
Any-Angle Path Planning

Alex Nash
Northrop Grumman
Integrated Systems

Carson, California 90746, USA
alex.nash@ngc.com

Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, California 90089-0781, USA

skoenig@usc.edu

Abstract

In robotics and video games, one often discretizes
continuous terrain into a grid with blocked and
unblocked grid cells and then uses path-planning
algorithms to find a shortest path on the result-
ing grid graph. This path, however, is typically
not a shortest path in the continuous terrain. In
this overview article, we discuss a path-planning
methodology for quickly finding paths in continu-
ous terrain that are typically shorter than shortest
grid paths. Any-angle path-planning algorithms
are variants of the heuristic path-planning algo-
rithm A* that find short paths by propagating in-
formation along grid edges (like A*, to be fast)
without constraining the resulting paths to grid
edges (unlike A*, to find short paths).

Introduction

Path planning is central to many real-world appli-
cations since many fundamental problems in com-
puter science can be modeled as path-planning
problems (LaValle 2006). In robotics and video
games, (continuous) terrain is often discretized
into grids with blocked and unblocked grid cells
and from there into grid graphs (Tozour 2004;
Rabin 2000; Chrpa & Komenda 2011; Björnsson
et al. 2003; Nash 2012). Our objective is to find
short unblocked paths from given start vertices to
given goal vertices. All path-planning algorithms
trade off differently with respect to their memory
consumption, the runtimes of their searches and
the lengths of the resulting paths. We are inter-
ested only in their runtimes and path lengths since
grids typically fit into memory. We discuss only
path-planning algorithms that are correct (that is,
if they find a path from the start vertex to the
goal vertex, it is unblocked) and complete (that is,
if there exists an unblocked path from the start

Copyright c© 2013, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

vertex to the goal vertex, they find one) but not
guaranteed to be optimal (that is, not guaranteed
to find a shortest unblocked path from the start
vertex to the goal vertex), unless stated otherwise.
For example, the heuristic path-planning algorithm
A* (Hart, Nilsson, & Raphael 1968) finds shortest
grid paths on grids (that is, shortest paths con-
strained to grid edges). However, shortest grid
paths can be unnatural looking and longer than
shortest paths because their heading changes are
artificially constrained to specific angles, which can
result in heading changes in freespace (that is, ter-
rain away from blocked grid cells). Smoothing
shortest grid paths (that is, removing unnecessary
heading changes from them) after the search typ-
ically shortens the paths but does not change the
path topologies (that is, the manner in which they
circumnavigate blocked grid cells). In this overview
article, we discuss a path-planning methodology for
quickly finding paths that are typically shorter than
shortest grid paths. Any-angle path-planning algo-
rithms are variants of A* that interleave the A*
search and the smoothing. They propagate infor-
mation along grid edges (like A*, to be fast) with-
out constraining the resulting paths to grid edges
(unlike A*, to find short paths). The fact that
the heading changes on their paths are not arti-
ficially constrained to specific angles explains their
name, which was coined by Nash et al. (Nash et al.
2007). We first analyze how much longer shortest
grid paths can be than shortest paths and then dis-
cuss any-angle path-planning algorithms in known
2D, known 3D and unknown 2D terrain.

Assumptions

We use video games as the primary motivating
application although any-angle path planning (in
the form of Field D*) has also been used on mo-
bile robots, including the Mars rovers Spirit, Op-
portunity and Curiosity (Carsten et al. 2009;



Goal


Start


(a)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(b)

Figure 1: Path-Planning Example in 2D Terrain
(a) and Corresponding 2D Grid (b) (Daniel et al.
2010)

Ferguson 2013). We assume that the terrain is
a grid with grid cells that are either completely
blocked (grey) or unblocked (white). Thus, there is
no discretization bias (or, synonymously, digitiza-
tion bias).1 Vertices are placed at either the corners
or centers of grid cells. Grid edges connect all pairs
of visible neighbors with straight lines, where two
vertices are visible from each other iff the straight
line from one vertex to the other vertex does not
traverse the interior of any blocked grid cell and
does not pass between blocked grid cells that share
a side.2

Figure 1 shows a path-planning example that we
use throughout this article. Its terrain is dis-
cretized into a 2D 8-neighbor square grid with ver-
tices placed at the corners of grid cells. The start
vertex is A4, and the goal vertex is C1. Figure
2(a) shows a shortest grid path, and Figure 2(b)
shows a shortest path. The unnecessary heading
change in freespace on the shortest grid path re-
sults in an unnatural-looking trajectory for agents
such as robots and game characters and makes the
shortest grid path longer than the shortest path.

1Figure 9(a) depicts an example in which there is
discretization bias.

2We allow the straight line to pass through
diagonally-touching blocked grid cells but can easily re-
lax this restriction.

Goal


Start


(a)

Goal


Start


(b)

Figure 2: Shortest Grid Path (a) and Shortest Path
(b) (Daniel et al. 2010)

Path-Length Analysis

We now sketch an analysis which determines how
much longer shortest grid paths can be than short-
est paths (with the same endpoints) (Nash 2012). It
is more general than previous analyses (Nagy 2003;
Ferguson & Stentz 2006) because it allows grid
cells to be blocked and applies to different types of
grids. We differentiate among several types of (un-
blocked) paths, namely grid paths (that is, paths
formed by line segments whose endpoints are visi-
ble neighbors), vertex paths (that is, paths formed
by line segments whose endpoints are visible ver-
tices) and paths (that is, paths formed by line seg-
ments whose endpoints are either visible vertices or
non-vertex locations). Shortest paths are no longer
than shortest vertex paths, per definition of vertex
paths (since they are paths). Shortest vertex paths
are no longer than shortest grid paths, per defi-
nition of grid paths (since they are vertex paths).
The analysis proceeds in two steps:

• First, for every line segment of a shortest vertex
path, one shows that the ratio of the lengths of
any shortest grid path with the same endpoints
as the line segment and the line segment itself is
not affected by which grid cells are blocked. This
is done by showing that a shortest grid path ex-
ists that traverses only the interior of those grid
cells that the line segment traverses as well. Since
these grid cells cannot be blocked, the analysis



Goal


Start


A


B


C


1
 2
 3
 4
 5


D


E


F


G


6
 7
 8
 9
 10
 11
 12
 13
 14
 15


(a)

Goal


Start


A


B


C


1
 2
 3
 4
 5


D


E


F


G


6
 7
 8
 9
 10
 11
 12
 13
 14
 15


(b)

Shortest grid path

Shortest path
 Traversed grid cells


Figure 3: Shortest Grid Paths with Different Path
Topologies (a and b) (Nash 2012)

does not depend on which grid cells are blocked.
Figure 3(a) illustrates this property with a path-
planning example where the terrain is discretized
into a 2D 8-neighbor square grid with vertices
placed at the corners of grid cells. The start ver-
tex is G1, and the goal vertex is A15.

• Second, for all possible endpoints of a line seg-
ment, one maximizes the worst-case ratio of the
lengths of any shortest grid path with the same
endpoints as the line segment and the line seg-
ment itself. This can be done by solving an op-
timization problem with Lagrange multipliers.

This analysis provides upper bounds on the worst-
case ratios of the lengths of shortest grid paths and
shortest vertex paths (that is, the ratio has at most
this value for every path-planning problem). These
bounds are either tight (that is, attainable in the
sense that there exists a path-planning problem for
which the ratio has this value) or asymptotically
tight (that is, attainable in the limit as the lengths
of the shortest grid paths increase). Shortest vertex
paths are of the same lengths as shortest paths on
2D grids with vertices placed at the corners of grid
cells (Figure 2(b)), due to our simplifying assump-
tion that grid cells are either completely blocked
or unblocked. In this case, the analysis applies
unchanged to the worst-case ratios of the lengths
of shortest grid paths and shortest paths. Oth-

Triangular Grid
 Square Grid
 Hexagonal Grid


3-Neighbor Triangular Grid
 4-Neighbor Square Grid
 6-Neighbor Hexagonal Grid


Solid Red
 Arrows


6-Neighbor Triangular Grid
 8-Neighbor Square Grid
 12-Neighbor Hexagonal Grid


Solid Red
 and
 Dashed Green
 Arrows


(a)

Cubic Grid


6-Neighbor Cubik Grid


Solid Red
 Arrows


26-Neighbor Cubik Grid


Solid Red
 and
 Dashed Green
 Arrows


(b)

Figure 4: Regular Polygons (a) and Regular Poly-
hedron (b) (Nash 2012)

erwise, the analysis provides (approximate) lower
bounds on these worst-case ratios (that is, there
exists a path-planning problem for which the ra-
tio has (approximately) at least this value) because
shortest paths can then be shorter than shortest
vertex paths. In 2D or 3D, shortest paths can be
shorter than shortest vertex paths if vertices are
placed at the centers of grid cells (the shortest ver-
tex paths then have heading changes in freespace
rather than grid cell corners). In 3D, shortest paths
can be shorter than shortest vertex paths because
the shortest paths can contain heading changes at
either the corners or sides of blocked grid cells (we
explain this more clearly under “Known 3D Ter-
rain”). Finally, in both 2D and 3D, shortest paths
can be shorter than shortest vertex paths if grid
cells are not guaranteed to be completely blocked
or unblocked.

