
Real-Time Heuristic Search: Research Issues

Sven Koenig
Georgia Institute of Technology

College of Computing
Atlanta, GA 30305-0280
skoenig@cc.gatech.edu

Abstract

Real-time (heuristic) search methods allow for fine-grained
control over how much planning to do between plan exe-
cutions. Many real-time search methods can use heuristic
knowledge to guide planning, be interrupted at any state and
resume execution at a different state, and improve their plan-
execution time as they solve similar planning tasks, until their
plan-execution time is optimal. Unfortunately, the behavior
of real-time search methods is not yet well understood. In
this paper, we show that the behavior of real-time search
methods often differs from the behavior of more traditional
and well-studied search methods and argue that it is impor-
tant to investigate how properties of the heuristic functions,
the domains, and the real-time search methods themselves
influence their performance.

Introduction
Situated agents are agents that have to act in the world to
achieve their goals. A central problem for them is how to
achieve given goal states. Traditional search methods from
artificial intelligence, such as A* (Nilsson 1971), first plan
and then execute the resulting plan. The sum of planning
and plan execution time, however, can often be reduced by
interleaving planning and plan execution. In this paper, we
discuss real-time (heuristic) search methods (Korf 1990),
because these domain-independent search methods provide
an efficient way for interleaving planning and plan execu-
tion. Real-time search methods are based on agent-centered
search, like many heuristic SAT-solution methods. Agent-
centered search methods restrict the search to a small part of
the domain that can be reached from the current state with
a small number of action executions. This is the part of the
domain that is immediately relevant in the current situation.
Many real-time search methods have the following advanta-
geous properties: First, they allow for fine-grained control
over how much planning to do between plan executions and
thus are any-time contract methods (Russell and Zilberstein
1991). Second, they can use heuristic knowledge to guide
planning, which reduces planning time without sacrificing
plan-execution time. Third, they can be interrupted at any
state and resume execution at a different state. Fourth, they
can amortize learning over several search episodes, which
allows them to find a plan with a suboptimal plan-execution

time fast and then improve the plan-execution time as they
solve similar planning tasks, until the plan-execution time
is optimal. Thus, they can always have a small sum of
planning and plan-execution time and still minimize the
plan-execution time in the long run in case similar planning
tasks unexpectedly repeat. This is important because no
search method that interleaves planning and plan execution
can guarantee to minimize the plan-execution time right
away. Real-time search methods have been shown to be ef-
ficient alternatives to more traditional search methods. For
example, they are among the few search methods that are
able to find plans for the twenty-four puzzle, a sliding-tile
puzzle with more than 7 � 1024 states (Korf 1993). They
have also been used to solve large STRIPS-type planning
tasks (Bonet et al. 1997) and large POMDP-type planning
tasks (Geffner and Bonet 1998). Finally, studying real-time
search methods can contribute to a better understanding
of goal-directed reinforcement-learning methods since both
classes of methods are similar (Koenig and Simmons 1993;
Barto et al. 1995) and most reinforcement-learning re-
searchers have not yet analyzed the plan-execution time
of their methods (Koenig and Simmons 1996b). Unfortu-
nately, different from more traditional search methods, that
have been studied extensively, not much is known about
real-time search methods. In this paper, we describe some
promising areas for future research, and illustrate them with
examples that we discovered as byproducts of our own re-
search on real-time search methods (Koenig 1997).

Learning Real-Time A*
In this section, we describe one particular real-time search
method, namely Korf’s Learning Real-Time A* (LRTA*)
method (Korf 1990), which is probably the most popular
real-time search method. We use the following notation:

�
denotes the finite set of states of the domain, �������
	��� �

the
start state, and ��� �

the set of goal states. The number
of states is � := � � � . ������������ is the finite, nonempty set
of actions that can be executed in state ��� �

. � �"!#!����%$
&'�
denotes the successor state that results from the execution
of action &(�)����� � in state ��� �

. *,+-��� � denotes the goal
distance of state �.� �

(here: measured in action execu-
tions), and + is the largest goal distance of any state. We
also use two operators with the following semantics: The



Initially, the u-values � ����� are initialized with � ����� for all
�	��


,
where � is a heuristic function for the goal distance of the states.

1.
�

:=
����������

.

2. If
�����

, then stop successfully.

3. � := one-of arg min
����������� � ��� � ��� ���! � ��� .

4. � ����� := max
� � �����"! 1 #$� ��� �%��� ���&! � ����� .

5. Execute action � .

6.
�

:=
� �%��� ���&! � � .

