
Solving Robot Navigation Problems with Initial Pose Uncertainty
Using Real-Time Heuristic Search∗

Sven Koenig Reid G. Simmons
College of Computing Computer Science Department

Georgia Institute of Technology Carnegie Mellon University
skoenig@cc.gatech.edu reids@cs.cmu.edu

Abstract

We study goal-directed navigation tasks in mazes, where the
robots know the maze but do not know their initial pose (po-
sition and orientation). These search tasks can be modeled
as planning tasks in large non-deterministic domains whose
states are sets of poses. They can be solved efficiently by
interleaving planning and plan execution, which can reduce
the sum of planning and plan-execution time because it al-
lows the robots to gather information early. We show how
Min-Max LRTA*, a real-time heuristic search method, can
solve these and other planning tasks in non-deterministic do-
mains efficiently. It allows for fine-grained control over how
much planning to do between plan executions, uses heuris-
tic knowledge to guide planning, and improves its plan-
execution time as it solves similar planning tasks, until its
plan-execution time is at least worst-case optimal. We also
show that Min-Max LRTA* solves the goal-directed naviga-
tion tasks fast, converges quickly, and requires only a small
amount of memory.

Introduction
Situated agents (such as robots) have to take their plan-
ning time into account to solve planning tasks efficiently
(Good 1971). For single-instance planning tasks, for ex-
ample, they should attempt to minimize the sum of plan-
ning and plan-execution time. Finding plans that minimize
the plan-execution time is often intractable. Interleaving
planning and plan execution is a general principle that can
reduce the planning time and thus also the sum of plan-
ning and plan execution time for sufficiently fast agents
in non-deterministic domains (Genesereth & Nourbakhsh
1993). Without interleaving planning and plan execution,
the agents have to find a large conditional plan that solves
the planning task. When interleaving planning and plan ex-
ecution, on the other hand, the agents have to find only the
beginning of such a plan. After the execution of this sub-
plan, the agents repeat the process from the state that actu-
ally resulted from the execution of the subplan instead of
all states that could have resulted from its execution. Since

∗Copyright 1998, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

actions are executed before their complete consequences
are known, the agents are likely to incur some overhead
in terms of the number of actions executed, but this is often
outweighed by the computational savings gained. As an ex-
ample we consider goal-directed navigation tasks in mazes
where the robots know the maze but do not know their ini-
tial pose (position and orientation). Interleaving planning
and plan execution allows the robots to make additional ob-
servations, which reduces their pose uncertainty and thus
the number of situations that their plans have to cover. This
makes subsequent planning more efficient.

Agents that interleave planning and plan execution have
to overcome two problems: first, they have to make sure
that they make progress towards the goal instead of cycling
forever; second, they should be able to improve their plan-
execution time as they solve similar planning tasks, other-
wise they do not behave efficiently in the long run in case
similar planning tasks unexpectedly repeat. We show how
Min-Max LRTA*, a real-time heuristic search method that
extends LRTA* (Korf 1990) to non-deterministic domains,
can be used to address these problems. Min-Max LRTA*
interleaves planning and plan execution and plans only in
the part of the domain around the current state of the agents.
This is the part of the domain that is immediately relevant
for them in their current situation. It allows for fine-grained
control over how much planning to do between plan exe-
cutions, uses heuristic knowledge to guide planning, and
improves its plan-execution time as it solves similar plan-
ning tasks, until its plan-execution time is at least worst-
case optimal. We show that Min-Max LRTA* solves the
goal-directed navigation tasks fast, converges quickly, and
requires only a small amount of memory.

