRTA*.

Robot Localization in Known Terrain

We now discuss localization and goal-directed navigation
in known terrain with uncertainty about the initial location.
We illustrate these navigation tasks with a similar scenario



as before. Figure 10 shows a simplified example of a goal-
directed navigation task in a grid world. The robot knows
the map of the terrain, but is uncertain about its start pose,
where a pose is a location and orientation (north, east, south,
west). It can move forward one location (unless that loca-
tion is untraversable), turn left ninety degrees, or turn right
ninety degrees. All action costs are one. On-board sen-
sors tell the robot in every pose which of the four adjacent
locations (front, left, behind, right) are untraversable. For
localization, the robot has to gain certainty about its pose
and then stop. For goal-directed navigation, the robot has
to navigate to a given goal pose and then stop. Since there
might be many poses that produce the same sensor reports
as the goal pose, this task includes localizing the robot so
that it knows that it is in the goal pose when it stops. We
assume that localization is possible, which implies that the
environment is not completely symmetrical. This modest
(and realistic) assumption allows the robot to localize itself
and, for goal-directed navigation, then move to the goal
pose.

Analytical results about the execution cost of planning meth-
ods are often about their worst-case execution cost (here:
execution cost for the worst possible start pose) rather than
their average-case execution cost. In this case, the states
of the localization and goal-directed navigation problems
with uncertainty about the initial pose correspond to sets
of poses (belief states), namely the poses that the robot
could possibly be in. The current state corresponds to the
poses that the robot could currently be in. For example, if
the robot has no knowledge of its start pose for the goal-
directed navigation task shown in Figure 10 but observes
walls all around it except in its front, then its start state
contains the following seven poses: A 1 � , A 6

�
, A 8

�
,

A 10 � , D 1 � , D 5 � , and D 8 � . Although all actions have
deterministic effects, the planning task is nondeterministic
because the robot cannot predict the outcomes of its actions
with certainty since it is uncertain about its pose. For exam-
ple, it cannot predict whether the location in front of it will
be traversable after it moves forward for the goal-directed
navigation task shown in Figure 10. (If its start pose were
A 1 � then it would see a traversable location in front of
it after it moves forward. On the other hand, if its start
pose were A 10 � then it would see an untraversable loca-
tion in front of it.) This information limitation can only be
overcome by enumerating all possible observations, which
results in large search spaces. For example, solving local-
ization tasks with minimal worst-case execution cost is NP-
hard, even within a logarithmic factor (Dudek et al. 1995;
Tovey and Koenig 2000). This analytical result is consis-
tent with empirical results that indicate that performing a
complete minimax (and-or) search to determine plans with
minimal worst-case execution cost is often completely in-
feasible (Nourbakhsh 1997). This problem can be avoided
in the same way as for exploration and goal-directed nav-
igation in initially unknown terrain, namely by restricting
the search spaces, possibly even to the deterministic part of
the state space around the current state, which makes the
planning tasks efficient to solve. Different from exploration
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Figure 11: Min-Max LRTA*

and goal-directed navigation in initially unknown terrain,
however, agent-centered search methods for deterministic
state spaces cannot be used completely unchanged to solve
localization and goal-directed navigation tasks with uncer-
tainty about the initialpose. This is so because the robot can
no longer predict the outcomes of all actions in its current
state with certainty.

To solve this problem, we introduce Min-Max Learning
Real-Time A* (Min-Max LRTA*) (Koenig and Simmons
1995; Koenig2001), a generalization of LRTA* to nondeter-
ministic domains that attempts to minimize the worst-case
execution cost. Min-Max LRTA* has been shown to solve
simulated navigation tasks efficiently in typical grid worlds
(Koenig and Simmons 1998a) and has also been applied
to other planning tasks (Bonet and Geffner 2000). It can
be used to search not only the deterministic part of the state
space around the current state but also larger and thus nonde-
terministic local search spaces. It treats the navigation tasks
as games by assuming that the agent selects the actions and
a fictitious opponent, called nature, chooses the resulting
observations. Figure 11 (excluding the dashed part) shows
how Min-Max LRTA* performs a minimax search around
the current belief state of the robot to determine which action
to execute next. It operates as follows:

1. (Search Step:) Min-Max LRTA* decides on the local
search space. The local search space can be any set
of nongoal states that contains the current state. Min-
Max LRTA* typically uses forward search to select a
continuous part of the state space around the current state
of the agent. In the example of Figure 11, the local search
space is minimal, that is, contains only the current state.
In this case, Min-Max LRTA* can construct a minimax
tree around the current state. The local search space
consist of all nonleaves of the minimax tree where it is
the turn of the agent to move.



2. (Value-Calculation Step:) Min-Max LRTA* calculates
for each state in the local search space its correct mini-
max goal distance under the assumption that the heuristic
function determines the correct minimax goal distances
for the states just outside of the local search space. The
minimax goal distance of a state is the execution cost
needed to solve the planning task from this state under
the assumption that Min-Max LRTA* attempts to get to
a goal state as quickly as possible, nature attempts to
prevent it from getting there, and nature does not make
mistakes. In the example, the local search space is min-
imal and Min-Max LRTA* can use a simply minimax
search to update the value of the state in the local search
space provided that it ignores all actions that can leave the
current state unchanged. Min-Max LRTA* first assigns
all leaves of the minimax tree the value determined by the
heuristic function for the corresponding state. This step is
marked (1) in Figure 11. For example, the minimax goal
distance of a belief state can be approximated as follows
for goal-directed navigation tasks, thereby generalizing
the concept of heuristic functions from deterministic to
nondeterministicdomains: The robot determines for each
pose in the belief state how many actions it would have
to execute to reach the goal pose if it knew that it was
currently in that pose. The calculation of these values
involves no uncertainty about the current pose and can be
performed efficiently with traditional search methods in
the deterministic state space of poses (that is, the known
map). The maximum of these values is an approximation
of the minimax goal distance of the belief state. This
value is 18 for the start belief state used earlier, namely
the maximum of 18 for A 1 � , 12 for A 6

�
, 10 for A 8

�
,

1 for A 10 � , 17 for D 1 � , 12 for D 5 � , and 9 for D 8 � .
Min-Max LRTA* then backs up these values towards the
root of the minimax tree. The value of a node where it is
the turn of nature to move is the maximum of the values
of its children since nature chooses moves that maximize
the minimax goal distance (2). The value of a node where
it is the turn of the agent to move is the minimum of the
values of its children plus one, because Min-Max LRTA*
chooses moves that minimize the minimax goal distance
and the robot has to execute one additional action to reach
the child (3).

3. (Action-Selection Step:) Min-Max LRTA* selects an ac-
tion for execution that is the beginning of a plan that
promises to minimize the worst-case execution cost from
the current state to a goal state (ties can be broken ar-
bitrarily). In the example, Min-Max LRTA* selects the
action that moves to a child of the root node of the mini-
max search tree that minimizes the value of the child plus
one. Consequently, it decides to move forward.

4. (Action-Execution Step:) Min-Max LRTA* executes the
selected action (possibly already planning action se-
quences in response to the possible observations it can
make next), makes an observation, updates the belief
state of the robot based on this observation, and repeats
the overall process from the new belief state of the robot
until the navigation task is solved.

Min-Max LRTA* has to ensure that it does not cycle forever.
It can randomize its action-selection process or use one of
the following two approaches to gain information between
plan executions and thus guarantee progress:

� Direct Information Gain: If Min-Max LRTA* uses suf-
ficiently large local search spaces, then it can determine
plans that guarantee, even in the worst case, that their ex-
ecution results in a reduction of the number of poses that
the robot could possibly be in and thus in an information
gain (Greedy Localization). For example, moving for-
ward reduces the number of possible poses from seven to
at most two for the goal-directed navigation task shown
in Figure 10. Min-Max LRTA* with direct information
gain is similar to the behavior of the Delayed Planning
Architecture with the viable plan heuristic (Nourbakhsh
1997). The Delayed Planning Architecture has been used
by their authors on Nomad 150 mobile robots in robot pro-
gramming classes to navigate mazes that were built with
three-foot high, forty inch long cardboard walls. The size
of the mazes was limited only by the space available.