Only three types of regular (equilateral and equian-
gular) polygons tessellate 2D terrain, namely tri-



Dimension Regular Grid Neighbors Ratio In Relation to Shortest Vertex Paths In Relation to Shortest Paths

2D triangular grid with 3-neighbor = 100% tight tight

vertices at corners 6-neighbor ≈ 15% tight tight

square grid with 4-neighbor ≈ 41% tight tight

vertices at corners 8-neighbor ≈ 8% asymptotically tight asymptotically tight

hexagonal grid with 6-neighbor ≈ 15% tight lower bound

vertices at centers 12-neighbor ≈ 4% asymptotically tight approximate lower bound

3D cubic grid with 6-neighbor ≈ 73% tight lower bound

vertices at corners 26-neighbor ≈ 13% asymptotically tight approximate lower bound

Table 1: Path-Length Analysis of Shortest Grid Paths (Nash 2012)

angles (resulting in triangular grids), squares (re-
sulting in square grids) and hexagons (resulting in
hexagonal grids) (Figure 4(a)). Table 1 shows re-
sults for 2D 3-neighbor (solid red arrows in Fig-
ure 4(a)) and 2D 6-neighbor (solid red and dashed
green arrows in Figure 4(a)) triangular grids with
vertices placed at the corners of grid cells, 2D
4-neighbor (solid red arrows) and 2D 8-neighbor
(solid red and dashed green arrows) square grids
with vertices placed at the corners of grid cells
(the 8-neighbor variant of which is, for example,
used by robots (Carsten et al. 2009) and the
video game Company of Heroes by Relic Enter-
tainment) and 2D 6-neighbor (solid red arrows) and
2D 12-neighbor (solid red and dashed green arrows)
hexagonal grids with vertices placed at the centers
of grid cells (the 6-neighbor variant of which is, for
example, used by robots (Chrpa & Komenda 2011)
and the video game Sid Meier’s Civilization V by
Firaxis Games). Only one type of regular polyhe-
dron tessellates 3D terrain, namely cubes (resulting
in cubic grids) (Figure 4(b)). Table 1 shows results
for 3D 6-neighbor (solid red arrows in Figure 4(b))
and 3D 26-neighbor (solid red and dashed green ar-
rows in Figure 4(b)) cubic grids with vertices placed
at the corners of grid cells.

Most percentages listed in the table are approxi-
mate because the actual percentages are irrational.
For example, shortest grid paths on 2D 8-neighbor
square grids with vertices placed at the corners of

grid cells can be at least a factor of 2/
√

2 +
√
2 ≈

1.08 (that is, approximately eight percent) longer
than shortest paths (but not more), while shortest
grid paths on 3D 26-neighbor cubic grids with ver-
tices placed at the corners of grid cells can be at

least a factor of
√

9− 2
√
2− 2

√
2
√
3 ≈ 1.13 (that

is, approximately 13 percent) longer than shortest
paths. These results suggest that it might be neces-
sary to find shorter paths than shortest grid paths.
In case the reader feels as though these percentages
are insignificant, it is important to understand that
on non-grid terrain discretizations (Figure 9) the
worst-case ratios of the lengths of shortest “grid”

paths and shortest paths can be larger.

We use 2D 8-neighbor square grids and 3D 26-
neighbor cubic grids throughout the remainder of
this article, both with vertices placed at the corners
of grid cells. These cases allow us to generalize from
2D to 3D terrain, and their bounds on the worst-
case ratios of the lengths of shortest grid paths and
shortest paths are sufficiently small to make path
planning on grids a strong competitor of any-angle
path planning.

A*

All path-planning algorithms that we discuss are
based on the heuristic path-planning algorithm A*
(Hart, Nilsson, & Raphael 1968), which is probably
the most popular path-planning algorithm in arti-
ficial intelligence and widely used in robotics and
video games. Figure 5(a) shows the pseudo code
of A*.3 For the description of A*, we assume that
all paths are constrained to the edges of the graph
given by the neighbor relationship of vertices. To
focus its search, A* requires a user-provided h-value
(or, synonymously, heuristic value) h(s) for every
vertex s, that is an estimate of the goal distance of
s (that is, the length of a shortest path from s to
the goal vertex). The h-values are required to be
consistent (that is, satisfy the triangle inequality)
for our version of the pseudo code and, as a conse-
quence, are admissible (that is, do not overestimate
the goal distances of the vertices). A* maintains
two values for every vertex s: (1) Its g-value g(s)
is an estimate of the start distance of s (that is, the

3In the pseudo code, sstart is the start vertex, and
sgoal is the goal vertex. lineofsight(s, s′) is true iff ver-

tices s and s′ are visible from each other. nghrvis(s)
is the finite set of visible neighbors of vertex s.
open.Insert(s, x) inserts vertex s with key x into pri-
ority queue open, open.Remove(s) removes s from pri-
ority queue open, and open.Pop() removes a vertex with
the smallest key from priority queue open and returns
it. Finally, argminx∈X f(x) returns a value y such that
minx∈X f(x) = y.



Main()1

open:= closed:= ∅;2

g(sstart) := 0;3

parent(sstart) := sstart;4

open.Insert(sstart, g(sstart) + h(sstart));5

while open 6= ∅ do6

s := open.Pop();7

if s = sgoal then8

return “path found”;9

closed:= closed∪ {s};10

foreach s′ ∈ nghbrvis(s) do11

if s′ 6∈ closed then12

if s′ 6∈ open then13

g(s′) := ∞;14

parent(s′) := NULL;15

UpdateVertex(s, s′);16

return “no path found”;17

end18

UpdateVertex(s, s’)19

gold := g(s′);20

ComputeCost(s, s′);21

if g(s′) < gold then22

if s′ ∈ open then23

open.Remove(s′);24

open.Insert(s′, g(s′) + h(s′));25

end26

ComputeCost(s, s’)27

/* Path 1 */28

if g(s) + c(s, s′) < g(s′) then29

parent(s′) := s;30

g(s′) := g(s) + c(s, s′);31

end32

(a) A*

Main()1

open:= closed:= ∅;2

g(sstart) := 0;3

parent(sstart) := sstart;4

open.Insert(sstart, g(sstart) + h(sstart));5

while open 6= ∅ do6

s := open.Pop();7

if s = sgoal then8

return “path found”;9

closed:= closed∪ {s};10

foreach s′ ∈ nghbrvis(s) do11

if s′ 6∈ closed then12

if s′ 6∈ open then13

g(s′) := ∞;14

parent(s′) := NULL;15

UpdateVertex(s, s′);16

return “no path found”;17

end18

UpdateVertex(s, s’)19

gold := g(s′);20

ComputeCost(s, s′);21

if g(s′) < gold then22

if s′ ∈ open then23

open.Remove(s′);24

open.Insert(s′, g(s′) + h(s′));25

end26

ComputeCost(s, s’)27

if lineofsight(parent(s), s′) then28

/* Path 2 */29

if g(parent(s)) + c(parent(s), s′) < g(s′)30

then
parent(s′) := parent(s);31

g(s′) := g(parent(s))+c(parent(s), s′);32

else33

/* Path 1 */34

if g(s) + c(s, s′) < g(s′) then35

parent(s′) := s;36

g(s′) := g(s) + c(s, s′);37

end38

(b) Theta*

Main()1
open:= closed:= ∅;2
g(sstart) := 0;3
parent(sstart) := sstart;4
open.Insert(sstart, g(sstart) + h(sstart));5
while open 6= ∅ do6

s := open.Pop();7
SetVertex(s);8
if s = sgoal then9

return “path found”;10

closed:= closed∪ {s};11
foreach s′ ∈ nghbrvis(s) do12

if s′ 6∈ closed then13
if s′ 6∈ open then14

g(s′) := ∞;15
parent(s′) := NULL;16

UpdateVertex(s, s′);17

return “no path found”;18
end19
UpdateVertex(s, s’)20

gold := g(s′);21
ComputeCost(s, s′);22
if g(s′) < gold then23

if s′ ∈ open then24
open.Remove(s′);25

open.Insert(s′, g(s′) + h(s′));26

end27
ComputeCost(s, s’)28

/* Path 2 */29
if g(parent(s)) + c(parent(s), s′) < g(s′) then30

parent(s′) := parent(s);31
g(s′) := g(parent(s)) + c(parent(s), s′);32

end33
SetVertex(s)34

if NOT lineofsight(parent(s), s) then35
/* Path 1*/36
parent(s) :=37
argmin

s′∈nghbrvis(s)∩closed(g(s′) + c(s′, s));

g(s) := min
s′∈nghbrvis(s)∩closed(g(s

′) + c(s′, s));38

end39

(c) Lazy Theta*

Figure 5: Pseudo Code (Nash 2012)

length of a shortest path from the start vertex to
s), namely the length of the shortest path from the
start vertex to s that it has found so far. A* uses its
g-value to calculate its f-value f(s) = g(s) + h(s),
which is an estimate of the length of a shortest path
from the start vertex via s to the goal vertex. (2)
Its parent parent(s) is used to extract the resulting
path after the A* search terminates. A* also main-
tains two global data structures: (1) The open list
open is a priority queue that contains the vertices
that A* considers to expand with their f-values as
their keys. (2) The closed list closed is a set that
contains the vertices that A* has already expanded
and thus can be used to ensure that all vertices
are expanded at most once. A* expands all ver-
tices at most once and thus does not depend on the
closed list if the h-values are consistent (Pearl 1985)
since the f-values of all vertices along all branches
of its search trees are then non-decreasing. How-
ever, any-angle path-planning algorithms typically
do not have this property and thus rely on the
closed list to prevent them from expanding vertices
multiple times.

A* sets the g-value of every vertex to infinity and

the parent of every vertex to NULL when it en-
counters the vertex for the first time [lines 14-15].
It sets the g-value of the start vertex to zero and
the parent of the start vertex to the start vertex
[lines 3-4]. It sets the open and closed lists to the
empty list and then inserts the start vertex into
the open list with its f-value as its key [lines 2 and
5]. A* then repeatedly executes the following pro-
cedure: If the open list is empty, then A* reports
that there exists no path [line 17]. Otherwise, it re-
moves a vertex s with the smallest f-value from the
open list [line 7]. (It typically breaks ties among
vertices with the same f-value in the open list in
favor of vertices with larger g-values since this of-
ten reduces the number of vertex expansions and
thus also the run time.) If this vertex is the goal
vertex, then A* reports that it has found a path
[line 9]. Path extraction (not shown in the pseudo
code) follows the parents from the goal vertex to
the start vertex to retrieve a path from the start
vertex to the goal vertex in reverse, the length of
which is equal to the g-value of the goal vertex.
Otherwise, A* expands the vertex by inserting it
into the closed list [line 10] and generating each of
its unexpanded visible neighbors s′, as follows: A*



checks whether g(s) + c(s, s′) (where c(s, s′) > 0 is
the distance from s to s′) is smaller than g(s′). If
so, then it sets the parent of s′ to s [line 30], sets
g(s′) to g(s) + c(s, s′) [line 31] and finally inserts
s′ into the open list with its f-value as its key [line
25] or, if it was already in the open list, sets its
key to its f-value [lines 23-25]. A* then repeats this
procedure.