Planning methods that interleave planning and plan ex-
ecution have been studied before. This includes assump-
tive planning, deliberation scheduling (including anytime
algorithms), on-line algorithms and competitive analysis,
real-time heuristic search, reinforcement learning, robot ex-
ploration techniques, and sensor-based planning. The pro-
ceedings of the AAAI-97 Workshop on On-Line Search
give a good overview of these techniques. The contri-

goal

Goal PosesPossible Start Poses (Start Belief)
actual start pose

Figure 1: Goal-Directed Navigation Task #1

butions of this paper are threefold: First, this paper ex-
tends our Min-Max LRTA* (Koenig & Simmons 1995), a
real-time heuristic search method for non-deterministic do-
mains, from look-ahead one to arbitrary look-aheads. It
shows how the search space of Min-Max LRTA* can be
represented more compactly than is possible with minimax
trees and discusses how it can be solved efficiently using
methods from Markov game theory. Second, this paper il-
lustrates an advantage of real-time heuristic search methods
that has not been studied before. It was already known that
real-time heuristic search methods are efficient alternatives
to traditional search methods in deterministic domains. For
example, they are among the few search methods that are
able to find suboptimal plans for the twenty-four puzzle,
a sliding-tile puzzle with more than 7 × 1024 states (Korf
1993). They have also been used to solve STRIPS-type
planning tasks (Bonet, Loerincs, & Geffner 1997). The
reason why they are efficient in deterministic domains is
because they trade-off minimizing planning time and mini-
mizing plan-execution time. However, many domains from
robotics, control, and scheduling are nondeterministic. We
demonstrate that real-time heuristic search methods can
also be used to speed up problem solving in nondeterminis-
tic domains and that there is an additional reason why they
are efficient in these domains, namely that they allow agents
to gather information early. This information can be used
to resolve some of the uncertainty caused by nondetermin-
ism and thus reduce the amount of planning done for un-
encountered situations. Third, this paper demonstrates an
advantage of Min-Max LRTA* over most previous plan-
ning methods that interleave planning and plan execution,
namely that it improves its plan-execution time as it solves
similar planning tasks. As recognized in both (Dean et
al. 1995) and (Stentz 1995), this is an important property
because no planning method that executes actions before
it has found a complete plan can guarantee a good plan-
execution time right away, and methods that do not improve
their plan-execution time do not behave efficiently in the
long run in case similar planning tasks unexpectedly repeat.

The Robot Navigation Problem
We study goal-directed navigation tasks with initial pose
uncertainty (Nourbakhsh 1996), an example of which is

shown in Figure 1. A robot knows the maze, but is uncer-
tain about its start pose, where a pose is a location (square)
and orientation (north, east, south, west). We assume that
there is no uncertainty in actuation and sensing. (In our
mazes, it is indeed possible to make actuation and sensing
approximately 100 percent reliable.) The sensors on-board
the robot tell it in every pose whether there are walls im-
mediately adjacent to it in the four directions (front, left,
behind, right). The actions are to move forward one square
(unless there is a wall directly in front of the robot), turn
left ninety degrees, or turn right ninety degrees. The task
of the robot is to navigate to any of the given goal poses
and stop. Since there might be many poses that produce
the same sensor reports as the goal poses, solving the goal-
directed navigation task includes localizing the robot suf-
ficiently so that it knows that it is at a goal pose when it
stops. We use the following notation: P is the finite set
of possible robot poses (pairs of location and orientation).
A(p) is the set of possible actions that the robot can ex-
ecute in pose p ∈ P : left, right, and possibly forward.
succ(p, a) is the pose that results from the execution of ac-
tion a ∈ A(p) in pose p ∈ P . o(p) is the observation that
the robot makes in pose p ∈ P : whether or not there are
walls immediately adjacent to it in the four directions (front,
left, behind, right). The robot starts in pose pstart ∈ P

and then repeatedly makes an observation and executes an
action until it decides to stop. It knows the maze, but is
uncertain about its start pose. It could be in any pose in
Pstart ⊆ P . We require only that o(p) = o(p′) for all
p, p′ ∈ Pstart, which automatically holds after the first ob-
servation, and pstart ∈ Pstart, which automatically holds
for Pstart = {p : p ∈ P ∧ o(p) = o(pstart)}. The robot
has to navigate to any pose in Pgoal ⊆ P and stop.