� Indirect Information Gain: Min-Max LRTA* with di-
rect information gain does not apply to all planning tasks.
Even if it applies, as is the case for the navigation tasks
with uncertainty about the initial pose, the local search
spaces and thus the planning cost that it needs to guar-
antee a direct information gain can be large. To operate
with smaller local search spaces, it can use LRTA*-like
real-time search. It then operates as before, with the fol-
lowing two changes: First, when Min-Max LRTA* needs
the values of a state just outside of the local search space
(that is, the value of a leaf of the minimax tree) in the
value-calculation step, it now checks first whether it has
already stored a value for this state in memory. If so, then
it uses this value. If not, then it calculates the value using
the heuristic function, as before. Second, after Min-Max
LRTA* has calculated the value of a state in the local
search space where it is the turn of the agent to move, it
now stores it in memory, overwriting any existing value
of the corresponding state (4). Figure 11 (including the
dashed part) summarizes the steps of Min-Max LRTA*
with indirect information gain before it decides to move
forward.
An analysis of the execution cost of Min-Max LRTA*
with indirect information gain is given in (Koenig and
Simmons 1995). It is an extension of the corresponding
analysis of LRTA* since Min-Max LRTA* with indi-
rect information gain reduces in deterministic domains to
LRTA*. This is so because Min-Max LRTA* basically
uses the largest value of all potential successor states that
can result from the execution of a given action in a given
state at those places in the value-calculation and action-
selection steps where LRTA* simply uses the value of the
only successor state.
The increase of the state values can be interpreted as an
indirect information gain that guarantees that Min-Max
LRTA* reaches a goal state in finite state spaces where the
minimax goal distance of every state is finite (a general-



ization of safely explorable state spaces to nondetermin-
istic domains). A disadvantage of Min-Max LRTA* with
indirect information gain over Min-Max LRTA* with di-
rect information gain is that the robot has to store poten-
tially one value in memory for each state it has visited. In
practice, however, the memory requirements of LRTA*-
like real-time search methods often seem to be small,
especially if the initial state values are well informed and
thus focus the search, which prevents them from visiting
a large number of states. Furthermore, LRTA*-like real-
time search methods only need to store the values of those
states in memory that differ from the initial state values.
If the values are the same, then they can be automatically
re-generated when they are not found in memory. For the
example from Figure 11, for instance, it is unnecessary to
store the calculated value 18 of the initial belief state in
memory. An advantage of Min-Max LRTA* with indirect
information gain over Min-Max LRTA* with direct infor-
mation gain is that it is able to operate with smaller local
search spaces, even local search spaces that contain only
the current state. Another advantage is that it improves its
execution cost, although not necessarily monotonically,
as it solves localization and goal-directed navigation tasks
with uncertainty about the initial pose in the same terrain
but possibly different start poses, under the following
conditions: its initial state values do not overestimate the
minimax goal distances and it maintains the state values
between planning tasks. The state values converge after
a bounded number of mistakes, where it counts as one
mistake when Min-Max LRTA* reaches a goal state with
an execution cost that is larger than the minimax goal
distance of the start state. After convergence, its execu-
tion cost is at most as large as the minimax goal distance
of the start state. Although Min-Max LRTA* typically
needs to solve planning tasks multiple times to minimize
the execution cost, it might still be able to do so faster
than one complete minimax (and-or) search if nature is
not as malicious as a minimax search assumes and some
successor states do not occur in practice, for example,
when (unknown to the robot) not all poses occur as start
poses for localization tasks. Min-Max LRTA* does not
plan for these situations since it only plans for situations
that it actually encounters.

