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Abstract

Probabilistic planners can have various planning objec-
tives: usually they either maximize the probability of goal
achievement or minimize the expected execution cost of
the plan. Researchers have largely ignored the problem
how to incorporate risk-sensitive attitudes into their plan-
ning mechanisms. We discuss a risk-sensitive planning
approach that is based on utility theory. Our key result is
that this approach can, at least for risk-seeking attitudes,
be implemented with any reactive planner that maximizes
(or satisfices) the probability of goal achievement. First,
the risk-sensitive planning problem is transformed into
a different planning problem, that is then solved by the
planner. The larger the probability of goal achievement of
the resulting plan, the better its expected utility is for the
original (risk-sensitive) planning problem. This approach
extends the functionality of reactive planners that maxi-
mize the probability of goal achievement, since it allows
one to use them (unchanged) for risk-sensitive planning.

Introduction

In the last several years, numerous reactive planning methods
have been developed that are able to deal with probabilistic
domains. Examples include (Bresina & Drummond 1990),
(Koenig 1991), (Dean et al. 1993), and others. Given a
planning problem, reactive planners determine state-action
mappings (either implicitly or explicitly). Such closed-loop
plans specify for every state the action that the agent has to
execute when it is in that state. Not all reactive planning ap-
proaches have the same objective: different planners consider
different plans to be optimal for the same planning problem.
In this paper, we concentrate on three planning objectives: to
maximize the probability of goal achievement, to minimize
the expected execution cost, and to maximize the expected
utility of plan execution.

In some domains, it is impossible to determine state-action
mappings that are guaranteed to achieve a given goal. Even if
a plan exists that achieves the goal with probability one, time
might not permit to find it. When planning in such domains,
one is usually satisfied with finding plans that maximize the
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probability of goal achievement. However, if one is willing
and able to determine more than one plan that is always suc-
cessful, one needs a criterion for choosing among these plans.
A common metric is the execution cost of a plan.! Since
probabilistic plans are “lotteries” in that their execution costs
can vary from plan execution to plan execution, planners usu-
ally choose the plan for execution that minimizes the expected
execution cost (when optimizing) or, at least, one whose ex-
pected execution cost is smaller than a given threshold (when
satisficing).

Such planners are called risk-neutral, because they consider
two plans with the same expected execution cost to be equally
good, even if their variances are not equal. In contrast, a risk-
seeking planner (“gambler”) is willing to accept a plan with a
larger expected execution cost if the uncertainty is sufficiently
increased, and a risk-averse planner (“insurance holder”) ac-
cepts a plan with a larger expected execution cost only if the
uncertainty is sufficiently decreased. Since human decision
makers are usualily not risk-neutral for non-repetitive planning
tasks, the plans produced by planning methods should reflect
the risk-attitudes of the people that depend on them.

Utility theory (von Neumann & Morgenstern 1947), a part
of decision theory, provides a normative framework for mak-
ing decisions according to a given risk attitude, provided that
the decision maker accepts a few simple axioms and has un-
limited planning resources available. Its key result is that, for
every risk attitude, there exists a utility function that trans-
forms costs ¢ into real values u(c) (“utilities™) such that it is
rational to maximize expected utility. A planner that is based
on utility theory chooses the plan for execution that maximizes
the expected utility of the cost of plan execution.

The utility-theoretic approach encompasses the other two
objectives: Maximizing the probability of goal achievement is
rational according to utility theory if the agent prefers a smaller
execution cost over a larger one and incurs total execution cost
Cgoat for achieving a goal state and a larger total execution cost
Cnon—goal Otherwise. Minimizing expected execution cost is

'In some domains it is even easy to construct plans that always
succeed. An example is travel planning. When planning how to
get to a given conference, one can easily devise plans that are al-
ways successful under normal circumstances. Since human decision
makers usually ignore exceptional circumstances (such as sudden
illnesses), it appears reasonable for a planner to do so as well. Possi-
ble evaluation metrics for travel plans include travel cost and travel
time.
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rational according to ut%ty theory if the agent is risk-neutral,
i.e. has utility function u(c) = c.