Even if the robot is not certain about its pose, it can main-
tain a belief about its current pose. We assume that the
robot cannot associate probabilities or other likelihood es-
timates with the poses. Then, all it can do is maintain a set
of possible poses (“belief”). For example, if the robot has
no knowledge of its start pose for the goal-directed naviga-
tion task from Figure 1, but observes walls around it except
in its front, then the start belief of the robot contains the
seven possible start poses shown in the figure. We use the
following notation: B is the set of beliefs, bstart the start
belief, and Bgoal the set of goal beliefs. A(b) is the set of
actions that can be executed when the belief is b. O(b, a) is
the set of possible observations that can be made after the
execution of action a when the belief was b. succ(b, a, o)
is the successor belief that results if observation o is made
after the execution of action a when the belief was b. Then,

B = {b : b ⊆ P ∧ o(p) = o(p′) for all p, p
′ ∈ b}

bstart = Pstart

Bgoal = {b : b ⊆ Pgoal ∧ o(p) = o(p′) for all p, p
′ ∈ b}

goal goal

Figure 2: Goal-Directed Navigation Task #2

A(b) = A(p) for any p ∈ b

O(b, a) = {o(succ(p, a)) : p ∈ b}

succ(b, a, o) = {succ(p, a) : p ∈ b ∧ o(succ(p, a)) = o}

To understand the definition of A(b), notice that A(p) =
A(p′) for all p, p′ ∈ b after the preceding observation since
the observation determines the actions that can be executed.
To understand the definition of Bgoal, notice that the robot
knows that it is in a goal pose if its belief is b ⊆ Pgoal. If
the belief contains more than one pose, however, the robot
does not know which goal pose it is in. Figure 2 shows an
example. To solve the goal-directed navigation task, it is
best for the robot to move forward twice. At this point, the
robot knows that it is in a goal pose but cannot be certain
which of the two goal poses it is in. If it is important that
the robot knows which goal pose it is in, we define Bgoal =
{b : b ⊆ Pgoal ∧ |b| = 1}. Min-Max LRTA* can also be
applied to localization tasks. These tasks are identical to
the goal-directed navigation tasks except that the robot has
to achieve only certainty about its pose. In this case, we
define Bgoal = {b : b ⊆ P ∧ |b| = 1}.

The robot navigation domain is deterministic and small
(pose space). However, the beliefs of the robot depend on
its observations, which the robot cannot predict with cer-
tainty since it is uncertain about its pose. We therefore for-
mulate the goal-directed navigation tasks as planning tasks
in a domain whose states are the beliefs of the robot (belief
space). Beliefs are sets of poses. Thus, the number of be-
liefs is exponential in the number of poses, and the belief
space is not only nondeterministic but can also be large.
The pose space and the belief space differ in the observ-
ability of their states. After an action execution, the robot
will usually not be able to determine its current pose with
certainty, but it can always determine its current belief for
sure. We use the following notation: S denotes the finite
set of states of the domain, sstart ∈ S the start state, and
G ⊆ S the set of goal states. A(s) is the finite set of (po-
tentially nondeterministic) actions that can be executed in
state s ∈ S. succ(s, a) denotes the set of successor states
that can result from the execution of action a ∈ A(s) in
state s ∈ S. Then,