7. Go to 2.

Figure 1: LRTA*

expression “arg min ' (�)+* ��,"� ” returns the elements ,.�.-
that minimize * �/,-� . Given such a set 0 , the expression
“one-of 0 ” returns an element of 0 according to an arbi-
trary rule. Using this notation, we describe a simple version
of LRTA* (with lookahead one), see Figure 1. It associates
a small amount of information with the states that allows it
to remember where it has searched already. In particular,
it associates a u-value � ��� � with each state � � �

. The u-
values approximate the goal distances of the states. LRTA*
updates them as the search progresses and uses them to
determine which actions to execute. In particular, LRTA*
consists of a termination-checking step (line 2), an action-
selection step (line 3), a value-update step (line 4), and an
action-execution step (line 5). First, LRTA* checks whether
it has reached a goal state and thus can terminate success-
fully. If not, it decides on the action to execute next. It looks
only one action execution ahead and greedily picks the ac-
tion that leads to a successor state with a smallest u-value.
It then replaces the u-value � ��� � of the current state with
the one-step lookahead value max ��� ��� � $ 1 1�� ��� �"!#!����%$
&'����� ,
which is a more accurate estimate. Finally, it executes the
selected action and iterates.

Performance of LRTA*

In this section, we give an upper bound on the plan-execution
time of LRTA* (here: measured in action executions) un-
til it reaches a goal state (its “performance”). Bounding
the plan-execution time also bounds the sum of planning
and plan-execution time: For sufficiently slowly moving
agents, the sum of planning and plan-execution time is al-
most completely determined by the plan-execution time.
For sufficiently fast moving agents, on the other hand, the
sum of planning and plan execution time is almost com-
pletely determined by the planning time, which is roughly
proportional to the number of action executions (and thus
the plan-execution time) since LRTA* performs only a con-
stant amount of computation between action executions if
all states have roughly the same (constant) number of suc-
cessor states.

s1

start state goal state

s2 s3 s4 s5

0 0 0 1 0

Figure 2: One-Dimensional Gridworld

1 2 3

4 5 6

7 8

1 2 3

8 4

7 6 5

Eight Puzzle Eight Puzzle
with the “American” Goal State with the “European” Goal State

Figure 3: Eight Puzzle with Two Possible Goal States

Theorem 1 LRTA* with an admissible heuristic function *
has a plan-execution time of at most

2 2 ���%35476&8 �����:9 � �����/; #.� ���&���<�������>=
2 2 ���%3?6�8 �����

action executions.

The proof of Theorem 1 can be found in (Koenig and
Simmons 1995). The theorem implies that LRTA* with an
admissible heuristic function has a plan-execution time of@ ��� +'� action executions. If one can reach a goal state from
every state, then +BA ��C 1, and LRTA* with an admissible
heuristic function has a plan-execution time of

@ ��� 2 � action
executions. Thus, its plan-execution time is finite, which
proves its correctness since LRTA* stops only in goal states.
It can be shown that the bound provided by Theorem 1 is
tight for both LRTA* with a completely informed heuristic
function (that is, * ��� � � * +"��� � for all ��� �

) and LRTA*
with a completely uninformed heuristic function (that is,* ����� � 0 for all � � �

) (Koenig and Simmons 1995).
However, the bound is, in general, not representative for the
average plan-execution time of LRTA* for a given planning
task. In the following, we show that the behavior of LRTA*
often differs from the behavior of more traditional and well-
studied search methods, such as A*. This raises the question
of how properties of the heuristic functions, the domains,
and the real-time search methods themselves influence their
plan-execution times.

Properties of Heuristic Functions
In this section, we show that properties of heuristic func-
tions influence the behavior of LRTA* and A* differently
although both search methods utilize similar properties of
heuristic functions, such as their admissibility or consis-
tency. We say that a heuristic function dominates another
one if, for every state, the heuristic value that it assigns to
that state is at least as large as the heuristic value that the
other heuristic functions assigns to the state. We know that
one can never degrade the performance of A* by switch-
ing from a consistent heuristic function to another consis-
tent heuristic function that dominates the other one (Pearl
1985). However, this is not the case for LRTA* even though
the upper bound on its plan-execution time is guaranteed to
decrease. As an example, consider the one-dimensional