Notice the similarity between Min-Max LRTA* and the min-
imax search method used by game-playing programs. Even
the reasons why agent-centered search is well suited are sim-
ilar for both planning tasks. In both cases, the state spaces
are too large to perform complete searches in a reasonable
amount of time. There are a large number of goal states and
thus no unique starting point for a backward search. Finally,
the state spaces are nondeterministic and the agent thus can-
not control the course of events completely. Consequently,
plans are really trees with a unique starting point (root)
for a forward search but no unique starting point (leaves)
for backward search. Despite these similarities, however,
Min-Max LRTA* differs from a minimax search in two as-
pects. First, Min-Max LRTA* assumes that all terminal

states (states where the planning task is over) are desirable
and attempts to get to a terminal state fast. Minimax search,
on the other hand, distinguishes terminal states of different
quality (wins and losses) and attempts to get to a winning
terminal state. It is not important how many moves it takes
to get there, which changes the semantics of the values cal-
culated by the heuristic functions and how the values get
backed up towards the root of the minimax tree. Second,
Min-Max LRTA* with indirect information gain changes its
evaluation function during planning and thus needs to store
the changed values in memory.

Generalizations of Agent-Centered Search

In the following, we briefly discuss how to relax some of
the assumptions made so far.

� Irreversible actions: We have assumed that the agent can
recover from the execution of each action. If this is not the
case, then the agent has to guarantee that the execution
of each action does not make it impossible to reach a
goal state, which is often possible by increasing the local
search spaces of agent-centered search methods. For
example, if Min-Max LRTA* is applied to goal-directed
navigation tasks with uncertainty about the initial pose
and irreversible actions and always determines a plan
after whose execution the belief state is guaranteed to
contain either only the goal pose, only poses that are
part of the current belief state of the robot, or only poses
that are part of the start belief state, then either the goal-
directed navigation task remains solvable in the worst
case or it was not solvable in the worst case to begin with
(Nourbakhsh 1997).

� Uncertainty: We have assumed that there is no actua-
tor or sensor noise. This is a reasonable assumption in
some environments. For example, we mentioned earlier
that the Delayed Planning Architecture has been used on
Nomad 150 mobile robots for goal-directed navigation
with uncertainty about the initial pose in mazes. The suc-
cess rate of turning left or right was reported as 100.00
percent in these environments, the success rate of mov-
ing forward (where possible) was at least 99.57 percent,
and the success rate of making the correct observations
in all four directions simultaneously was at least 99.38
percent (Nourbakhsh 1996). These large success rates
enable one to use agent-centered search methods that as-
sume that there is no actuator or sensor noise, especially
since the rare failures are usually quickly noticed when
the number of possible poses drops to zero, in which case
the robot simply reinitializes its belief state to all possi-
ble poses and then continues to use the agent-centered
search methods unchanged. In less constrained terrain,
however, it is important to take actuator and sensor noise
into account, and agent-centered search methods can do
so.
Planning tasks with actuator but no sensor noise can be
modeled with totally observable Markov decision pro-
cess (MDP) problems (Boutilier et al. 1999), and can