S = B

sstart = bstart

G = Bgoal

A(s) = A(b) for s = b

goal

Figure 3: Goal-Directed Navigation Task #3

succ(s, a) = {succ(b, a, o) : o ∈ O(b, a)} for s = b

The actual successor state that results from the execution
of action a in state s = b is succ(b, a, o) if observation o is
made after the action execution. In general, traversing any
path from the start state in the belief space to a goal state
solves the goal-directed navigation task. To make all goal-
directed navigation tasks solvable we require the mazes to
be strongly connected (every pose can be reached from ev-
ery other pose) and asymmetrical (localization is possible).
This modest assumption allows the robot to solve a goal-
directed navigation task by first localizing itself and then
moving to a goal pose, although this behavior often does
not minimize the plan-execution time. Figure 3 shows an
example. To solve the goal-directed navigation task, it is
best for the robot to turn left and move forward until it sees
a corridor opening on one of its sides. At this point, the
robot has localized itself and can navigate to the goal pose.
On the other hand, to solve the corresponding localization
task, it is best for the robot to move forward once. At this
point, the robot has localized itself.

Min-Max LRTA*
Min-Max Learning Real-Time A* (Min-Max LRTA*) is
a real-time heuristic search method that extends LRTA*
(Korf 1990) to nondeterministic domains by interleav-
ing minimax search in local search spaces and plan ex-
ecution (Figure 4). Similar to game-playing approaches
and reinforcement-learning methods such as Q̂-Learning
(Heger 1996), Min-Max LRTA* views acting in nondeter-
ministic domains as a two-player game in which it selects
an action from the available actions in the current state.
This action determines the possible successor states from
which a fictitious agent, called nature, chooses one. Acting
in deterministic domains is then simply a special case where
every action uniquely determines the successor state. Min-
Max LRTA* uses minimax search to solve planning tasks in
nondeterministic domains, a worst-case search method that
attempts to move with every action execution as close to the
goal state as possible under the assumption that nature is an
opponent that tries to move Min-Max LRTA* as far away
from the goal state as possible. Min-Max LRTA* associates
a small amount of information with the states that allows it
to remember where it has already searched. In particular,
it associates a u-value u(s) ≥ 0 with each state s ∈ S.

Initially, the u-values u(s) ≥ 0 are approximations of the mini-
max goal distances (measured in action executions) for all s ∈ S.

Given a set X , the expression “one-of X” returns an element of
X according to an arbitrary rule. A subsequent invocation of
“one-of X” can return the same or a different element. The ex-
pression “arg minx∈X f(x)” returns the set {x ∈ X : f(x) =
minx′∈X f(x′)}.

1. s := sstart.

2. If s ∈ G, then stop successfully.

3. Generate a local search space Slss with s ∈ Slss and Slss ∩ G = ∅.

4. Update u(s) for all s ∈ Slss (Figure 5).

5. a := one-of arg mina∈A(s) maxs′∈succ(s,a) u(s′).

6. Execute action a, that is, change the current state to a state in
succ(s, a) (according to the behavior of nature).

7. s := the current state.

8. (If s ∈ Slss, then go to 5.)

9. Go to 2.

Figure 4: Min-Max LRTA*

The u-values approximate the minimax goal distances of
the states. The minimax goal distance gd(s) ∈ [0,∞] of
state s ∈ S is the smallest number of action executions
with which a goal state can be reached from state s, even
for the most vicious behavior of nature. Using action ex-
ecutions to measure the minimax goal distances and thus
plan-execution times is reasonable if every action can be
executed in about the same amount of time. The minimax
goal distances are defined by the following set of equations
for all s ∈ S:

gd(s) =

{

0 if s ∈ G
1 + mina∈A(s) maxs′∈succ(s,a) gd(s′) otherwise.

Min-Max LRTA* updates the u-values as the search pro-
gresses and uses them to determine which actions to exe-
cute. It first checks whether it has already reached a goal
state and thus can terminate successfully (Line 2). If not, it
generates the local search space Slss ⊆ S (Line 3). While
we require only that s ∈ Slss and Slss ∩ G = ∅, in prac-
tice Min-Max LRTA* constructs Slss by searching forward
from s. It then updates the u-values of all states in the lo-
cal search space (Line 4) and, based on these u-values, de-
cides which action to execute next (Line 5). Finally, it ex-
ecutes the selected action (Line 6), updates its current state
(Line 7), and iterates the procedure.