To summarize, A* updates the g-value and parent
of each unexpanded visible neighbor s′ of the vertex
s that is currently being expanding as follows (in
procedure ComputeCost): A* considers setting the
parent of s′ to s, resulting in a path of length g(s)+
c(s, s′) from the start vertex to s and from there to
s′ in a straight line. A* updates the g-value and
parent of s′ if the length of this path is shorter
than the length g(s′) of the shortest path from the
start vertex to s′ that it has found so far, namely
the path that results (in reverse) from following the
parents from s′ to the start vertex.

Known 2D Terrain

Many agents operate in known 2D terrain.

Conventional Path-Planning Algorithms

We first discuss how A* operates on grid graphs
and visibility graphs. The resulting trade-offs be-
tween the runtimes of its searches and the lengths
of the resulting paths are at opposite ends of the
spectrum. We then briefly discuss other conven-
tional path-planing algorithms.

A* on Grid Graphs: A* on Grid Graphs is fast
since it propagates information along grid edges,
the number of which grows at most linearly in the
number of grid cells (or vertices). It also finds
shortest grid paths if the h-values are consistent,
is simple and applies to every graph embedded in
2D or 3D terrain. Therefore, it is not surprising
that A* on Grid Graphs is popular (Björnsson et al.
2003; Yap 2002). For example, the game characters
in the video games Warcraft II: Tides of Darkness
by Blizzard Entertainment and Climax Studios and
Starcraft by Blizzard Entertainment and Mass Me-
dia seem to move on the grid edges of 2D 8-neighbor
square grids.

Figure 6 shows A* on Grid Graphs in operation on
a 2D 8-neighbor square grid with vertices placed at
the corners of grid cells. The start vertex is A4,
and the goal vertex is C1. We use the straight-line
distances as h-values. Arrows point to the parents
of vertices. A red circle indicates the vertex that

A


B


1
 4

Start


5


C

Goal


2
 3


Shortest path


Figure 7: Visibility Graph (Daniel et al. 2010)

is currently being expanded, and a blue arrow in-
dicates a vertex that is being generated during the
current vertex expansion. A* expands start vertex
A4, followed by B3 and C2. It terminates when it
is about to expand goal vertex C1. Path extraction
then retrieves the shortest grid path [A4, B3, C2,
C1] from start vertex A4 to goal vertex C1.

A* on Grid Graphs can find shortest paths. How-
ever, this is not guaranteed, as shown in Figure 6
where the resulting path has an unnecessary head-
ing change in freespace at C2 and is longer than
the shortest path [A4, B3, C1] from start vertex
A4 to goal vertex C1. We have explained how
much longer shortest grid paths can be than short-
est paths under “Path-Length Analysis.”

A* on Visibility Graphs: One constructs vis-
ibility graphs (Lee 1978; Lozano-Pérez & Wesley
1979) as follows: The vertices are placed at the con-
vex corners of all obstacles and at the locations of
the start and goal vertices. Visibility graph edges
connect all pairs of visible vertices with straight
lines. A* on Visibility Graphs finds shortest paths
in 2D terrain with polygonal obstacles (Figure 7)
(Lozano-Pérez & Wesley 1979). A shortest path
from the start vertex to the goal vertex is part of
the visibility graph and, since visibility graphs are
a subset of the set of all vertex paths in 2D terrain
with vertices placed at the corners of grid cells, also
a vertex path on 2D grids with vertices placed at
the corners of grid cells, which is the reason why
shortest vertex paths are of the same lengths as
shortest paths on 2D grids with vertices placed at
the corners of grid cells.

However, A* on Visibility Graphs also has disad-
vantages. It can be slow since it propagates infor-
mation along visibility graph edges, the number of
which can grow quadratically in the number of grid
cells, resulting in A* searches with large branching
factors and many visibility checks. Sophisticated
variants of A* on Visibility Graphs (Liu & Arimoto



Goal


Start
A


B


C


1
 2
 3
 4
 5


(a)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(b)

Goal


Start

A


B


C


1
 2
 3
 4
 5


(c)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(d)

Arrows point to the parent of a vertex

Vertex currently being expanded


Figure 6: Execution Trace of A* on Grid Graphs (Nash 2012)

1992; Mitchell & Papadimitriou 1991) can decrease
the number of visibility checks. Path-planning
algorithms such as Continuous Dijkstra and its
variants (Mitchell, Mount, & Papadimitriou 1987;
Hershberger & Suri 1999) as well as the recent Anya
(Harabor & Grastien 2013) (which requires neither
preprocessing nor large amounts of memory) also
find shortest paths but have not yet been thor-
oughly evaluated experimentally.

Probabilistic Path-Planning Algorithms:
Probabilistic path-planning algorithms, such as
probabilistic roadmaps (Kavraki et al. 1996), or
their special case, rapidly exploring random trees
(LaValle & Kuffner 2001), discretize terrain by
placing vertices randomly in the terrain. Roadmap
edges connect some or all pairs of visible vertices
with straight lines. Probabilistic path-planning
algorithms then find paths on the resulting graphs
with A* (or some other conventional path-planning
algorithm) or, in case of trees, by reading them off
directly. They are only probabilistically complete,
can find paths that have heading changes in
freespace and can be slow in the presence of
narrow passages. Some researchers now advocate
a systematic (rather than random) sampling of
terrain to determine the locations of the vertices

to mitigate these shortcomings (Lindemann &
LaValle 2004).

Any-Angle Path-Planning Algorithms

We now discuss any-angle path-planning algo-
rithms. A* on Grid Graphs finds long paths but is
fast, while A* on Visibility Graphs finds short paths
but is slow. Any-angle path-planning algorithms
try to combine the best of both worlds. They are
variants of A* that find paths by propagating infor-
mation along grid edges (like A* on Grid Graphs,
to be fast) without constraining the resulting paths
to grid edges (like A* on Visibility Graphs, to find
short paths). They are not typically guaranteed to
find shortest paths. The asterisk in their names
thus does not denote their optimality but rather
their similarity to A*. Any-angle path-planning al-
gorithms should aim for the following three prop-
erties:

• Efficiency: Any-angle path-planning algorithms
should be faster than A* on Visibility Graphs
and find shorter paths than A* on Grid Graphs
(Figure 8). Different any-angle path-planning al-
gorithms trade off differently between the run-
times of their searches and the lengths of the



Path Length


R

u


n
t

i
m


e


A* on Visibility Graphs


A* on Grid
Graphs


Any-Angle

Path-Planning


Algorithms


Figure 8: Runtimes versus Path Lengths

resulting paths. We do not provide a com-
prehensive quantitative analysis of this trade-
off since comprehensive experimental compar-
isons are currently missing from the literature
although we broadly average over all reported
results to give the reader an approximate idea
of the efficiency of the different any-angle path-
planning algorithms. However, we encourage the
reader to examine the literature themselves be-
fore drawing any conclusions, due to the follow-
ing issues: First, the experimental setups (such
as the type of grid, grid size, placement of blocked
grid cells, locations of start and goal vertices, h-
values and tie-breaking rule for selecting a vertex
from those with the smallest f-value in the open
list) can have large effects on the runtimes of the
searches and the lengths of the resulting paths.
Currently, there is no agreement on standard ex-
perimental setups in the literature. Second, mea-
suring runtimes is especially difficult. Runtime
proxies, such as the number of vertex expansions,
cannot be used since different any-angle path-
planning algorithms perform different operations
when expanding a vertex and thus have differ-
ent runtimes per vertex expansion. Furthermore,
they typically operate on path-planning prob-
lems that fit into memory and are thus small.
Therefore, big-O analyses are not meaningful,
and implementation choices (such as data struc-
tures and coding details) can have large effects
on the runtimes. It is currently unclear how to
address these issues best.

• Simplicity: Any-angle path-planning algo-
rithms should be simple to understand, imple-
ment, debug and extend.

• Generality: Any-angle path-planning algo-
rithms should apply to every graph embedded
in 2D or 3D terrain, independent of the terrain-
discretization technique used. Generality is im-
portant because different video games use dif-
ferent terrain-discretization techniques (Figure
9) (Tozour 2008; Champandard 2010). For ex-
ample, the video games Company of Heroes by
Relic Entertainment and Sid Meier’s Civilization
V by Firaxis Games use regular grids. The video
games Halo 2 by Bungie Studios, Counter-Strike:
Source by Valve Corporation and Metroid Prime
by Retro Studios and Nintendo use navigation
meshes (that is, tessellations of terrain into n-
sided convex polygons). Finally, the video game
MechWarrior 4: Vengeance by FASA Interac-
tive uses circle-based waypoint graphs (that is,
graphs with circles around vertices that indicate
freespace).

A* with Post Smoothing: A simple any-angle
path-planning algorithm can be obtained as follows:
One first executes A* on Grid Graphs and then uses
simple post-processing techniques to smooth (that
is, remove unnecessary heading changes) and thus
shorten the path (at the expense of being slower).
Smoothing has to be fast. There exist many ways to
do that (Thorpe 1984; Botea, Müller, & Schaeffer
2004; Millington & Funge 2009). For example, A*
with Post Smoothing first runs A* on Grid Graphs
to find a shortest grid path and then smoothes this
grid path in a post-processing step by repeatedly
removing a vertex from the path that lies between
two visible vertices on the path. This cannot make
the path longer due to the triangle inequality.

Figure 10 shows A* with Post Smoothing in oper-
ation on a 2D 8-neighbor square grid with vertices
placed at the corners of grid cells. The start ver-
tex is A4, and the goal vertex is C1. It runs A*
on Grid Graphs to find the shortest grid path [A4,
B3, C2, C1]. It removes B2 in the post-processing
step, then unsuccessfully tries to remove B3 and
then terminates. Path extraction then retrieves the
shortest path [A4, B3, C1] from start vertex A4 to
goal vertex C1.

A* with Post Smoothing typically finds shorter
paths than A* on Grid Graphs and can find short-
est paths (Figure 10). However, this is not guar-
anteed. Since its A* search considers only grid
paths, it cannot make informed decisions regarding
other paths (Daniel et al. 2010; Ferguson & Stentz
2006). Smoothing typically leaves the topologies
of the paths unchanged and is thus not guaran-
teed to find shortest paths. For example, the post-
processing step of A* with Post Smoothing does



(a) Regular Grids (b) Navigation Meshes (c) Circle-Based Waypoint Graphs

Figure 9: Terrain Discretizations (Nash 2012)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(a)

Goal


Start

A


B


C


1
 2
 3
 4
 5


(b)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(c)

Figure 10: Execution Trace of A* with Post Smoothing

not smooth the shortest grid path in Figure 3(b) at
all but smoothes the shortest grid path in Figure
3(a) to the shortest path. However, the A* search
of A* with Post Smoothing has no bias for one or
the other and could thus find either shortest grid
path. This suggests that one might want to (either
perform the smoothing before the A* search or) in-
terleave the smoothing with the A* search because
the A* search then considers more than just grid
paths during the search.