Although the application of utility theory to planning tasks
has been studied by (Etzioni 1991), (Russell & Wefald 1991),
(Haddawy & Hanks 1992), (Wellman & Doyle 1992) and
(Goodwin & Simmons 1992), most researchers have ig-
nored the problem how to incorporate risk-sensitive attitudes
into their planning mechanisms. Notable exceptions include
(Karakoulas 1993) and (Heger 1994).

In the following, we will describe an approach for utility-
based planning. We will show, perhaps surprisingly, that any
reactive planner that maximizes (or satisfices) the probability
of goal achievement can be used to implement our approach, at
least in the risk-seeking case. First, the risk-sensitive planning
problem is transformed into a different planning problem, that
is then solved by the planner. The larger the probability of
goal achievement of the resulting plan, the better its expected
utility is for the original (risk-sensitive) planning problem.
Thus, planners that maximize or satisfice the probability of
goal achievement can also be used for risk-sensitive planning,
and our approach extends their functionality. It also extends
our previous work by showing that these planners, that do not
consider costs, can — perhaps surprisingly — be used to take
execution costs into account.

The Planning Framework

The probabilistic planning framework that we use in this pa-
per is similar to those used by (Bresina & Drummond 1990),
(Dean eral. 1993), and most table-based reinforcement learn-
ing approaches: S is a finite set of states, sy € S the start state,
and G C § aset of goal states. When the agent reaches a goal
state, it has solved the task successfully and execution stops.
A(s) denotes the finite set of actions that are available in non-
goal state 5. After the agent executes an action a € A(s) in s,
nature determines the outcome of the action with a coin flip:
with transition probability p?[s, 5'], the agent incurs an action
cost ¢?[s,s'] < 0and is in successor state s’. This assumes that
the outcomes of all action executions are mutually indepen-
dent given the current state of the agent (Markov property).
The action costs reflect the prices of the consumed resources,
for example time needed or energy spent. We assume that
the transition probabilities and transition costs are completely
known to the planner and do not change over time. We do not
assume, however, that the planner uses a planning approach
that operates in the state space (instead of, say, the space of
partial plans).

A planning domain with the above properties can for ex-
ample be described with a STRIPS-like notation. Although
the original STRIPS-notation (Fikes & Nilsson 1971) applies
to deterministic domains only, it can easily be augmented
for probabilistic domains (Koenig 1991). As an illustration,
consider a probabilistic blocks-world. In every blocks-world
state, one can move a block that has a clear top onto either the
table or a different block with a clear top. With probability
0.1, the moved block ends up at its intended destination and
the move action takes two minutes to complete. With prob-
ability 0.9, however, the gripper loses the block and it ends
up directly on the table. If the block slips, it does so after
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only one minute. Thus, the execution time of the move action
is less if slipping occurs. This domain can be modeled with
three augmented STRIPS-rules: “move block X from the top
of block Y on top of block Z”, *“stack block X on top of block
Y™, “unstack block X from block Y. The first move operator
can for example be expressed as follows:

movetX,Y.Z)
precond:  on(X,Y), clear(X). clear(Z), block(X).

block(Y 1, block(Z). unequal(X,7)

outcome:  /* the primary outcome */
prob: 0.1
cost: -2
delete: on{X,Y). clear(Z)
add: on(X,Z). clear(Y)
outcome:  /* failure: block X falls down */
prob: 0.9
cost: -1
delete: on(X.Y)
add: clear(Y), on(X, table)

A plan is a state-action mapping that assigns an action
a[s] € A(s) to each non-goal state 5. Given the above assump-
tions, plans can be restricted to state-action mappings without
losing optimality. For a given plan, we define the probability
of goal achievement g[s] of state s as the probability with
which the agent eventually reaches a goal state if it is started
in 5 and obeys the plan. Iff this probability equals one, we
say that the plan solves s. The expected cost of state s for the
given plan is the expected sum of the costs of the actions that
the agent executes from the time at which it starts in s until
it stops in a goal state. Similarly, the expected utility u[s] of
state s is the expected utility of the sum of the costs of the
executed actions.

In the following, we make the assumption that all states are
solvable, because it simplifies the description of our approach.
However, the approach can be extended to produce plans that
allow the agent to stop execution without having reached a
goal state, for example because a goal state cannot be reached
at all or it is to costly to do so (Koenig & Simmons 1993).