Min-Max LRTA* uses minimax search to update the u-
values in the local search space (Figure 5). The minimax-

The minimax-search method uses the temporary variables u′(s)
for all s ∈ Slss.

1. For all s ∈ Slss: u′(s) := u(s) and u(s) := ∞.

2. If u(s) < ∞ for all s ∈ Slss, then return.

3. s′ := one-of arg mins∈Slss:u(s)=∞ max(u′(s), 1 +
mina∈A(s) maxs′′∈succ(s,a) u(s′′)).

4. If max(u′(s′), 1 + mina∈A(s′) maxs′′∈succ(s′,a) u(s′′)) = ∞,
then return.

5. u(s′) := max(u′(s′), 1 + mina∈A(s′) maxs′′∈succ(s′,a) u(s′′)).

6. Go to 2.

Figure 5: Minimax-Search Method

search method assigns each state its minimax goal distance
under the assumption that the u-values of all states in the
local search space are lower bounds on the correct minimax
goal distances and that the u-values of all states outside of
the local search space correspond to their correct minimax
goal distances. Formally, if u(s) ∈ [0,∞] denotes the u-
values before the minimax search and ū(s) ∈ [0,∞] de-
notes the u-values afterwards, then ū(s) = max(u(s), 1 +
mina∈A(s) maxs′∈succ(s,a) ū(s′)) for all s ∈ Slss and
ū(s) = u(s) otherwise. Min-Max LRTA* could represent
the local search space as a minimax tree, which could be
searched with traditional minimax-search methods. How-
ever, this has the disadvantage that the memory require-
ments and the search effort can be exponential in the depth
of the tree (the look-ahead of Min-Max LRTA*), which
can be a problem for goal-directed navigation tasks in large
empty spaces. Since the number of different states often
grows only polynomially in the depth of the tree, Min-Max
LRTA* represents the local search space more compactly
as a graph that contains every state at most once. This
requires a more sophisticated minimax-search method be-
cause there can now be paths of different lengths between
any two states in the graph. Min-Max LRTA uses a simple
method that is related to more general dynamic program-
ming methods from Markov game theory (Littman 1996).
It updates all states in the local search space in the order
of their increasing new u-values. This ensures that the u-
value of each state is updated only once. More details on
the minimax search method are given in (Koenig 1997).

After Min-Max LRTA* has updated the u-values, it
greedily chooses the action for execution that minimizes
the u-value of the successor state in the worst case (ties
are broken arbitrarily). The rationale behind this is that
the u-values approximate the minimax goal distances and
Min-Max LRTA* attempts to decrease its minimax goal
distance as much as possible. Then, Min-Max LRTA* can
either generate another local search space, update the u-
values of all states that it contains, and select another ac-

tion for execution. However, if the new state is still part
of the local search space (the one that was used to deter-
mine the action whose execution resulted in the new state),
Min-Max LRTA* also has the option (Line 8) to select an-
other action for execution based on the current u-values.
Min-Max LRTA* with Line 8 is a special case of Min-Max
LRTA* without Line 8: After Min-Max LRTA* has run the
minimax-search method on some local search space, the u-
values do not change if Min-Max LRTA* runs the minimax-
search method again on the same local search space or a
subset thereof. Whenever Min-Max LRTA* with Line 8
jumps to Line 5, the new current state is still part of the
local search space Slss and thus not a goal state. Con-
sequently, Min-Max LRTA* can skip Line 2. Min-Max
LRTA* could now search a subset of Slss that includes the
new current state s, for example {s}. Since this does not
change the u-values, Min-Max LRTA* can, in this case,
also skip the minimax search. In the experiments, we use
Min-Max LRTA* with Line 8, because it utilizes more in-
formation of the searches in the local search spaces.