There exist many ways of interleaving the A* search
with the smoothing. We discuss three of them in
this article, resulting in different any-angle path-
planning algorithms, namely Block A*, Field D*
and Theta*. They trade off differently between the

runtimes of their searches and the lengths of the
resulting paths. Block A* uses a lookup table with
precomputed short paths within given sets of grid
cells. Field D* uses interpolation between the g-
values of vertices to calculate the g-values of non-
vertex locations, which allows it to set the parent
of a vertex to any vertex or non-vertex location on
the straight line between the neighbors of the ver-
tex. Finally, Theta* checks for shortcuts during the
expansion of a vertex by checking whether it can
set the parent of each unexpanded visible neigh-
bor of the vertex that is currently being expanded
to the parent of the expanded vertex rather than
the expanded vertex itself. We describe Theta* in
more detail than the other any-angle path-planning
algorithms simply because we, as the developers,



Start


Goal


A


B


C


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11


D


E


F


G


H


I


J


K


L


M


N


O


P


Figure 11: Execution Trace of Block A* (Yap et al.
2011b)

are very familiar with it. There likely exist ad-
ditional any-angle path-planning algorithms, both
new ones that still need to be discovered and ex-
isting ones that still need to be characterized as
any-angle path-planning algorithms.

Block A*: Block A* (Yap et al. 2011b; 2011a)
performs the smoothing before the A* search by
using a lookup table with (the lengths of) precom-
puted short paths within given sets of grid cells.
It partitions a 2D square grid into blocks of equal
blocksize, uses an A* search that expands blocks
rather than vertices (by putting blocks onto the
open list) and, for every block, precomputes paths
from every fringe vertex of the block (that is, ev-
ery vertex along the border of the block) to every
other fringe vertex of the block and stores (them
and) their lengths in a lookup table to speed up
the A* search. These paths can be shortest grid
paths, shortest paths or any other paths. Block A*
becomes an any-angle path-planning algorithm if
the paths are precomputed with an any-angle path-
planning algorithm.

Figure 11 shows Block A* in operation on a 2D
square grid with vertices placed at the corners of
grid cells, which is partitioned into six 5×5 blocks.
The lookup table contains (the lengths of) shortest

paths. The start vertex is L4, and the goal ver-
tex is D4. The h-values are straight-line distances.
When Block A* expands the start block K1-K6-P6-
P1 (that is, the block that contains start vertex L4),
it basically sets the g-value of each fringe vertex s
of the start block to the length of a shortest path
from start vertex L4 to s within the start block.
It then generates each of the neighboring blocks
of the start block (that is, the blocks that the start
block shares at least one fringe vertex with), namely
blocks F1-F6-K6-K1, K6-K11-P11-P6 and F6-F11-
K11-K6, as follows: Block A* calculates the small-
est f-value of all those fringe vertices of the neigh-
boring block whose g-values decreased or were cal-
culated for the first time. It inserts the neighboring
block into the open list with this value as its key
or, if it was already in the open list, sets its key to
this value provided this decreases the key. (Thus,
Block A* can re-expand blocks.) Block A* expands
block F1-F6-K6-K1 next since it is the block in the
open list with the smallest key. Block A* basi-
cally sets the g-value of each fringe vertex s of block
F1-F6-K6-K1 to the minimum of the g-value of its
fringe vertex s′ plus the length of a shortest path
from s′ to s within block F1-F6-K6-K1 (which it
retrieves from the lookup table), minimized over
all of its fringe vertices s′. It then generates each
of the neighboring blocks of block F1-F6-K6-K1 as
before, and so on. Finally, path extraction retrieves
the shortest path [L4, L5, H5, H4, J3, J2, F2, D4]
from start vertex L4 to goal vertex D4 (Figure 11).

Block A* is fast and could be extended to all types
of 2D grids but also has disadvantages: Block A*
can find shortest paths (Figure 11). However, this
is not guaranteed. For example, its paths can have
heading changes in freespace (namely, at fringe
vertices) and could thus be smoothed in a post-
processing step. Block A* must be implemented
with care because its lookup table can consume a
lot of memory if it is not compressed. Finally, it can
be difficult to determine the blocksize that trades
off best between the runtimes of its searches and
the lengths of the resulting paths.

Field D*: Field D* (Ferguson & Stentz 2006) is a
variant of D* Lite (Koenig & Likhachev 2005) or D*
(Stentz 1995) that interleaves the smoothing with
the A* search by using interpolation between the
g-values of vertices to calculate the g-values of non-
vertex locations, which allows it to set the parent of
a vertex to any vertex or non-vertex location on the
straight line between the neighbors of the vertex.

The difference between Field D* and A* when they
update the g-value and parent of an (for Field D*
not necessarily) unexpanded visible neighbor s′ of



Start


A


B


C


1
 2
 3
 4
 5


D


X


(a)

Start


A


B


C


1
 2
 3
 4
 5


D


X


(b)

Figure 12: Execution Trace of Field D* (Daniel et
al. 2010)

the vertex s that is currently being expanded, is
the following: Field D* considers setting the parent
of s′ to any vertex or non-vertex location X ′ on
the perimeter of s′ that is visible from s′ (where
the perimeter is the square formed by connecting
the neighbors of s′), resulting in a path of length
g(X ′) + c(X ′, s′) from the start vertex to X ′ and
from there to s′ in a straight line. It updates the g-
value and parent of s′ if the length of the shortest
such path is smaller than the length g(s′) of the
shortest path from the start vertex to s′ that it has
found so far.

Figure 12 shows Field D* in operation on a 2D
8-neighbor square grid with vertices placed at the
corners of grid cells. The start vertex is C1. The
perimeter of s′ = B4 is the red square with the
thick border. Consider non-vertex location X on
the perimeter. Field D* does not know the g-value
of X since it stores g-values only for vertices. It
calculates the g-value of X using linear interpola-
tion between the g-values of the two vertices on
the perimeter that are closest to X. Therefore,

it linearly interpolates between g(B3) = 2.41 and
g(C3) = 2.00, resulting in g(X) = 0.55 × 2.41 +
0.45 × 2.00 = 2.23 since 0.55 and 0.45 are the dis-
tances from X to B3 and C3, respectively. The
calculated g-value of X is different from the length
of a shortest path from the start vertex to X,
namely 2.55, even though the g-values of B3 and
C3 are both equal to the lengths of shortest paths
from the start vertex to them, respectively. The
reason for this mistake is that there exist short-
est paths from start vertex C1 via either C3 or
B3 to B4. Therefore, linear interpolation predicts
that there must also exist a short path from start
vertex C1 via every non-vertex location along the
grid edge that connects B3 and C3 to B4. How-
ever, this is not the case since these paths have
to circumnavigate blocked grid cell B2-B3-C3-C2,
which makes them longer than expected. Field
D* then finds the vertex or non-vertex location
X ′ on the perimeter of B4 that is visible from B4
and minimizes the length g(X ′) + c(X ′, B4) of the
path from start vertex C1 to X ′ and from there to
B4 in a straight line. There exist infinitely many
vertex or non-vertex locations X ′ on the perime-
ter. However, the optimization problem can be
solved quickly since the vertex or non-vertex lo-
cations that minimize g(X ′) + c(X ′, B4) on each
of the eight grid edges that comprise the perime-
ter of B4 can be found using closed form opti-
mization equations (although the calculations re-
quire floating point operations that make Field D*
slow). One can modify Field D* so that it ap-
plies to types of graphs other than 2D square grids,
such as 2D triangular meshes, by changing the
optimization equations (Sapronov & Lacaze 2008;
Perkins et al. 2012).

Field D* has a disadvantage (Figure 12): As a re-
sult of miscalculating the g-value of X, Field D*
sets the parent of B4 to X, resulting in a path that
has an unnecessary heading change at X and is
longer than even a shortest grid path. Field D* uses
a 1-step lookahead post-processing technique dur-
ing path extraction after the search to avoid some
of these heading changes (Ferguson & Stentz 2006),
such as the one depicted in Figure 12, but does not
eliminate all of them. The resulting paths typically
have lots of small heading changes in freespace and
could thus be smoothed further in an additional
post-processing step.4

4Figure 12 highlights both the operation of Field
D* and its disadvantages to save space. The work of
Ferguson and Stentz (Ferguson & Stentz 2006) contains
additional examples of the operation of Field D*.



Theta*: Theta* (Nash et al. 2007) interleaves
the smoothing with the A* search by checking for
shortcuts during the expansion of a vertex, namely
whether it can set the parent of each unexpanded
visible neighbor of the vertex that is currently be-
ing expanded to the parent of the expanded vertex
rather than the expanded vertex itself. Figure 5(b)
shows the pseudo code of Theta* (the differences
between the pseudo code of A* and the pseudo code
of Theta* are highlighted in red, namely lines 28-
32). The difference between Theta* and A* when
they update the g-value and parent of an unex-
panded visible neighbor s′ of the vertex s that is
currently being expanded, is the following (in pro-
cedure ComputeCost): If the parent of s is visible
from s′, then Theta* considers setting the parent
of s′ to the parent of s [lines 31-32], resulting in a
path of length g(parent(s)) + c(parent(s), s′) from
the start vertex to the parent of s and from there
to s′ in a straight line (Path 2), which does not
constrain the path to grid edges since the parent
of a vertex no longer has to be a neighbor of the
vertex. Otherwise, it considers setting the parent
of s′ to s [lines 36-37] (like A*), resulting in a path
of length g(s) + c(s, s′) from the start vertex to s
and from there to s′ in a straight line (Path 1). It
updates the g-value and parent of s′ if the length
of the considered path is smaller than the length
g(s′) of the shortest path from the start vertex to
s′ that it has found so far. Overall, Theta* consid-
ers updating the g-value and parent of s′ according
to Path 2 if the parent of s is visible from s′ (that
is, Path 2 is unblocked) since Path 2 is no longer
than Path 1 due to the triangle inequality.