grid-world from Figure 2. LRTA* with a completely un-
informed heuristic function always moves to the right and
reaches the goal state on a shortest path from the start state.
Now assume that LRTA* uses the consistent heuristic func-
tion shown above the states, that dominates the completely
uninformed heuristic function. In this case, LRTA* does not
reach the goal state any longer on a shortest path from the
start state if ties are broken in favor of successor states with
smaller indices. In this case, it traverses the state sequence
� 1 , � 2, � 3, � 2, � 1, � 2, � 3, � 4, and � 5. The same effect can
also be observed in more complex domains (Koenig 1995).
As an example, consider the following two heuristic func-
tions for the eight puzzle with the “American” goal state,
see Figure 3 (Pearl 1985). Gaschnig’s heuristic: the small-
est number of moves needed to achieve the goal state if it
counts as one move when a tile is removed from its current
square and placed on the empty square; and the Tiles-Out-
Of-Order heuristic: the smallest number of moves needed
to achieve the goal state if two or more tiles can occupy
the same square and it counts as one move when a tile is
removed from its current square and placed on any other
square. Gaschnig’s heuristic dominates the Tiles-Out-Of-
Order heuristic, and both heuristic functions are consistent.
Thus, the performance of A* with Gaschnig’s heuristic is at
least as good as the performance of A* with the Tiles-Out-
Of-Order heuristic. The opposite is true for LRTA*. We
average its plan-execution time over 25,000 examples and
break ties among actions randomly. LRTA* with the Tiles-
Out-Of-Order heuristic has, on average, a plan-execution
time of 1,410 action executions, compared to 2,236 action
executions for LRTA* with Gaschnig’s heuristic. Out of the
25,000 runs, LRTA* with the Tiles-Out-Of-Order heuris-
tic outperforms LRTA* with Gaschnig’s heuristic 15287
times, is beaten 9682 times, and ties 31 times. These exam-
ples show that the performance of LRTA* is not completely
correlated with the informedness of the heuristic functions
even if they are consistent. This is due to local minima in
the “value surface” of the heuristic function (Ishida 1997).
Since LRTA* always chooses the action for execution that
leads to a successor state with a smallest u-value, we expect
LRTA* to do well if there is a good chance that it comes
across a goal state when it mostly performs steepest decent
on the initial u-values. This means that the differences in u-
values of the successor states are more important than how
close the u-values are to the goal distances. Consequently,
the fewer local minima there are in the initialu-value surface
and the “shallower” they are, the better we expect the plan-
execution time of LRTA* to be. In general, however, not
much is known about how heuristic knowledge affects the
plan-execution time of real-time search methods, and there
are no good techniques yet for predicting how well they
perform with given heuristic functions. This is a promising
area for future research.

Properties of Domains
In this section, we show that domain properties influence
the behavior of LRTA* and A* differently. A* with a con-
sistent heuristic function, for example, never expands states

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

nu
m

be
r 

of
 s

ta
te

s

goal distance

american goal state
european goal state

Figure 4: Goal Distances of the Eight Puzzle

that are further away from the start state than the closest
goal state. LRTA* with the same heuristic function, on the
other hand, can visit these states. According to Theorem 1,
the plan-execution time of LRTA* depends on the goal dis-
tances of all states (and thus the average goal distance over
all states), not only the goal distance of the start state. As
an example, consider sliding-tile puzzles, which are some-
times considered to be hard planning domains because they
have a small goal density. The eight puzzle, for example,
has 181,440 states, but only one goal state. Although in-
creasing the goal density tends to decrease the average goal
distance, there exist planning domains with small average
goal distance and small goal density (Koenig and Simmons
1995). The eight puzzle is an example: Figure 4 shows for
every goal distance how many of the 181,440 states have this
particular goal distance. The average goal distance of the
eight puzzle with the “American” goal state is only 21.5 and
its maximal goal distance is 30. Similarly, the average goal
distance of the eight puzzle with the “European” goal state
is 22.0 and its maximal goal distance is 31. More exten-
sive statistics on the eight puzzle can be found in (Reinefeld
1993). Although the average goal distance could be as large
as ��� C 1 � �

2 � 90 $ 719 � 5, it is much smaller for the eight
puzzle with either goal state. This means that LRTA* can
never move far away from the goal states even if it executes
suboptimal actions. Thus, the eight puzzle is not particu-
larly hard to search with LRTA* among all domains with
the same number of states.

Another property that makes domains easy to search with
some real-time search methods, but not A*, is being Eule-
rian (Koenig and Simmons 1996a). Eulerian domains are
directed domains where every state has as many actions that
enter it as actions that leave it and, thus, Eulerian domains
are a superset of undirected (more precisely: “bi-directed”)
domains. In general, however, not much is known about
how domain properties affect the plan-execution time of
real-time search methods, and there are no good techniques
yet for predicting how well they will perform in a given
domain. This is a promising area for future research.