Features of Min-Max LRTA*

An advantage of Min-Max LRTA* is that it does not depend
on assumptions about the behavior of nature. This is so be-
cause minimax searches assume that nature is vicious and
always chooses the worst possible successor state. If Min-
Max LRTA* can reach a goal state for the most vicious be-
havior of nature, it also reaches a goal state if nature uses a
different and therefore less vicious behavior. This is an ad-
vantage of Min-Max LRTA* over Trial-Based Real-Time
Dynamic Programming (Barto, Bradtke, & Singh 1995),
another generalization of LRTA* to nondeterministic do-
mains. Trial-Based Real-Time Dynamic Programming as-
sumes that nature chooses successor states randomly ac-
cording to given probabilities. Therefore, it does not ap-
ply to planning in the pose space when it is impossible
to make reliable assumptions about the behavior of nature,
including tasks with perceptual aliasing (Chrisman 1992)
and the goal-directed navigation tasks studied in this pa-
per. A disadvantage of Min-Max LRTA* is that it cannot
solve all planning tasks. This is so because it interleaves
minimax searches and plan execution. Minimax searches
limit the solvable planning tasks because they are overly
pessimistic. They can solve only planning tasks for which
the minimax goal distance of the start state is finite. In-
terleaving planning and plan execution limits the solvable
planning tasks further because it executes actions before
their complete consequences are known. Thus, even if the
minimax goal distance of the start state is finite, it is pos-
sible that Min-Max LRTA* accidentally executes actions
that lead to a state whose minimax goal distance is infinite,
at which point the planning task becomes unsolvable. De-
spite these disadvantages, Min-Max LRTA* is guaranteed

to solve all safely explorable domains. These are domains
for which the minimax goal distances of all states are finite.
To be precise: First, all states of the domain can be deleted
that cannot possibly be reached from the start state or can
be reached from the start state only by passing through a
goal state. The minimax goal distances of all remaining
states have to be finite. For example, the belief space of
the robot navigation domain is safely explorable according
to our assumptions, and so are other nondeterministic do-
mains from robotics, including manipulation and assembly
domains, which explains why using minimax methods is
popular in robotics (Lozano-Perez, Mason, & Taylor 1984).
We therefore assume in the following that Min-Max LRTA*
is applied to safely explorable domains. For similar rea-
sons, we also assume in the following that action execu-
tions cannot leave the current state unchanged. The class of
domains that Min-Max LRTA* is guaranteed to solve could
be extended further by using the methods in (Nourbakhsh
1996) to construct the local search spaces.

Min-Max LRTA* has three key features, namely that it
allows for fine-grained control over how much planning to
do between plan executions, uses heuristic knowledge to
guide planning, and improves its plan-execution time as it
solves similar planning tasks, until its plan-execution time
is at least worst-case optimal. The third feature is espe-
cially important since no method that executes actions be-
fore it knows their complete consequences can guarantee a
good plan-execution time right away. In the following, we
explain these features of Min-Max LRTA* in detail.

Heuristic Knowledge
Min-Max LRTA* uses heuristic knowledge to guide plan-
ning. This knowledge is provided in the form of admissi-
ble initial u-values. U-values are admissible if and only if
0 ≤ u(s) ≤ gd(s) for all s ∈ S. In deterministic domains,
this definition reduces to the traditional definition of admis-
sible heuristic values for A* search (Pearl 1985). The larger
its initial u-values, the better informed Min-Max LRTA*.

Theorem 1 Let û(s) denote the initial u-values. Then,
Min-Max LRTA* with initially admissible u-values reaches
a goal state after at most û(sstart) +

∑

s∈S [gd(s) − û(s)]
action executions, regardless of the behavior of nature.