Figure 13 shows Theta* in operation on a 2D 8-
neighbor square grid with vertices placed at the
corners of grid cells. The start vertex is A4, and the
goal vertex is C1. The h-values are straight-line dis-
tances. Theta* expands start vertex A4, followed
by B3 and B2. When Theta* expands B3 with par-
ent A4, B2 is an example of an unexpanded visible
neighbor of B3 from which start vertex A4 is not
visible. Theta* thus updates B2 according to Path
1 and sets its parent to B3. On the other hand, C3
is an example of an unexpanded visible neighbor of
B3 from which start vertex A4 is visible. Theta*
thus updates it according to Path 2 and sets its par-
ent to start vertex A4. Theta* terminates when it
is about to expand goal vertex C1. Path extraction
then retrieves the shortest path [A4, B3, C1] from
start vertex A4 to goal vertex C1.

Theta* can find shortest paths (Figure 13). How-
ever, this is not guaranteed since the parent of a
vertex can only be a visible neighbor of the ver-
tex or the parent of a visible neighbor, which is

Start


Goal


A


B


C


1
 2
 3
 4
 5


D


E


6
 7
 8
 9
 10


Figure 14: Nonoptimality of Theta* (Daniel et al.
2010)

Incremental Phi*

Incremental Path Planning


Theta*

Path 2


Lazy Theta*

Lazy Evaluation


Lazy Theta*-R

Shorter Paths


Lazy Theta*-P

Better Properties


Theta*-T

Traversal Costs


Theta* Modifications

Re-Expanding Vertices


Key Vertices

Path 3


Weighted Lazy Theta*

Weighted Search


Angle-Propagation Theta*

O(1) Vertex Expansions


Expanding Additional Vertices


Figure 15: Variants of Theta*

not always the case for shortest paths. Figure 14
shows a path-planning example where the terrain
is discretized into a 2D 8-neighbor square grid with
vertices placed at the corners of grid cells. Theta*
finds shortest paths from start vertex E1 to all
possible goal vertices other than C10. The visi-
ble neighbors of C10 are B10, B9, C9, D9 and D10.
Start vertex E1 is the parent of B10, B9, D9 and
D10 since it is visible from these vertices. Either
C7 or C8 is the parent of C9, depending on how
Theta* breaks ties when Paths 1 and 2 are equally
long. It is C7 for the pseudo code of Theta* in Fig-
ure 5(b). Therefore, B10, B9, C9, D9, D10, E1 and
C7 are the only possible parents of C10. The vertex
that minimizes the length of a shortest path from
start vertex E1 via the vertex to C10 is C7, result-
ing in the dashed red path [E1, C7, C10]. This path
is longer than the shortest path [E1, D8, C10] but
still within 0.2 percent of the length of the shortest
path.

There exist several variants of Theta* that result
in other trade-offs between the runtimes of their
searches and the lengths of the resulting paths (Fig-
ure 15) in addition to applying it to grids with dif-
ferent numbers of neighbors (such as to 4-neighbor
instead of 8-neighbor square grids). We mention
the variants in shaded boxes only briefly:

• Theta* has runtimes per vertex expansion that
can be linear in the number of grid cells due to



Goal


Start
A


B


C


1
 2
 3
 4
 5


(a)

Goal


Start

A


B


C


1
 2
 3
 4
 5


(b)

Goal


Start

A


B


C


1
 2
 3
 4
 5


(c)

Start


Goal


A


B


C


1
 2
 3
 4
 5


(d)

Arrows point to the parent of a vertex

Vertex currently being expanded


Figure 13: Execution Trace of Theta* (Daniel et al. 2010)

the visibility checks. On the other hand, Angle-
Propagation Theta* (Nash et al. 2007) achieves
runtimes per vertex expansion that are, in the
worst case, only constant in the number of grid
cells by propagating not only g-values and par-
ents but also angle ranges along grid edges. How-
ever, Angle-Propagation Theta* currently ap-
plies only to 2D 8-neighbor square grids with
vertices placed at the corners of grid cells and
is more involved, is experimentally not as fast
and finds slightly longer paths than Theta*.

• There exist variants of Theta* that find shorter
paths (at the expense of being slower), typically
by using strategies that A* cannot use.

– Theta* might be able to find shorter paths by
re-expanding vertices or expanding additional
vertices. A* expands vertices at most once if
the h-values are consistent, while Theta* main-
tains the closed list to prevent it from expand-
ing vertices multiple times. However, there ex-
ist variants of Theta* that do not maintain
a closed list and thus can reexpand vertices
whose f-values have decreased (Daniel et al.
2010). There also exist variants of Theta* that
expand more vertices by breaking ties among
vertices with the same f-value in the open list

in favor of vertices with smaller g-values or
by calculating the f-values (like Weighted A*
(Pohl 1973)) as f(s) = g(s) + w × h(s), where
(unlike Weighted A*) 0 < w < 1 (sic!) is a
user-given constant, because this typically fo-
cuses the search less and increases the number
of vertex expansions (Daniel et al. 2010).

– Theta* might also be able to find shorter paths
by examining more paths. There exist vari-
ants of Theta that consider setting the par-
ent of an unexpanded visible neighbor of the
vertex currently being expanded to additional
vertices other than the vertex and its parent,
such as the parent of its parent (Path 3) or
cached vertices encountered earlier during the
search (Key Vertices) (Daniel et al. 2010).

• There exist variants of Theta* that apply to
grids whose grid cells have non-uniform traver-
sal costs (Daniel et al. 2010; Choi & Yu 2011),
in which case shortest paths on 2D grids with
vertices placed at the corners of grid cells can
have heading changes at the borders of grid cells
with different traversal costs but never at the
borders of grid cells with identical traversal costs
other than at vertices. In particular, Theta*-T
(Daniel et al. 2010) (which was so far unnamed)



does not produce heading changes at the borders
of grid cells other than at vertices. Field D*,
on the other hand, applies unchanged to grids
whose grid cells have non-uniform traversal costs
since it was designed for this case. It can produce
heading changes at the borders of grid cells with
different traversal costs but also at the borders
of grid cells with identical traversal costs.

• Finally, Accelerated A* (Sislak, Volf, & Pe-
choucek 2009b; 2009a) can be understood as a
variant of Theta* with two innovations:

– First, Accelerated A* uses an adaptive step
size to determine the neighbors of a vertex s.
When s is far away from blocked grid cells, Ac-
celerated A* chooses vertices as neighbors of s
that are further away from s than when s is
close to blocked grid cells. On 2D square grids
with vertices placed at the corners of grid cells,
it uses a maximum unblocked square to deter-
mine the neighbors of s, which it constructs
by expanding a square centered on s until one
side of the square touches either the goal ver-
tex or a blocked grid cell. It then chooses the
neighbors of vertex s from the vertices on the
sides of the maximum unblocked square, such
as the four vertices that are in the middle of
the four sides.

– Second, Accelerated A* basically considers set-
ting the parent of an unexpanded visible neigh-
bor of the vertex that is currently being ex-
panded to additional vertices other than the
vertex and its parent, namely all expanded
vertices, and uses a sufficiently large ellipse
to prune those expanded vertices that cannot
possibly be chosen as the parent. Accelerated
A* considers setting the parent of an unex-
panded visible neighbor of the vertex that is
currently being expanded to all expanded ver-
tices within this ellipse.

Experimental Comparisons

Yap et al. (Yap et al. 2011b) compared Block
A* whose lookup table stores the (lengths of the)
shortest paths, A* on Grid Graphs and Theta* on
known 2D game maps and known 2D square grids
with randomly blocked grid cells, see also (Yap et
al. 2011a). A* on Grid Graphs and Theta* were
approximately 2.6 and 7.5 times slower than Block
A*, respectively. The paths of A* on Grid Graphs
and Theta* were approximately 4.2 percent longer
and less than one percent shorter than those of
Block A*, respectively.

Nash et al. compared A* on Grid Graphs, Theta*,
Field D*, A* with Post Smoothing and A* on Visi-

Goal


Start


(a)

2


3


4


A


B


C


1

Upper
 (U)


Lower
(
L
)

Start


Goal


(b)

Figure 16: Nonoptimality of A* on Visibility
Graphs in 3D Terrain (a) and 3D Grids (b) (Nash,
Koenig, & Tovey 2010)

bility Graphs on known 2D game maps and known
2D square grids with randomly blocked grid cells
(Nash 2012), see also (Daniel et al. 2010). Theta*,
Field D*, A* with Post Smoothing and A* on Visi-
bility Graphs were approximately 3.2, 8.6, 10.6 and
118.6 times slower than A* on Grid Graphs, respec-
tively. The paths of Theta*, Field D*, A* with
Post Smoothing and A* on Visibility Graphs were
approximately 4.6, 4.4, 3.9 and 4.7 percent shorter
than those of A* on Grid Graphs, respectively.

Sislak et al. compared Theta*, Accelerated A*
and A* on Visibility Graphs on known 2D square
grids with randomly blocked grid cells and ar-
ranged blocked grid cells to simulate path-planning
problems from robotics (Sislak, Volf, & Pechoucek
2009b). Accelerated A* and A* on Visibility
Graphs were approximately 1.7 and 1630.0 times
slower than Theta*, respectively. The paths of
Accelerated A* and A* on Visibility Graphs were
approximately 1.0 percent shorter than those of
Theta*. Accelerated A* always found shortest
paths although no theoretical argument was made
that it is optimal.