Utility-Based Planning

A utility-based planner has to solve planning task PT1: given
a utility function, find a plan for which the start state has the
largest expected utility.

In order to come up with a good planning approach, we need
to be concerned about its complexity. If the agent were risk-
neutral, then the planning task could be solved, for example,
with dynamic programming methods from Markov decision
theory in a time that is polynomial in the size of the state
space (Bertsekas 1987). Unfortunately, it is not possible to
solve the risk-sensitive planning task PT1 by first replacing
all action costs with their respective utilities and then using
a risk-neutral planner on the resulting planning task, because
in general u(c; + ¢2) # u(cy) + u(c;) for two costs ¢; and c;.
Even worse, dynamic programming methods can no longer be
used in any way without considering the action costs that the
agent has already accumulated when deciding on an action,
because the best action in a state is no longer guaranteed to be
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independent of the already accumulated cost.?

Our approach for overcoming this problem is to limit the
utility functions to those that maintain the Markov property.
Ultimately, there is a trade-off between closeness to reality
and efficiency. If finding plans that are optimal for a given
risk-attitude is inefficient, then one can use approximations:
one can, for example, use approximate planning algorithms
on exact utility functions or exact planning algorithms on
approximate utility functions. Our approach belongs into
the latter category and was partly motivated by the fact that
assessing the utility function of a decision maker will usually
not be possible with total accuracy.

The only utility functions that maintain the Markov prop-
erty are the identity function, convex exponential func-
tions u{c) = +° for ¥ > 1, concave exponential functions
u(c) = —y° for0 < v < 1, and their positively linear transfor-
mations (Watson & Buede 1987). Since the utility functions
are parameterized with a parameter 7, one can express various
degrees of risk-sensitivity ranging from being strongly risk-
averse over being risk-neutral to being strongly risk-seeking.
The larger v, the more risk-seeking the agent is, and vice versa.
Although utility functions of this kind can approximate a wide
range of risk-attitudes, they have their limitations. They can-
not be used to explain, for example, the behavior of agents that
are risk-seeking and risk-averse at the same time (“insurance
holders that buy lottery tickets”).

(Howard & Matheson 1972) apply these utility functions to
Markov decision problems for which every state-action map-
ping determines an irreducible (that is, strongly connected)
Markov chain. Unfortunately, planning task PT1 does not
possess these properties, and thus we cannot use their meth-
ods and proofs unchanged.

Planning for Risk-Secking Agents

In this section, we deal with risk-secking agents that have util-
ity function u(c) = 4 fory > 1. This class of utility functions
approximates well-studied risk-attitudes as 7y approaches one
orinfinity. To simplify the explanation, we use two terms from
utility theory. A “lottery” is recursively defined to be either a
cost that is received for sure (that is, with probability one) or
a probability distribution over lotteries. If the expected utility
of a lottery is x, then u~'(x) is called its *“certainty monetary
equivalent.”

For 4 approaching one, the certainty monetary equivalent
of any state for any plan approaches the expected cost of that
state. Therefore, the optimal plan for a risk-neutral agent is
also best for a risk-seeking agent if v approaches one.

Proof: Assume that the execution of the plan
leads with probability p; to execution cost c¢; if
the agent is started in state s.  Then, the ex-
pected cost of s equals ), pic; and its certainty
monetary equivalent is u"(Z‘.p,-u(c,-)). Thus,
limy_ w3, piu(c)) = lim,—jlog, 3, piy™) =

. ln(z.p.-'y"') L' Hopital . (E,.P.try"'")/ Z,.pn"'
limy—, —Si— = lim,_, 7+

2For a detailed explanation and an example see (Koenig & Sim-
mons 1993).

=i 2Pyt limy 3 piey® 3 pici -7
= iy S T mya S a1 2abPiCE

In contrast, for y approaching infinity, the certainty mone-
tary equivalent of any state for any plan approaches the cost
of that state if nature acts like a friend (that is, chooses the
action outcomes not with a coin flip, but deliberately so that
it is best for the agent). Of course, according to our assump-
tions, nature does flip coins. We call an agent that assumes
(wrongly) that nature helps it as much as it can and calcu-
lates it utilities accordingly “extremely risk-seeking.” Thus,
max-max-ing (“both the agent and nature maximize the re-
ward for the agent”), which calculates the utility of a non-goal
state s for a given plan as u[s] = maxyes(c®CI[s, '] + uls]),
determines the plan that is best for a risk-seeking agent if «
approaches infinity.