Properties of Search Methods
In this section, we show that the plan-execution times

of two similar real-time search methods can be very differ-
ent, although experimental results in standard test domains
indicate that both methods perform equally well. As an ex-
ample, consider Node Counting, a real-time search method
that differs from LRTA* only in line 4, see Figure 5. Vari-
ants of Node Counting have been used in (Pirzadeh and
Snyder 1990; Thrun 1992; Balch and Arkin 1993), among



1.
�

:=
����������

.

2. If
�����

, then stop successfully.

3. � := one-of arg min
����������� � ��� � ��� ���! � ��� .

4. � ����� := 1 #.� ����� .
5. Execute action � .

6.
�

:=
� �%��� ���&! � � .

7. Go to 2.

Figure 5: Node Counting

...

start state goal state

s7

s6

s5

s4

s3

s2

s1

sn-1

sn

Figure 6: Reset State Space

others. The difference between Node Counting and LRTA*
is the following: The u-values of (uninformed) LRTA* ap-
proximate the goal distances. LRTA* always moves to a
successor state with a smallest u-value because it wants to
get to states with smaller goal distances to eventually reach
a state with goal distance zero, that is, a goal state. The
u-values of uninformed Node Counting, on the other hand,
correspond to the number of times Node Counting has vis-
ited the states. Node Counting always moves to a successor
state with a smallest u-value because it wants to get to states
which it has visited less frequently to eventually reach a state
that it has not yet visited at all, that is, a possible goal state.
Node Counting and LRTA* perform equally well in many
domains. Consider, for example, the following two experi-
ments in which the difference in plan-execution times of the
two methods is statistically insignificant for any reasonable
level of significance, for both sign tests and t tests (Koenig
and Simmons 1996a). In the first experiment, we compare
uninformed Node Counting and uninformed LRTA* on the
eight puzzle with the “American” goal state. We average
their plan-execution times over 25,000 examples and break
ties among actions randomly. Node Counting has, on av-
erage, a plan-execution time of 85,579 action executions,
compared to 85,746 action executions for LRTA*. Out of
the 25,000 runs, Node Countingoutperforms LRTA* 12,512
times and is beaten 12,488 times. In the second experiment,
we use an obstacle-free grid-world of size 50 � 50 whose
start and goal states are in opposite corners. Node Counting
has, on average, a plan-execution time of 2,874 action ex-
ecutions, compared to 2,830 action executions for LRTA*.
Out of the 25,000 runs, Node Counting outperforms LRTA*
12,345 times, is beaten 12,621 times, and ties 34 times.
These two experiments seems to suggest that Node Count-
ing and LRTA* perform equally well. A formal analysis,
however, comes to a different conclusion. If one can reach
a goal state from every state, then Theorem 1 implies that

the plan-execution time of uninformed LRTA* is at worst
quadratic in the number of states. The plan-execution time
of uninformed Node Counting, however, can be exponential
in the number of states. As an example, consider a variant
of the “reset state spaces” used in (Koenig and Simmons
1996a). A reset state space is a domain in which all states
(but the start state) have an action that leads back to the start
state (here: via an intermediate state), see Figure 6. We
say that the action “resets” Node Counting to the start state.
Uninformed Node Counting has a plan-execution time of
2 ����� 1 ��� 2 C 3 action executions (for odd �	� 3) if ties are
broken in favor of successor states with smaller indices. For
example, for � � 7, it traverses the state sequence � 1, � 3, � 2,
� 1, � 3, � 5, � 4, � 1, � 3, � 2, � 1, � 3, � 5, and � 7. A more complex
example can be used to show that the plan-execution time
of uninformed Node Counting can be exponential in the
number of states even in undirected domains (Koenig and
Szymanski 1998). This result shows that sliding-tilepuzzles
and grid-worlds are not able to distinguishbetween real-time
search methods that are always efficient, such as LRTA*,
and real-time search methods that can be intractable, such
as Node Counting. In general, however, not much is known
about how different real-time search methods compare, and
there are no good techniques yet for predicting which one
will outperform the others on a given planning task. This is
a promising area for future research.

Conclusions
Our results imply that real-time search methods have differ-
ent properties than more traditional and well-studied search
methods, such as A*. This motivates our argument that it
is important to investigate how properties of the heuristic
functions, the domains, and the real-time search methods
themselves influence their plan-execution times. These re-
sults can help experimental researchers to distinguish easy
planning tasks for real-time search methods from hard ones,
which can help them to decide whether to use real-time
search methods to solve a given planning task. If the an-
swer is positive, the results can also help them to select an
appropriate real-time search method. Finally, the results can
help them to choose appropriate test-beds for experiment-
ing with real-time search methods, reporting their results,
and interpreting the results reported by others (Koenig and
Simmons 1996a).