Known 3D Terrain

Agents operate not only in known 2D terrain but
also in known 3D terrain, such as in the video game
James Cameron’s Avatar: The Game by Ubisoft
Montreal. Path planning in known 3D terrain



can be more difficult than in known 2D terrain.
For example, A* on Grid Graphs can find grid
paths that are at most approximately eight per-
cent longer than shortest paths on 2D 8-neighbor
square grids with vertices placed at the corners of
grid cells rather than at least approximately 13 per-
cent longer than shortest paths on 3D 26-neighbor
cubic grids with vertices placed at the corners of
grid cells, as explained under “Path-Length Anal-
ysis.” A* on Visibility Graphs finds shortest paths
in 2D terrain with polygonal obstacles but is not
guaranteed to find shortest paths in 3D terrain
with polyhedral obstacles (Choset et al. 2005), as
shown in Figure 16(a) where the heading changes
of the only shortest path from the start vertex to
the goal vertex are not at the corners of the poly-
hedral obstacle. Figure 16(b) demonstrates that
this property also holds for 3D grids by showing
a path-planning example where the terrain is dis-
cretized into a 3D 26-neighbor cubic grid with ver-
tices placed at the corners of grid cells. The start
vertex is B2L, and the goal vertex is A3U. The
dashed red path [B2L, B2U, A3U] is the shortest
vertex path, and the solid blue path is a shortest
path. Thus, it is neither guaranteed that a shortest
path from the start vertex to the goal vertex is part
of the visibility graph nor that it is a vertex path on
3D grids (even with vertices placed at the corners of
grid cells). Shortest vertex paths can thus be longer
than shortest paths on 3D grids. In fact, shortest
paths in 2D terrain with polygonal obstacles can
be found in polynomial time, while finding short-
est paths in 3D terrain with polyhedral obstacles
is NP-hard (Canny & Reif 1987). One can modify
Field D* so that it applies to 3D cubic grids and 3D
tetrahedral meshes rather than 2D square grids and
2D triangular meshes by changing the optimiza-
tion equations (Carsten, Ferguson, & Stentz 2006;
Sapronov & Lacaze 2008; Perkins et al. 2012). The
resulting variants of Field D* are more involved
than Field D* and typically use additional approx-
imations. For example, the optimization equations
for 2D square grids (where the perimeter consists
of edges) can be solved in closed form but the ones
for 3D cubic grids (where the perimeter consists of
faces) cannot. Block A* could be extended with-
out problems to all types of 3D grids although its
lookup table can consume much more memory for
3D grids than 2D grids.

Theta* applies unchanged to every graph embed-
ded in 2D or 3D terrain. However, it performs
one visibility check per generated vertex (namely,
one visibility check for every unexpanded visible
neighbor of the vertex that is currently being ex-
panded). The number of visibility checks thus
increases with the number of neighbors (even if

the pseudo code of Theta* in Figure 5(b) is op-
timized to perform a visibility check only if the
length g(parent(s)) + c(parent(s), s′) of Path 2 is
smaller than the length g(s) of the shortest path
from the start vertex to s′ that Theta* has found
so far). Figure 17(a) shows a path-planning ex-
ample where the terrain is discretized into a 2D
8-neighbor square grid with vertices placed at the
corners of grid cells. The start vertex is C1, and
the goal vertex is A4. Theta* performs 3+6+6=15
visibility checks on line 28. (The visible neigh-
bors on line 11 can be determined without visibility
checks.) On the other hand, Figure 17(b) shows a
similar path-planning example where the terrain is
discretized into a 3D 26-neighbor cubic grid with
vertices placed at the corners of grid cells. The
start vertex is C1L, and the goal vertex is A4U.
Theta* now performs many more than 15 visibility
checks, namely 7+15+15=37 visibility checks. The
runtimes per vertex expansion of Theta* can be lin-
ear in the number of grid cells due to the visibility
checks, even though visibility checks on 2D square
grids and 3D cubic grids can be performed with
fast line-drawing algorithms from computer graph-
ics (Daniel et al. 2010), such as the standard Bre-
senham line-drawing algorithm (Bresenham 1965),
and be optimized further for the task (Choi, Lee,
& Yu 2010). Visibility checks on other types of
graphs, such as navigation meshes, can be slower.
It is thus important to decrease the number of vis-
ibility checks per vertex expansion in 3D terrain.

Lazy Theta* (Nash, Koenig, & Tovey 2010) is a
variant of Theta* that can speed up Theta* both
when it generates many more vertices than it ex-
pands and when its visibility checks are slow. It
uses lazy evaluation to perform only one visibility
check per expanded vertex instead of one visibility
check per generated vertex but increases the num-
ber of vertex expansions and potentially the length
of the resulting path. There exist several variants
of Lazy Theta*. For example, the main variant of
Lazy Theta* delays visibility checks by optimisti-
cally assuming that the parent of the vertex that
is currently being expanded is visible from every
unexpanded visible neighbor of the expanded ver-
tex, while Lazy Theta*-P (Nash, Koenig, & Tovey
2010) delays visibility checks by pessimistically as-
suming that the parent is not visible. We describe
the main variant. Due to its optimistic assumption,
Lazy Theta* can update the g-value and parent of
an unexpanded visible neighbor of the expanded
vertex according to Path 2 even if the parent of
the expanded vertex is not visible from the neigh-
bor. It revisits this assumption when it expands
the neighbor and, if it does not hold, corrects the
g-value and parent of the neighbor. Figure 5(c)



1
 2
 4
3


B


C


A


Start


Goal


(a) 3+6+6=15 Visibility Checks

2


3


4


A


B


C


1

Upper
 (U)


Lower
(
L
)


Goal


Start


(b) 7+15+15=37 Visibility Checks

Figure 17: Visibility Checks of Theta* in 2D Terrain (a) and 3D Terrain (b)

shows the pseudo code of Lazy Theta* (the differ-
ences between the pseudo code of Theta* and the
pseudo code of Lazy Theta* are highlighted in red,
namely line 8 and lines 34-39). The difference be-
tween Lazy Theta* and Theta* when they update
the g-value and parent of an unexpanded visible
neighbor s′ of the vertex s that is currently being
expanded, is the following (in procedure Compute-
Cost): Without checking whether the parent of s
is visible from s′, Lazy Theta* considers setting
the parent of s′ to the parent of s [lines 31-32],
resulting in a (potentially blocked) path of length
g(parent(s))+ c(parent(s), s′) from the start vertex
to the parent of s and from there to s′ in a straight
line (Path 2). It updates the g-value and parent
of s′ if the length of this path is smaller than the
length g(s′) of the shortest path from the start ver-
tex to s′ that it has found so far. Lazy Theta*
performs one visibility check (in procedure SetVer-
tex) immediately before it expands vertex s′. If the
new parent of s′ is visible from s′, then Lazy Theta*
does not change the g-value and parent of s′. Oth-
erwise, Lazy Theta* updates the g-value and parent
of s′ according to Path 1 by setting the parent of
s′ to the expanded visible neighbor s′′ of s′ that
minimizes the length g(s′′) + c(s′′, s′) of the path
from the start vertex to s′′ and from there to s′ in a
straight line [lines 37-38]. (This path is well-defined
and of finite length since s′′ is an expanded visible
neighbor of s′.) Lazy Theta*-R (Nash, Koenig, &
Tovey 2010) is a variant of Lazy Theta* that, at
this point, re-inserts s′ into the open list with an
updated key instead of expanding it. This gives
Lazy Theta*-R an opportunity to discover shorter
paths from the start vertex to s′ before it expands
s′.

Lazy Theta* applies to all graphs that Theta* ap-
plies to. For example, it applies not only to 3D but
also to 2D terrain. We explain Lazy Theta* on 2D
8-neighbor square grids because they are easier to

visualize than 3D 26-neighbor cubic grids. There-
fore, Figure 18 shows Lazy Theta* in operation on
a 2D 8-neighbor square grid with vertices placed at
the corners of grid cells. The start vertex is A4,
and the goal vertex is C1. The h-values are the
straight-line distances. Lazy Theta* expands start
vertex A4, followed by B3 and B2. When Lazy
Theta* expands B3 with parent A4, B2 is an exam-
ple of an unexpanded visible neighbor of B3. Lazy
Theta* optimistically assumes that start vertex A4
is visible from B2 and sets the parent of B2 to start
vertex A4 (Figure 18(c)). Lazy Theta* expands B2
next. Since start vertex A4 is not visible from B2,
Lazy Theta* updates the g-value and parent of B2
according to Path 1 by considering the paths from
the start vertex A4 to each expanded visible neigh-
bor of B2 and from there to B2 in a straight line.
Lazy Theta* sets the parent of B2 to B3 since the
path from start vertex A4 to B3 and from there
to B2 in a straight line is the only such path and
thus it is also the shortest such path (Figure 18(d)).
Lazy Theta* terminates when it is about to expand
goal vertex C1 after it has checked that the parent
of goal vertex C1, namely B3, is indeed visible from
goal vertex C1. Path extraction then retrieves the
shortest path [A4, B3, C1] from start vertex A4 to
goal vertex C1.

Lazy Theta* can find the same paths as Theta*
(Figure 18). In the execution trace depicted in Fig-
ure 18, Lazy Theta* performs only four visibility
checks, while Theta* performs 5+6+6=17 visibil-
ity checks. However, this is not guaranteed. Lazy
Theta* typically finds slightly longer paths than
Theta* but performs many fewer visibility checks
and is thus faster. One can typically decrease the
number of visibility checks even more, using a strat-
egy that A* can use for the same purpose, namely
weighting the h-values. Weighted Lazy Theta*
(Nash 2012) calculates the f-values (like Weighted
A* (Pohl 1973)) as f(s) = g(s) + w × h(s), where



Goal


Start

A


B


C


1
 2
 3
 4
 5


(a)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(b)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(c)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(d)

Goal


Start
A


B


C


1
 2
 3
 4
 5


(e)

Start


Goal


A


B


C


1
 2
 3
 4
 5


(f)

Arrows point to the parent of a vertex

Vertex currently being expanded


Figure 18: Execution Trace of Lazy Theta*
‘

w > 1 is a user-given constant, because this typ-
ically focuses the search better and decreases the
number of vertex expansions. Therefore, it also de-
creases the number of visibility checks. Both reduc-
tions make it faster. On the other hand, the path
length increases, just as it does for A*, although
not necessarily as much as it does for A*, for the
following reason: Lazy Theta* can set the parent
of vertex s to vertex s′ according to Path 2 only if
there exists a grid path of expanded vertices from s′

to s such that s′ is the parent of every vertex on the
grid path (except for s′ itself). Even if Lazy Theta*
expands few vertices, it can still set the parent of
s to s′ as long as there still exists a grid path with
these properties, in which case the path length does

not increase.

Experimental Comparisons

Nash et al. (Nash 2012) compared A* on Grid
Graphs, Lazy Theta*, Theta* and A* with Post
Smoothing on known 3D cubic grids with ran-
domly blocked grid cells, see also (Nash, Koenig,
& Tovey 2010). Lazy Theta*, Theta* and A* with
Post Smoothing were approximately 4.0, 6.7 and
46.5 times slower than A* on Grid Graphs, respec-
tively. The paths of Lazy Theta*, Theta* and A*
with Post Smoothing were approximately 7.1, 7.2
and 5.7 percent shorter than those of A* on Grid
Graphs, respectively.