be solved with agent-centered search methods. Consider,
for example, Min-Max LRTA* with indirect information
gain. It assumes that nature chooses the action outcome
that is worst for the agent. The value of a node where it is
the turn of nature to move is thus calculated as the maxi-
mum of the values of its children, and Min-Max LRTA*
attempts to minimize the worst-case execution cost. The
assumption that nature chooses the action outcome that
is worst for the agent, however, is often too pessimistic
and can then make planning tasks wrongly appear to be
unsolvable. In such situations, Min-Max LRTA* can be
changed to assume that nature chooses action outcomes
according to a probability distribution that depends only
on the current state and the executed action, resulting in
an MDP. In this case, the value of a node where it is
the turn of nature to move is calculated as the average
of the values of its children weighted with the proba-
bility of their occurrence as specified by the probability
distribution. Probabilistic LRTA*, this probabilistic vari-
ant of Min-Max LRTA*, then attempts to minimize the
average execution cost rather than the worst-case execu-
tion cost. Probabilistic LRTA* reduces in deterministic
domains to LRTA*, just like Min-Max LRTA*. It is a
special case of Trial-Based Real-Time Dynamic Program-
ming (RTDP) (Barto et al. 1995) that uses agent-centered
search and can, for example, be used instead of LRTA*
for exploration and goal-directed navigation in unknown
terrain with actuator but no sensor noise. There also
exist LRTA*-like real-time search methods that attempt
to satisfy performance criteria different from minimizing
the worst-case or average execution cost (Littman and
Szepesvári 1996). MDPs often use discounting, that is,
discount an (execution) cost in the far future more than
a cost in the immediate future. Discounting thus suggest
to concentrate planning on the immediate future, which
benefits agent-centered search (Kearns et al. 1999).
Two kinds of planning methods are related to Probabilistic
LRTA*:

– Plan-envelope methods: Plan-envelope methods op-
erate on MDPs and thus have the same planning objec-
tive as Probabilistic LRTA* (Bresina and Drummond
1990; Dean et al. 1995). Like agent-centered search
methods, they reduce the planning cost by searching
only small local search spaces (plan envelopes). If the
local search space is left during plan execution, then
they repeat the overall process from the new state, until
they reach a goal state. However, they plan all the way
from the start state to a goal state, using local search
spaces that usually border at least one goal state and
are likely not to be left during plan execution.

– Reinforcement-learning methods: Reinforcement
learning is learning from rewards and penalties that
can be delayed. Reinforcement-learning methods of-
ten operate on MDPs and thus have the same plan-
ning objective as Probabilistic LRTA* but assume
that the probabilities are unknown and have to be
learned. Many reinforcement-learning methods use
agent-centered search and are similar to LRTA*-like

real-time search methods (Koenig and Simmons 1993;
Barto et al. 1995), which makes it possible to transfer
analytical results from LRTA*-like real-time search to
reinforcement learning (Koenig and Simmons 1996b).
The reason for using agent-centered search in the con-
text of reinforcement learning is the same as the one
in the context of exploration, namely that interleaving
planning and plan execution allows one to gain new
knowledge (that is, learn). An additional advantage in
the context of reinforcement learning is that the agent
samples probabilities more often in the parts of the
state space that it is more likely to encounter (Parr and
Russell 1995). Reinforcement learning has been ap-
plied to game playing (Tesauro 1994), elevator control
(Crites and Barto 1996), robot control including pole
balancing and juggling (Schaal and Atkeson 1994),
robot navigation including wall following (Lin 1993),
and similar control tasks. Good overviews of rein-
forcement learning methods are given in (Kaelbling et
al. 1996) and (Sutton and Barto 1998).

Planning tasks with actuator and sensor noise can be
modeled with partially observable MDPs (POMDPs)
(Kaelbling et al. 1998). Very reliable robot archi-
tectures have used POMDPs for robot navigation in
unconstrained terrain. This includes corridor naviga-
tion on a nomad-class RWI delivery robot that re-
ceived navigation requests from users worldwide via the
World Wide Web and has traveled over 240 kilome-
ters in a four-year period (Simmons and Koenig 1995;
Koenig et al. 1996; Koenig and Simmons 1998b;
Koenig 1997b). Similar POMDP-based navigation ar-
chitectures (sometimes also called Markov navigation or
Markov localization) have also been explored at Carnegie
Mellon University (Burgard et al. 1996), Brown Univer-
sity (Cassandra et al. 1996), Michigan State University
(Mahadevan et al. 1998), SRI International (Konolige
and Chou 1999), and others, with interesting recent de-
velopments (Thrun et al. 2001). An overview can be
found in (Thrun 2000). POMDPs over world states (for
example, poses) can be expressed as MDPs over belief
states, where the belief states are now probability distribu-
tions over the world states rather than sets of world states.
Consequently, POMDPs can be solved with RTDP-BEL
(Bonet and Geffner 2000), an application of Probabilis-
tic LRTA* to the discretized belief space, provided that
they are sufficiently small. Other solution methods for
POMDPs include combinations of Partially Observable
Value Approximation (SPOVA) (Parr and Russell 1995)
or forward search (Hansen 1998) with agent-centered
search, although the application of these agent-centered
search methods to robot navigation is an area of current re-
search because the resulting POMDPs are often too large
to be solved by current methods. However, they could,
in principle, be applied to localization and goal-directed
navigation with uncertainty about the initial pose. They
differ from the methods that we discussed in that context
in that they are more general and have a different (and
often preferable) planning objective. On the other hand,