Proof: Assume again that the execution of the
plan leads with probability p; to execution cost ¢;
if the agent is started in state s. Then, max;c;
= log, Y™ = log, 3, py™« > log, 3 ,p® 2
max; log, (piy') = max;(log, p; + c). It follows
that max; ¢; = limy_. o, max; ¢; > lim,_. log, >, piv“
2> limy_q max,-(log,v pi + ¢i) = max;c;, and thus
limy—oo ™' (X pit(c)) = limy_oclog, 3, p" =
max; c¢;.

In the following, we will first show how to calculate the
expected utility of a given plan. Then, we wiil transform
planning task PT1 into one for an agent that maximizes the
probability of goal achievement. Finally, we will apply our
approach to a simple probabilistic navigation task.

Calculating the Expected Utility of a Plan  Assume that,
for some planning problem, a plan (that is, a state-action
mapping) is given that assigns action a[s] to non-goal state
s. The expected utility u[so] of this plan can recursively be
calculated as follows: The utility of a goal state s is u[s] =
u(0) = 4° = 1. After the agent has executed action als} in
a non-goal state s, it incurs action cost ¢®*![s, '] and is in
successor state s’ with probability p“F’I[s,s’]. In state 5/, it
faces a lottery again. This lottery has expected utility u[s’]
and certainty monetary equivalent u~!(u[s']). According to
the axioms of utility theory, the lottery can be replaced with
its certainty monetary equivalent. Then, the agent incurs total
cost c¢®I[s, 5’1 + u~(u[s'T) with probability p?*I[s, s'). Thus,
the expected utility of s can be calculated as follows:>

ufs] = Y pMIs,luc s, 1+ u WD)
sES
= Zpam[s’ szhc"l’ll.r,:'|+u-'(u|.r'n
s'es

e 1 u—leule!
= ZPHN[S, sl],yc“ [5.8 |7u (uis’)
s'eS

= 3 P, o Iy g

s'eS

3This corresponds to the policy-evaluation step in (Howard &
Matheson 1972) with the “certain equivalent gain™ g = 0.
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Transforming the Planning Problem Using the results of
the previous section, we can now show how every planning
task PT1 for a risk-seeking agent can be transformed into an
equivalent planning task PT2 for an agent that maximizes the
probability of goal achievement.

Assume again that a state-action mapping is given and let
P[5, 5'] denote the transition probabilities for planning task
PT2. The probability of goal achievement g[s] of a goal state
s is one. For a non-goal state s, it is

glsl = Y p"s, ¢ lglv]
€S
= Y PVIs, S1els1+ Y s, o]
s'ES\G s'€G

Comparing these results to the ones in the previous sec-
tion shows that g[s] = u[s] for s € S if p*M[s,5'] =
pll[s, 175 fors € S\ Gand 5 € S.

Thus, planning task PT1 for arisk-seeking agent with utility
function u(c) = ¥°¢ is equivalent to the following planning
task PT2 for an agent that maximizes the probability of goal
achievement: The state space, action space, start state, and
goal states remain unchanged. When the agent executes action
a € A(s) in any non-goal state s, it is in successor state s’ with
transition probability p**I[s, s']y<"*1, The action costs of
the actions do not matter.

This transformation is trivial and can be done in linear
time. It changes only the transition probabilities, but neither
the state space, action space, nor which states are goal states.
The probabilities do not add up to one — we could remedy
this by introducing a single non-goal state in which only one
action is applicable, which has action cost zero and does not
change state. When the agent executes an action a € A(s) in
any other non-goal state s, it reaches this new non-goal state
with transition probability 1 -}, c s p*¥1[s, ¢ 1y<™"15+'l. Since
the probability of goal achievement for the new non-goal state
is zero, it does not affect the calculations and all we need to
do is to recalculate the probabilities in the manner described
above.