Goal


Figure 19: Screenshot of Warcraft II: Tides of
Darkness by Blizzard Entertainment and Climax
Studios

Unknown 2D Terrain

Agents operate not only in 2D terrain with grid
cells of known blockage status but also in 2D ter-
rain with grid cells of unknown blockage status, for
example, because the blockage status of grid cells is
initially unknown (in unknown terrain) or changes
over time (in dynamic terrain). One way of navigat-
ing in initially unknown terrain is to interleave path
planning with movement, which requires agents to
find paths repeatedly. Consider, for example, an
agent that has to move from its current vertex to a
given goal vertex in initially unknown terrain, such
as a game character that has to move to coordi-
nates specified by a user despite the “fog of war”
(that is, blacked-out areas) (Figure 19). The agent
initially does not know which grid cells are blocked
but always observes the blockage status of grid cells
within its sensor radius and adds them to its map.
The agent can use goal-directed navigation with the
freespace assumption (Koenig, Smirnov, & Tovey
2003) to reach the goal vertex or determine that
this is impossible: It finds a short path from its
current vertex to the goal vertex, taking into ac-
count its current knowledge of the blockage status
of grid cells and making the freespace assumption
(that is, optimistically assuming that grid cells with
unknown blockage status are unblocked). If no such
path exists, it stops unsuccessfully. Otherwise, it
follows the path until it either reaches the goal ver-
tex, in which case it stops successfully, or observes
the path to be blocked, in which case it repeats the
procedure, taking into account its revised knowl-
edge of the blockage status of grid cells and still op-
timistically assuming that grid cells with unknown
blockage status are unblocked. Therefore, the agent
has to find a new short path every time it observes

its current path to be blocked.

Figure 20 shows goal-directed navigation with the
freespace assumption in operation on a 2D 8-
neighbor square grid with vertices placed at the cor-
ners of grid cells, using A* on Grid Graphs rather
than any-angle path planning. The agent always
observes the blockage status of all grid cells that
have its current vertex as a corner. The start ver-
tex is C2, and the goal vertex is D6. The agent
starts at C2 and finds a shortest grid path from its
current vertex C2 to goal vertex D6 assuming that
all grid cells are unblocked. It follows the path to
C3, where it observes two grid cells that block its
path. It finds a shortest grid path from its current
vertex C3 to goal vertex D6 taking the two blocked
grid cells into account. It then follows the path via
D3 to D4, where it observes another two grid cells
that block its path, and repeats the procedure.

The agent thus has to solve a series of similar
path-planning problems. It has to solve them
quickly so that it can move without stopping.
Incremental path-planning algorithms (Koenig et
al. 2004) solve a series of similar path-planning
problems quickly by reusing information from pre-
vious searches to speed up their current search,
which typically makes them faster than repeated
A* searches from scratch. The main difference be-
tween this approach and most other replanning and
plan-reuse algorithms (such as planning by anal-
ogy) is that incremental path-planning algorithms
are guaranteed to find paths that are no longer than
those found by repeated A* searches from scratch.

Some any-angle path-planning algorithms, includ-
ing Field D* and Theta*, can use incremental
path-planning techniques to replan faster than re-
peated searches from scratch. Field D* was de-
signed for this case by extending the incremental
heuristic path-planning algorithm D* Lite (Koenig
& Likhachev 2005) or D* (Stentz 1995). On the
other hand, Theta* cannot easily extend D* Lite
because the parent of a vertex is not guaranteed
to be its neighbor and its f-values are not guaran-
teed to be non-decreasing. Incremental Phi* (Nash,
Koenig, & Likhachev 2009) is an incremental vari-
ant of Theta* that can currently handle only the
case where the blockage status of grid cells is ini-
tially unknown (which is equivalent to the case
where the costs of grid edges can increase to in-
finity), while Field D* can also handle the case
where the blockage status of grid cells changes over
time (or, more generally, the case where the costs
of grid edges can increase and decrease by arbitrary
amounts). Incremental Phi* applies only to 2D 8-
neighbor square grids with vertices placed at the
corners of grid cells, while Field D* can be modi-



A


B


C


1
 2
 3
 4
 5


D


6
 7


E


Goal


Start


(a)

A


B


C


1
 2
 3
 4
 5


D


6
 7


E


Goal


(b)

A


B


C


1
 2
 3
 4
 5


D


6
 7


E


Goal


(c)

A


B


C


1
 2
 3
 4
 5


D


6
 7


E

Goal


(d)

A


B


C


1
 2
 3
 4
 5


D


6
 7


E

Goal


(e)

A


B


C


1
 2
 3
 4
 5


D


6
 7


E

Goal


(f)

Unknown grid cell (assumed unblocked)
 Known grid cell (unblocked)
 Known grid cell (blocked)


Figure 20: Execution Trace of Goal-Directed Navigation with the Freespace Assumption

fied so that it applies to additional types of graphs
embedded in 2D or 3D terrain, as explained un-
der “Known 2D Terrain” and “Known 3D Terrain.”
However, neither Incremental Phi* nor Field D* ap-
ply to every graph embedded in 2D or 3D terrain.

Experimental Comparisons

Ferguson et al. (Ferguson & Stentz 2006) compared
D* Lite and Field D* on unknown 2D grids with
randomly assigned non-uniform traversal costs, see
also (Ferguson 2006). Field D* was approximately
1.7 times slower than D* Lite. Its paths were ap-
proximately four percent less costly than those of
Field D*.

Nash et al. (Nash, Koenig, & Likhachev 2009)
compared Incremental Phi* and repeated Theta*
searches on unknown 2D game maps and unknown
2D square grids with randomly blocked grid cells,
see also (Nash 2012). Repeated Theta* searches
were approximately 6.0 times slower than Incre-
mental Phi*. Their paths were less than one per-
cent shorter than those of Incremental Phi*.

Conclusions

We provided a sketch of an analysis of how much
longer shortest grid paths can be than shortest
paths. The results suggested that it might be neces-
sary to find shorter paths than shortest grid paths.
Any-angle path-planning algorithms are variants of

A* that find short paths in (continuous) terrain by
propagating information along grid edges (like A*
on Grid Graphs, to be fast) without constraining
the resulting paths to grid edges (like A* on Vis-
ibility Graphs, to find short paths). We surveyed
the state-of-the-art in any-angle path-planning al-
gorithms, including variants of Block A*, Field D*
and Theta* in known 2D terrain, known 3D ter-
rain and unknown 2D terrain. Future research
should be dedicated to understanding the full power
of any-angle path-planning, to broaden it from a
few isolated path-planning algorithms to a well-
understood framework, to extend its applicability
(for example, to motion planning) and to under-
stand its properties better, including the influence
of design decisions on the trade-off with respect
to its memory consumption, the runtimes of its
searches and the lengths of the resulting paths as
well as the guarantees it is able to provide. For
example, no tight bounds are known on the ratio
of the lengths of the paths found by specific any-
angle path-planning algorithms and shortest paths.
Analyses of any-angle path-planning algorithms are
complicated by the fact that even some of the basic
properties of A* do not hold for any-angle path-
planning algorithms. For example, A* has the
property that the f-values of all vertices along all
branches of its search trees are non-decreasing if
the h-values are consistent. Theta* does not have
this property. Overall, any-angle path planning
appears to be a promising way of trading off be-
tween the runtimes of the searches and the lengths
of the resulting paths in robotics and video games.



With respect to efficiency, any-angle path-planning
algorithms are typically faster than A* on Visi-
bility Graphs and find shorter paths than A* on
Grid Graphs. With respect to simplicity, any-angle
path-planning algorithms are typically simple to
understand, implement, debug and extend since
they extend A*, which has these properties. For
example, Theta* and Lazy Theta* are similar to
A* and can easily be taught to game developers
and undergraduate students, see the tutorials and
class project listed under “Recent Resources.” Fi-
nally, with respect to generality, some any-angle
path-planning algorithms, such as Theta*, apply
to every graph embedded in 2D or 3D terrain.

Recent Resources

• Dissertations (Ferguson 2006), (Nash 2012).

• Accelerated A* Publications (Sislak, Volf,
& Pechoucek 2009a), (Sislak, Volf, & Pechoucek
2009b).

• Anya Publications (Harabor & Grastien 2013)

• Block A* Publications (Yap et al. 2011b),
(Yap et al. 2011a).

• Field D* Publications (Carsten, Ferguson,
& Stentz 2006), (Ferguson & Stentz 2006),
(Sapronov & Lacaze 2008), (Carsten et al. 2009).

• Theta* Publications (Nash et al. 2007),
(Koenig, Daniel, & Nash 2008), (Nash, Koenig,
& Likhachev 2009), (Daniel et al. 2010), (Nash,
Koenig, & Tovey 2010), (Choi & Yu 2011), (Choi
& Yu 2011).

• Web Pages

– idm-lab.org/project-o.html (information on
Theta* and its variants)

– aigamedev.com/open/tutorials/theta-star-
any-angle-paths/ (on-line tutorial on Theta*)

– aigamedev.com/open/tutorial/lazy-theta-
star/ (on-line tutorial on Lazy Theta*)

• Class Project The following class project has
successfully been used at the University of
Nevada at Reno, New Mexico State University
and the University of Southern California and
was chosen as a “Model Artificial Intelligence
Assignment” by the Symposium on Educational
Advances in Artificial Intelligence 2010 (Koenig,
Daniel, & Nash 2008):

http://idm-lab.org/project-m/project2.html

This stand-alone 14-page path-planning project
for an undergraduate or graduate artificial intelli-
gence class is part of an effort to use video games
as a motivator in projects without the students
having to use game engines. In this project, the

students code A* and then extend it to Theta*
to find paths for game characters in known grid
worlds. The students have to develop an under-
standing of A* to answer questions that are not
yet covered in textbooks. The project lists 18
possible project choices, both easy and difficult
ones, that cover theoretical and implementation
aspects of heuristic search.