their state spaces are typically larger or even continuous.

Properties of Agent-Centered Search

Agent-centered search methods are related to various plan-
ning methods. For example, they are related to off-
line forward-chaining (progression) planners. Forward-
chaining planners can be competitive with backward-
chaining (regression), means-ends, and partial-order plan-
ners (Bacchus and Kabanza 1995). They have the advantage
that the search concentrates on parts of the state space that
are guaranteed to be reachable from the current state of the
agent. Domain-specific control knowledge can easily be
specified for them in a declarative way that is modular and
independent of the details of the planning method. They
can easily utilize this knowledge because they have com-
plete knowledge of the state at all times. They can also
utilize powerful representation languages since it is easier
to determine the successor state of a completely known state
than the predecessor state of a state (such as the goal) that is
only partially known. Most agent-centered search methods
share these properties with forward-chaining planners since
they use forward search to generate and search the local
search spaces.

Agent-centered search methods are also related to on-line
planners. The proceedings of the AAAI-97 Workshop on
On-Line Search give a good overview of planning methods
that interleave planning and plan execution (Koenig et al.
1997). For example, there is a large body of theoretical work
on robot localization and exploration in the area of theoret-
ical robotics and theoretical computer science. These the-
oretical planning methods can outperform greedy heuristic
planning methods. For example, all agent-centered search
methods that we discussed in the context of exploration
and goal-directed navigation in unknown terrain, even the
ones with maximal local search spaces, have been proven
not to minimize the execution cost in the worst case, al-
though their execution costs are small for typical navigation
tasks encountered in practice (Koenig and Smirnov 1996;
Koenig 1999; Koenig et al. 2001a). A similar statement
also holds for the agent-centered search methods that we
discussed in the context of localization and goal-directed
navigation with uncertainty about the initial location (Tovey
and Koenig 2000). We explain the success of agent-centered
search methods despite this disadvantage with their desir-
able properties, some of which we list in the following:

� Theoretical Foundation: Unlike many existing ad-hoc
planning methods that interleave planning and plan exe-
cution, many agent-centered search methods have a solid
theoretical foundation, that allows one to characterize
their behavior analytically. For example, they are guar-
anteed to reach a goal state under realistic assumptions
and their execution cost can be analyzed formally.

� Anytime Property: Any-time contract algorithms (Rus-
sell and Zilberstein 1991) are planning methods that can
solve planning tasks for any given bound on their planning

time, and their solution quality increases with the avail-
able planning time. Many agent-centered search methods
allow for fine-grained control over how much planning to
perform between plan executions by varying the sizes of
their local search spaces. Thus, they can be used as any-
time contract algorithms for determining which action to
execute next, which allows them to adjust the amount of
planning performed between plan executions to the plan-
ning and execution speeds of robots or the time a player
is willing to wait for a game-playing program to make a
move.

� Heuristic search control: Different from chronologi-
cal backtracking, that can also be used for goal-directed
navigation, many agent-centered search methods can use
heuristic functions in form of approximations of the goal
distances of the states to focus planning which can re-
duce the planning cost without increasing the execution
cost, or reduce the execution cost without increasing the
planning cost.

� Robustness: Agent-centered search methods are
general-purpose (domain-independent) planning meth-
ods that seem to work robustly across domains. For
example, they can handle uncertainty, including actuator
and sensor noise.