All proofs can be found in (Koenig 1997). The theorem
shows that Min-Max LRTA* with initially admissible u-
values reaches a goal state in safely explorable domains af-
ter a finite number of action executions, that is, it is correct.
The larger the initial u-values, the smaller the upper bound
on the number of action executions and thus the smaller
its plan-execution time. For example, Min-Max LRTA*
is fully informed if the initial u-values equal the minimax
goal distances of the states. In this case, Theorem 1 pre-
dicts that Min-Max LRTA* reaches a goal state after at
most gd(sstart) action executions. Thus, its plan-execution

time is at least worst-case optimal and no other method can
do better in the worst-case. For the goal-directed naviga-
tion tasks, one can use the goal-distance heuristic to ini-
tialize the u-values, that is, u(s) = maxp∈s gd({p}). The
calculation of gd({p}) involves no pose uncertainty and
can be done efficiently without interleaving planning and
plan execution, by using traditional search methods in the
pose space. This is possible because the pose space is
deterministic and small. The u-values are admissible be-
cause the robot needs at least maxp∈s gd({p}) action exe-
cutions in the worst case to solve the goal-directed naviga-
tion task from pose p′ = one-of argmaxp∈s gd({p}), even
if it knows that it starts in that pose. The u-values are often
only partially informed because they do not take into ac-
count that the robot might not know its pose and then might
have to execute additional localization actions to overcome
its pose uncertainty. For the localization tasks, on the other
hand, it is difficult to obtain better informed initial u-values
than those provided by the zero heuristic (zero-initialized
u-values).

Fine-Grained Control
Min-Max LRTA* allows for fine-grained control over how
much planning to do between plan executions. For exam-
ple, Min-Max LRTA* with line 8 and Slss = S\G = S∩G

performs a complete minimax search without interleaving
planning and plan execution, which is slow but produces
plans whose plan-execution times are worst-case optimal.
On the other hand, Min-Max LRTA* with Slss = {s} per-
forms almost no planning between plan executions. Smaller
look-aheads benefit agents that can execute plans with a
similar speed as they can generate them, because they pre-
vent these agents from being idle, which can minimize
the sum of planning and plan-execution time if the heuris-
tic knowledge guides the search sufficiently. Larger look-
aheads are needed for slower agents, such as robots.

Improvement of Plan-Execution Time
If Min-Max LRTA* solves the same planning task repeat-
edly (even with different start states) it can improve its be-
havior over time by transferring domain knowledge, in the
form of u-values, between planning tasks. This is a famil-
iar concept: One can argue that the minimax searches that
Min-Max LRTA* performs between plan executions are in-
dependent of one another and that they are connected only
via the u-values that transfer domain knowledge between
them. To see why Min-Max LRTA* can do the same thing
between planning tasks, consider the following theorem.

Theorem 2 Admissible initial u-values remain admissible
after every action execution of Min-Max LRTA* and are
monotonically nondecreasing.

Now assume that a series of planning tasks in the same
domain with the same set of goal states are given, for exam-

ple goal-directed navigation tasks with the same goal poses
in the same maze. The actual start poses or the beliefs of
the robot about its start poses do not need to be identical. If
the initial u-values of Min-Max LRTA* are admissible for
the first planning task, then they are also admissible after
Min-Max LRTA* has solved the task and are state-wise at
least as informed as initially. Thus, they are also admissi-
ble for the second planning task and Min-Max LRTA* can
continue to use the same u-values across planning tasks.
The start states of the planning tasks can differ since the ad-
missibility of u-values does not depend on the start states.
This way, Min-Max LRTA* can transfer acquired domain
knowledge from one planning task to the next, thereby
making its u-values better informed. Ultimately, better in-
formed u-values result in an improved plan-execution time,
although the improvement is not necessarily monotonic.
The following theorems formalize this knowledge transfer
in the mistake-bounded error model. The mistake-bounded
error model is one way of analyzing learning methods by
bounding the number of mistakes that they make.

Theorem 3 Min-Max LRTA* with initially admissible u-
values reaches a goal state after at most gd(sstart) action
executions, regardless of the behavior of nature, if its u-
values do not change during the search.