Acknowledgments

Our overview article is based on a JAIR article
(Daniel et al. 2010), several conference papers
(Nash et al. 2007; Nash, Koenig, & Likhachev
2009; Nash, Koenig, & Tovey 2010) and Sven
Koenig’s part of the Tutorial on Search-Based Plan-
ning: Toward High Dimensionality and Differen-
tial Constraints at the AAAI Conference on Arti-
ficial Intelligence 2012 (with M. Pivtoraiko and M.
Likhachev). We re-use small parts of (Daniel et al.
2010) and (Nash, Koenig, & Tovey 2010) verbatim.
We thank K. Daniel, A. Felner, M. Likhachev, S.
Sun, C. Tovey, W. Yeoh and X. Zheng for their
contributions to joint research that resulted in the
publications that form the basis of our overview
article. We thank R. Holte, J. Schaeffer and P.
Yap for their input on our research, N. Sturte-
vant for providing the video game maps at movin-
gai.com that we used as test cases and both D.
Ferguson and T. Uras and the reviewers for com-
ments on our draft manuscript. Our research has
been supported by NSF under grant number IIS-
1319966, ARO under grant number W911NF-08-1-
0468, ONR under grant number N00014-09-1-1031
and Northrop Grumman via a fellowship to Alex
Nash. The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,
either expressed or implied, of the sponsoring orga-
nizations, agencies, companies or the U.S. govern-
ment.

References

Björnsson, Y.; Enzenberger, M.; Holte, R.; Scha-
effer, J.; and Yap, P. 2003. Comparison of different
grid abstractions for pathfinding on maps. In Pro-
ceedings of the International Joint Conference on
Artificial Intelligence, 1511–1512.

Botea, A.; Müller, M.; and Schaeffer, J. 2004.
Near optimal hierarchical path-finding. Journal
of Game Development 1(1):7–28.

Bresenham, J. 1965. Algorithm for computer con-
trol of a digital plotter. IBM Systems Journal
4(1):25–30.



Canny, J., and Reif, J. 1987. New lower bound
techniques for robot motion planning problems. In
Proceedings of the Symposium on the Foundations
of Computer Science, 49–60.

Carsten, J.; Rankin, A.; Ferguson, D.; and Stentz,
A. 2009. Global planning on the Mars exploration
rovers: Software integration and surface testing.
Journal of Field Robotics 26(4):337–357.

Carsten, J.; Ferguson, D.; and Stentz, A. 2006.
3D Field D*: Improved path planning and re-
planning in three dimensions. In Proceedings of
the IEEE International Conference on Intelligent
Robots and Systems, 3381–3386.

Champandard, A. 2010. Personal Communica-
tion.

Choi, S., and Yu, W. 2011. Any-angle path plan-
ning on non-uniform costmaps. In Proceedings of
the IEEE International Conference on Robotics
and Automation, 5615–5621.

Choi, S.; Lee, J.-Y.; and Yu, W. 2010. Fast
any-angle path planning on grid maps with
non-collision pruning. In Proceedings of the
IEEE International Conference on Robotics and
Biomimetics, 1051–1056.

Choset, H.; Lynch, K.; Hutchinson, S.; Kantor,
G.; Burgard, W.; Kavraki, L.; and Thrun, S. 2005.
Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press.

Chrpa, L., and Komenda, A. 2011. Smoothed hex-
grid trajectory planning using helicopter dynam-
ics. In Proceedings of the International Conference
on Agents and Artificial Intelligence, 629–632.

Daniel, K.; Nash, A.; Koenig, S.; and Felner, A.
2010. Theta*: Any-angle path planning on grids.
Journal of Artificial Intelligence Research 39:533–
579.

Ferguson, D., and Stentz, A. 2006. Using inter-
polation to improve path planning: The Field D*
algorithm. Journal of Field Robotics 23(2):79–101.

Ferguson, D. 2006. Single Agent and Multi Agent
Path Planning in Unknown and Dynamic Envi-
ronments. Ph.D. Dissertation, Carnegie Mellon
University.

Ferguson, D. 2013. Personal Communication.

Harabor, D., and Grastien, A. 2013. An optimal
any-angle pathfinding algorithm. In Proceedings of
the International Conference on Automated Plan-
ning and Scheduling, 308–311.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of mini-
mum cost paths. IEEE Transactions on Systems
Science and Cybernetics 4(2):100–107.

Hershberger, J., and Suri, S. 1999. An optimal al-
gorithm for euclidean shortest paths in the plane.
SIAM Journal on Computing 28(6):2215–2256.

Kavraki, L.; Svestka, P.; Latombe, J.; and Over-
mars, M. 1996. Probabilistic roadmaps for
path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Au-
tomation 12(4):566–580.

Koenig, S., and Likhachev, M. 2005. Fast replan-
ning for navigation in unknown terrain. Transac-
tions on Robotics 21(3):354–363.

Koenig, S.; Likhachev, M.; Liu, Y.; and Furcy,
D. 2004. Incremental heuristic search in artifi-
cial intelligence. Artificial Intelligence Magazine
25(2):99–112.

Koenig, S.; Daniel, K.; and Nash, A. 2008.
A project on any-angle path planning for com-
puter games for introduction to artificial intel-
ligence classes. Technical report, University of
Southern California. http://idm-lab.org/project-
m/project2.html.

Koenig, S.; Smirnov, Y.; and Tovey, C. 2003. Per-
formance bounds for planning in unknown terrain.
Artificial Intelligence Journal 147(1–2):253–279.

LaValle, S., and Kuffner, J. 2001. Rapidly-
exploring random trees: Progress and prospects.
In Donald, B.; Lynch, K.; and Rus, D., eds., Al-
gorithmic and Computational Robotics: New Di-
rections. A K Peters. 293–308.

LaValle, S. 2006. Planning Algorithms. Cam-
bridge University Press.

Lee, D.-T. 1978. Proximity and Reachability in the
Plane. Ph.D. Dissertation, University of Illinois at
Urbana-Champaign.

Lindemann, S., and LaValle, S. 2004. Steps
toward derandomizing RRTs. In Proceedings of
the International Workshop on Robot Motion and
Control, 271–277.

Liu, Y.-H., and Arimoto, S. 1992. Path planning
using a tangent graph for mobile robots among
polygonal and curved obstacles. International
Journal of Robotics Research 11(4):376–382.

Lozano-Pérez, T., and Wesley, M. 1979. An al-
gorithm for planning collision-free paths among
polyhedral obstacles. Communications of the
ACM 22(10):560–570.

Millington, I., and Funge, J. 2009. Artificial In-
telligence for Games. Morgan Kaufmann, second
edition.

Mitchell, J., and Papadimitriou, C. 1991. The
weighted region problem: Finding shortest paths
through a weighted planar subdivision. Journal of
the ACM 38(1):18–73.



Mitchell, J.; Mount, D.; and Papadimitriou, C.
1987. The discrete geodesic problem. SIAM Jour-
nal on Computing 16(4):647–668.

Nagy, B. 2003. Shortest paths in triangular grids
with neighbourhood sequences. Journal of Com-
puting and Information Technology 11(2):111–122.

Nash, A.; Daniel, K.; Koenig, S.; and Felner, A.
2007. Theta*: Any-angle path planning on grids.
In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 1177–1183.

Nash, A.; Koenig, S.; and Likhachev, M. 2009. In-
cremental Phi*: Incremental any-angle path plan-
ning on grids. In Proceedings of the International
Joint Conference on Artificial Intelligence, 1824–
1830.

Nash, A.; Koenig, S.; and Tovey, C. 2010. Lazy
Theta*: Any-angle path planning and path length
analysis in 3D. In Proceedings of the AAAI Con-
ference on Artificial Intelligence.

Nash, A. 2012. Any-Angle Path Planning. Ph.D.
Dissertation, University of Southern California.
http://idm-lab.org/project-o.html.

Pearl, J. 1985. Heuristics: Intelligent
Search Strategies for Computer Problem Solving.
Addison-Wesley.

Perkins, S.; Marais, P.; Gain, J.; and Berman, M.
2012. Field D* path-finding on weighted triangu-
lated and tetrahedral meshes. Autonomous Agents
and Multi-Agent Systems 1–35.

Pohl, I. 1973. The avoidance of (relative) catas-
trophe, heuristic competence, genuine dynamic
weighting and computational issues in heuristic
problem solving. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence,
12–17.

Rabin, S. 2000. A* speed optimizations. In De-
loura, M., ed., Game Programming Gems. Charles
River Media. 272–287.

Sapronov, L., and Lacaze, A. 2008. Path planning
for robotic vehicles using Generalized Field D*.
In Proceedings of the SPIE: Unmanned Systems
Technology X, volume 6962, 69621C–1–69621C–
12.

Sislak, D.; Volf, P.; and Pechoucek, M. 2009a. Ac-
celerated A* path planning. In Proceedings of the
International Joint Conference on Autonomous
Agents and Multiagent Systems, 1133–1134.

Sislak, D.; Volf, P.; and Pechoucek, M. 2009b. Ac-
celerated A* trajectory planning: Grid-based path
planning comparison. In Proceedings of the Work-
shop on Planning and Plan Execution for Real-
World Systems at the International Conference on
Automated Planning and Scheduling, 74–81.

Stentz, A. 1995. The focussed D* algorithm for
real-time replanning. In Proceedings of the In-
ternational Joint Conference on Artificial Intel-
ligence, 1652–1659.

Thorpe, C. 1984. Path relaxation: Path planning
for a mobile robot. In Proceedings of the AAAI
Conference on Artificial Intelligence, 318–321.

Tozour, P. 2004. Search space representations. In
Rabin, S., ed., AI Game Programming Wisdom 2.
Charles River Media. 85–102.

Tozour, P. 2008. Fixing pathfinding once and for
all. www.ai-blog.net/archives/000152.html.

Yap, P.; Burch, N.; Holte, R.; and Schaeffer, J.
2011a. Any-angle path planning for computer
games. In Proceedings of the Conference on Ar-
tificial Intelligence and Interactive Digital Enter-
tainment.

Yap, P.; Burch, N.; Holte, R.; and Schaeffer, J.
2011b. Block A*: Database-driven search with
applications in any-angle path-planning. In Pro-
ceedings of the AAAI Conference on Artificial In-
telligence.

Yap, P. 2002. Grid-based path-finding. In Pro-
ceedings of the Canadian Conference on Artificial
Intelligence, 44–55.