Another promising research direction, not mentioned ear-
lier in this paper, is the application of real-time search
methods to nondeterministic planning tasks (Koenig and
Simmons 1995; Barto et al. 1995). In nondeterministic do-
mains, real-time search methods have an additional advan-
tage over search methods that first plan and only then execute
the resulting plan, namely that they allow agents to gather
information early. This information can be used to resolve
some of the uncertainty and reduce the amount of planning
done for unencountered situations, which makes planning
more efficient. Real-time search methods have already been
applied to some nondeterministic planning tasks, including
robot navigation tasks (Koenig and Simmons 1998), but not
much is known yet about their behavior in nondeterministic



domains. This is another promising area for future research.

References
Balch, T. and Arkin, R. 1993. Avoiding the past: A simple,
but effective strategy for reactive navigation. In Interna-
tional Conference on Robotics and Automation. 678–685.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
to act using real-time dynamic programming. Artificial
Intelligence 73(1):81–138.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism. In Proceedings of the
National Conference on Artificial Intelligence.
Geffner, H. and Bonet, B. 1998. Solving large POMDPs
by real-time dynamic programming. Technical report, De-
partamento de Computación, Universidad Simón Bolivar,
Caracas (Venezuela).

Ishida, T. 1997. Real-Time Search for Learning Au-
tonomous Agents. Kluwer Academic Publishers.
Koenig, S. and Simmons, R.G. 1992. Complexity analy-
sis of real-time reinforcement learning applied to finding
shortest paths in deterministic domains. Technical Report
CMU–CS–93–106,School of Computer Science, Carnegie
Mellon University, Pittsburgh (Pennsylvania).
Koenig, S. and Simmons, R.G. 1993. Complexity analysis
of real-time reinforcement learning. In Proceedings of the
National Conference on Artificial Intelligence. 99–105.
Koenig, S. and Simmons, R.G. 1995. Real-time search in
non-deterministic domains. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence. 1660–
1667.

Koenig, S. and Simmons, R.G. 1996a. Easy and hard
testbeds for real-time search algorithms. In Proceedings
of the National Conference on Artificial Intelligence. 279–
285.

Koenig, S. and Simmons, R.G. 1996b. The effect of rep-
resentation and knowledge on goal-directed exploration
with reinforcement-learning algorithms. Machine Learn-
ing 22(1/3):227–250.
Koenig, S. and Simmons, R.G. 1998. Solving robot nav-
igation problems with initial pose uncertainty using real-
time heuristic search. In Proceedings of the International
Conference on Artificial Intelligence Planning Systems.

Koenig, S. and Szymanski, B. 1998. Node Counting and
LRTA* for control: Are they equally good? (submitted).
Koenig, S. 1992. The complexity of real-time search.
Technical Report CMU–CS–92–145, School of Computer
Science, Carnegie Mellon University, Pittsburgh (Pennsyl-
vania).

Koenig, S. 1995. Agent-centered search: Situated search
with small look-ahead. Phd thesis proposal, School of
Computer Science, Carnegie Mellon University,Pittsburgh
(Pennsylvania).
Koenig, S. 1997. Goal-Directed Acting with Incomplete
Information. Ph.D. Dissertation, School of Computer Sci-

ence, Carnegie Mellon University, Pittsburgh (Pennsylva-
nia).
Korf, R. 1990. Real-time heuristic search. Artificial Intel-
ligence 42(2-3):189–211.
Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.
Nilsson, N. 1971. Problem-Solving Methods in Artificial
Intelligence. McGraw-Hill.
Pearl, J. 1985. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley.
Pirzadeh, A. and Snyder, W. 1990. A unified solution to
coverage and search in explored and unexplored terrains
using indirect control. In Proceedings of the International
Conference on Robotics and Automation. 2113–2119.
Reinefeld, A. 1993. Complete solution of the eight-puzzle
and the benefit of node ordering in IDA*. In Proceedings
of the International Joint Conference on Artificial Intelli-
gence. 248–253.
Russell, S. and Zilberstein, S. 1991. Composing real-
time systems. In Proceedings of the International Joint
Conference on Artificial Intelligence. 212–217.
Thrun, S. 1992. The role of exploration in learning control
with neural networks. In White, D. and Sofge, D., editors
1992, Handbook of Intelligent Control: Neural, Fuzzy and
Adaptive Approaches. Van Nostrand Reinhold. 527–559.