� Simple integration into agent architectures: Many
agent-centered search methods are simple to implement
and integrate well into complete agent architectures.
Agent-centered search methods are robust towards the
inevitable inaccuracies and malfunctions of other archi-
tecture components, are reactive to the current situation,
and do not need to have control of the agent at all times,
which is important because planning methods should only
provide advice on how to act and work robustly even if
that advice is ignored from time to time (Agre and Chap-
man 1987). For example, if a robot has to re-charge its
batteries during exploration, then it might have to pre-
empt exploration and move to a known power outlet.
Once restarted, the robot should be able to resume explo-
ration from the power outlet, instead of having to return to
the location where exploration was stopped (which could
be far away) and resume its operation from there. Many
agent-centered search methods exhibit this behavior au-
tomatically.

� Performance improvement with experience: Many
agent-centered search methods amortize learning over
several planning episodes, which allows them to deter-
mine a plan with a suboptimal execution cost fast and then
improve the execution cost as they solve similar planning
tasks, until the execution cost is minimal or satisficing.
This is an important property because no planning method
that executes actions before their consequences are com-
pletely known can guarantee a small execution cost right
away, and planning methods that do not improve their
execution cost do not behave efficiently in case similar
planning tasks unexpectedly repeat. For example, when
a mobile robot plans a trajectory for a delivery task it
is important that the robot solves the delivery task suf-



ficiently fast, that is, with a small sum of planning and
execution cost, which might prevent it from minimizing
the execution cost right away. However, if the robot has
to solve the delivery task repeatedly, it should be able to
follow a minimal-cost path eventually.

� Distributed Search: If several agents are available, then
they can often solve planning tasks cooperatively by per-
forming an individual agent-centered search each but
sharing the search information, thereby reducing the ex-
ecution cost. For example, off-line planning tasks can
be solved on several processors in parallel by running
an LRTA*-like real-time search method on each proces-
sor and letting all LRTA*-like real-time search methods
share their values (Knight 1993). Exploration tasks can be
solved with several robots by running an agent-centered
search method, such as uninformed LRTA* with maxi-
mal local search spaces, on each robot and let them share
the maps. More complex exploration schemes are also
possible (Simmons et al. 1997). Finally, we have al-
ready discussed that terrain coverage tasks can be solved
with several ant robots by running LRTA*-like real-time
search methods on each robot and let them share the
markings.

While these properties can make agent-centered search
methods the planning methods of choice, it is important
to realize that they are not appropriate for every planning
task. For example, agent-centered search methods execute
actions before their consequences are completely known
and thus cannot guarantee a small execution cost when they
solve a planning task for the first time. If a small execu-
tion cost is important, one might have to perform complete
searches before starting to execute actions. Furthermore,
agent-centered search methods trade off the planning and
execution costs but do not reason about the trade-off explic-
itly. In particular, it can sometimes be beneficial to update
state values that are far away from the current state, and
forward searches might not be able to detect these states
efficiently. In these cases, one can make use of ideas from
limited rationality and reinforcement learning (DYNA), as
we have discussed. Finally, some agent-centered search
methods potentiallyhave to store a value in memory for each
visited state and thus can have large memory requirements
if the initial state values do not focus the search well. In
some nondeterministic domains, one can address this prob-
lem by increasing their lookahead sufficiently, as we have
discussed. In other cases, one might have to use search
methods that guarantee a small memory consumption, such
as linear-space best-first search.

On the other hand, there are also a large number of plan-
ning tasks for which agent-centered search methods are well
suited, including the navigation tasks discussed in this ar-
ticle. When designing agent-centered search methods, one
has to make several design decisions such as how much to
plan between plan executions, how many actions to execute
between planning, and how to avoid cycling forever.