For example, consider again the augmented STRIPS-rule
for the probabilistic blocks-world and assume that v = 2. The
transformed STRIPS-rule looks as follows:

move(X.Y,Z)
precond:  on(X,Y), clear(X), clear(Z), block(X).
block(Y), block(Z), unequal(X,Z)

outcome:  /* the primary outcome */

prob: 0.025
delete: on(X,Y), clear(Z)
add: on(X,Z). clear(Y)
outcome:  /* failure: block X falls down */
prob: 0.450
delete: on(X,Y)
add: clear(Y). on(X, table)
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With the complementary probability (0.525), the action ex-
ecution results in the agent no longer being able to reach a
goal state,

Determining Optimal Plans The last section demonstrates
that the expected utility of a plan for planning task PT1 equals
the probability of goal achievement of the same plan for plan-
ning task PT2. Thus, a plan is optimal for planning task PT]
if it is optimal for planning task PT2 as well (and vice versa).

Any planning method that determines plans that maximize
the probability of goal achievement (or plans whose probabil-
ity of goal achievement exceeds a given threshold) can be used
to maximize (or satisfice) expected utility for planning task
PT1. One can apply the planning method by first transforming
the utility-based planning task into a strictly probability-based
planning task, as described above. The optimal plan for the
transformed planning task is optimal for the original planning
task as well. Thus, perhaps surprisingly, planners that maxi-
mize the probability of goal achievement can be used to take
execution costs into account.

Planning for Risk-Averse Agents

For risk-averse agents, one has to use a utility function from
the family #(c) = —v¢ (or any positively linear transformation
thereof) for 0 < ¥ < 1. For v approaching zero, the certainty
monetary equivalent of any state for any plan approaches the
cost of that state if nature acts like an enemy (that is, chooses
action outcomes not with a coin flip, but deliberately so that
it is worst for the agent). We call an agent that assumes
(wrongly) that nature hurts it as much as it can and calculates
its utilities accordingly “‘extremely risk-averse.” Planning
for extremely risk-averse agents has recently been studied by
(Moore & Atkeson 1993) and (Heger 1994).

Although the values p“*)[s, s'Jy**'I**'| can no longer be
interpreted as probabilities (since 3, . ¢ p*I[s, 5’ et s
1), one can proceed as outlined for risk-seeking agents in the
previous section if one addresses the following problem: The
solution u[sq] of the system of linear equations from Section
“Calculating the Expected Utility of a Plan” can now be finite
even for plans that have expected utility minus infinity. The
planning methods can then erroneously return such plans as
optimal solutions. Since such plans are easy to characterize,
one can modify planning algorithms to make sure that these
plans get ignored during planning (Koenig & Simmons 1994).
Thus, while we cannot claim that any probabilistic planner
can be used unchanged for the risk-averse case (as is the
case for risk-seeking behavior), we believe that for many of
the existing algorithms only slight modifications would be
needed to enable them to handle the risk-averse case as well.

An Example

In the following, we demonstrate our approach to risk-
sensitive planning on a probabilistic navigation task and show
how the best plan changes as the agent becomes more and
more risk-seeking. To implement the approach, we used a
simple dynamic programming algorithm that maximizes the
probability of goal achievement (Koenig & Simmons 1993).
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Figure 1: A Path-Planning Problem

Consider the simple path-planning domain shown in Fig-
ure 1. The states of this grid-world correspond to locations.
In every state, the agent has at most four actions available,
namely to go up, right, down, or left. All actions take the
agent one minute to execute, but they are not necessarily
deterministic. They succeed with probability ﬁ but their
outcomes deviate ninety degrees to the left or right of the in-
tended direction with probability 1=% each. Thus, x € [0, 1]
is a parameter for the certainty of the actions: the larger the
value of x is, the more certain their outcomes are. Actions
have deterministic outcomes if x = 1; their intended outcome
and its two deviations are equally likely for the other extreme,
x=0.

In every state, the agent can execute all of the actions whose
intended direction is not immediately blocked by a wall. Be-
sides standard walls, the grid-world also contains “one-way
walls,” that can be traversed from left to right, but not in the
opposite direction. (They might for example be steep slopes
that the agent can slide down, but not climb up.) If the agent
executes an action and it has the intended outcome, the agent
cannot bump into a wall. However, running into a wall is pos-
sible for unintended outcomes, in which case the agent does
not change its location. As an example, consider state X in
figure 1 and assume thatx = 0.5. In this state, the agent can go
left, up, or right. If it tries to go left, it will succeed with prob-
ability 0.6, unintentionally go up with probability 0.2, and
unintentionally remain in state X with the same probability
(since it cannot go down).

The agent can reach the goal state from the start state on two
different paths. If the actions have deterministic effects (that
is, if x = 1), the traversal of path B takes 13 minutes and the
one of path A 15 minutes. Thus, the agent prefers path B over
path A, independently of its risk-attitude. If the actions do not
have deterministic effects, however, the agent risks traversing
a one-way wall unintentionally when following path B, in
which case it has to retrace parts of its path.

We use &, to denote the value of the action certainty pa-
rameter that makes an agent with risk parameter v indifferent
between the two paths. If X, < x, then the agent chooses
path B, otherwise it chooses path A. Figure 2 shows how

Acticn Certainty for which the Agent is Indifferent betwsen the Two Paths
1 T T T T

action certainty —

action certainty x
Q
"
1
1

Figure 2: Solution of the Path-Planning Problem

the value of x, varies with the natural logarithm of . The
smaller Inv, the more risk-averse the agent is. The figure
comprises risk-seeking (Iny > 0), risk-neutral (Iny = 0), and
risk-averse behavior (Iny < 0). The graph shows that %,
decreases the more risk-seeking the agent becomes. It ap-
proaches zero in the limit: an extremely risk-seeking agent
prefers path B over path A, since path B can be traversed in 13
minutes in the best case, whereas path A cannot be traversed
in less than 15 minutes.

Conclusion

This paper concerns probabilistic planning for risk-sensitive
agents, since there are many situations where it is not ap-
propriate to determine plans that maximize the probability
of goal achievement or minimize expected execution cost.
Our approach to risk-sensitive planning fills the gap between
approaches previously studied in the Al planning literature,
namely the approach of minimizing expected execution cost
(risk-neutral attitude) and the approach of assuming that nature
acts like a friend (extremely risk-seeking attitude) or enemy
(extremely risk-averse attitude) which we can asymptotically
approximate as shown in Figure 3.

Building on previous work by (Howard & Matheson 1972),
we demonstrated that any reactive planner that maximizes the
probability of goal achievement can be used to determine op-
timal plans for risk-seeking agents and, perhaps surprisingly,
can therefore be used to take execution costs into account.
First, the risk-seeking planning problem is transformed into a
different planning problem for which the planner then deter-
mines the plan with the largest (or a good) probability of goal
achievement. This plan has the largest (or a good) expected
utility for the original planning problem. The transforma-
tion is not complicated. Only the transition probabilities have
to be changed according to the following simple rule: if an
action leads with probability p and action cost ¢ to a cer-
tain outcome, then its new transition probability is py¢ for
a risk-seeking agent with degree of risk-sensitivity 4. For

SIMMONs 297



From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

| % |
=0 =1 ] v=1l Soo |
i J,L T e
~ N
Y ¥ v Y ¥
risk attitude extremely risk-averse risk-averse risk-neutral risk-secking extremely risk-seeking
formalization max-min-ing utility theory utility theory utility theory Imax-max-ing

utility of lottery  u (L) = min u(c;) u(l) = Zpi'“(ci)

u(l) = Zp,--u(c,-) u(l) = Zp,--u(c,.) u(l) = max u(c;)

utility function u(c) =-m-¥+n
(m>0,0<y<1)

u(c) =m-c+n u(c) =m-f+n

{m>0) (m>0,y>1)

(L is a lottery: cost c; is won with probability p; for all i)

Figure 3: Continuum of Risk-Sensitive Behavior

risk-averse agents, the problem is a bit more complex. but we
believe that many existing planners can be extended in simple
ways to deal with the risk-averse case.

Our approach can therefore be used to extend the function-
ality of reactive planners that maximize the probability of goal
achievement, since they can now also be used to maximize
expected utility for a particular class of utility functions.
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