� How much to plan between plan executions: The

amount of planning between plan executions can be lim-
ited by time constraints or what is known about the do-
main. Sometimes a larger amount of planning can guar-
antee that the agent does not execute actions from which
it cannot recover and that it makes progress towards a
goal state.
The amount of planning between plan executions also
influences the planning and execution costs and thus
also the sum of planning and execution cost. Agent-
centered search methods with a sufficiently large amount
of planning between plan executions perform a complete
search without interleaving planning and plan execution
and move from the start state with minimal execution
cost to a goal state. Typically, reducing the amount of
planning between plan executions reduces the (overall)
planning cost but increases the execution cost (because
the agent-centered search methods select actions based
on less information), although theoretically the planning
cost could also increase if the execution cost increases
sufficiently (because the agent-centered search methods
need to plan more frequently). The amount of planning
between plan executions that minimizes the sum of plan-
ning and execution cost depends on the planning and
execution speeds of the agent (Koenig 2000).

– Fast-acting agents: Less planning between plan exe-
cutions tends to benefit agents whose execution speed
is sufficiently fast compared to their planning speed
since the resulting increase in execution cost is small
compared to the resulting decrease in planning cost,
especially if heuristic knowledge focuses planning suf-
ficiently well. For example, the sum of planning and
execution cost approaches the planning cost as the ex-
ecution speed increases, and the planning cost can of-
ten be reduced by reducing the amount of planning
between plan executions. Agents that are only simu-
lated, such as the fictitious agents discussed in the sec-
tion on “Deterministic Domains,” are examples of fast-
acting agents. Since fictitious agents move in almost no
time, local search spaces that correspond to lookaheads
of only one or two action executions often minimize
the sum of planning and execution cost (Korf 1990;
Knight 1993).

– Slowly-acting agents: More planning between plan
executions is needed for agents whose planning speed
is sufficiently fast compared to their execution speed.
For example, the sum of planning and execution cost
approaches the execution cost as the planning speed
increases, and the execution cost can often be reduced
by increasing the amount of planning between plan
executions. Most robots are examples of slowly-acting
agents. Thus, while we used LRTA* with minimal
local search spaces in Figure 3 to illustrate how LRTA*
works, using small lookaheads is actually not a good
idea on robots.

� How many actions to execute between planning:
Agent-centered search methods can execute actions until
they reach a state just outside of the local search space.



They can also stop executing actions at any time after
they have executed the first action. Executing more ac-
tions typically results in smaller planning costs (because
the agent-centered search methods need to plan less fre-
quently), while executing fewer actions typically results
in smaller execution costs (because the agent-centered
search methods select actions based on more informa-
tion).

� How to avoid cycling forever: Agent-centered search
methods have to ensure that they do not cycle without
making progress towards a goal state. This is a poten-
tial problem since they execute actions before their con-
sequences are completely known. The agent-centered
search methods then have to ensure both that it remains
possible to achieve the goal and that they eventually do
so. The goal remains achievable if no actions exist whose
execution makes it impossible to achieve the goal, if the
agent-centered search methods can avoid the execution of
such actions in case they do exist, or if the agent-centered
search methods have the ability to reset the agent into the
start state. Actually achieving the goal is more difficult.
Often, a sufficiently large amount of planning between
plan executions can guarantee an information gain and
thus progress. Agent-centered search methods can also
store information in memory to prevent cycling forever.
LRTA*-like real-time search methods, for example, store
a value in memory for each visited state. Finally, it is
sometimes possible to break cycles by randomizing the
action-selection process slightly, possibly together with
resetting the agents into a start state (random restart) after
the execution cost has become large.

Conclusions

In this article, we have argued that agent-centered search
methods are efficient and broadly applicable planning meth-
ods in both single-agent and multi-agent domains includ-
ing traditional search, STRIPS-type planning, moving-
target search, planning with totally and partially observable
Markov decision process problems, reinforcement learning,
constraint satisfaction, and robot navigation. We illustrated
this planning paradigm with several agent-centered search
methods that have been developed independently in the lit-
erature and have been used to solve real-world planning
tasks as part of complete agent architectures.
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