Theorem 4 Assume that Min-Max LRTA* maintains u-
values across a series of planning tasks in the same do-
main with the same set of goal states. Then, the number
of planning tasks for which Min-Max LRTA* with initially
admissible u-values reaches a goal state after more than
gd(sstart) action executions is bounded from above by a
finite constant that depends only on the domain and goal
states.

Proof: If Min-Max LRTA* with initially admissible u-
values reaches a goal state after more than gd(sstart) action
executions, then at least one u-value has changed according
to Theorem 3. This can happen only a finite number of
times since the u-values are monotonically nondecreasing
and remain admissible according to Theorem 2, and thus
are bounded from above by the minimax goal distances.

In this context, it counts as one mistake when Min-Max
LRTA* reaches a goal state after more than gd(sstart) ac-
tion executions. According to Theorem 4, the u-values con-
verge after a bounded number of mistakes. The action se-
quence after convergence depends on the behavior of na-
ture and is not necessarily uniquely determined, but has
gd(sstart) or fewer actions, that is, the plan-execution time
of Min-Max LRTA* is either worst-case optimal or better
than worst-case optimal. This is possible because nature
might not be as malicious as a minimax search assumes.
Min-Max LRTA* might not be able to detect this “prob-
lem” by introspection since it does not perform a complete
minimax search but partially relies on observing the actual

1. Slss := {s}.

2. Improve u(s) for all s ∈ Slss (Figure 5).

3. s′ := s.

4. a := one-of arg mina′∈A(s′) maxs′′∈succ(s′,a′) u(s′′).

5. If |succ(s′, a)| > 1, then return.

6. s′ := s′′, where s′′ ∈ succ(s′, a) is unique.

7. If s′ ∈ Slss, then go to 4.

8. If s′ ∈ G, then return.

9. Slss := Slss ∪ {s′} and go to 2.

Figure 6: Generating Local Search Spaces

goal

Actual Starting Pose

Figure 7: Goal-Directed Navigation Task #4

successor states of action executions, and nature can wait
an arbitrarily long time to reveal it or choose not to reveal it
at all. This can prevent the u-values from converging after
a bounded number of action executions and is the reason
why we analyzed its behavior using the mistake-bounded
error model. It is important to realize that, since Min-Max
LRTA* relies on observing the actual successor states of ac-
tion executions, it can have computational advantages even
over several search episodes compared to a complete mini-
max search. This is the case if nature is not as malicious as
a minimax search assumes and some successor states do not
occur in practice, for example, because the actual start pose
of the robot never equals the worst possible pose among all
start poses that are consistent with its start belief.

Other Navigation Methods

Min-Max LRTA* is a domain-independent planning
method that does not only apply to goal-directed naviga-
tion and localization tasks with initial pose uncertainty, but
to planning tasks in nondeterministic domains in general. It
can, for example, also be used for moving-target search, the
task of a hunter to catch a moving prey (Koenig & Simmons
1995). In the following, we compare Min-Max LRTA* to
two more specialized planning methods that can also be
used to solve the goal-directed navigation or localization
tasks. An important advantage of Min-Max LRTA* over
these methods is that it can improve its plan-execution time
as it solves similar planning tasks.

Information-Gain Method

The Information-Gain Method (IG method) (Genesereth &
Nourbakhsh 1993) first demonstrated the advantage of in-
terleaving planning and plan execution for goal-directed
navigation tasks.1 It uses breadth-first search (iterative
deepening) on an and-or graph around the current state in
conjunction with pruning rules to find subplans that achieve
a gain in information, in the following sense: after the
execution of the subplan, the robot has either solved the
goal-directed navigation task or at least reduced the num-
ber of poses it can be in. This way, the IG method guar-
antees progress towards the goal. There are similarities be-
tween the IG method and Min-Max LRTA*: Both meth-
ods interleave minimax searches and plan execution. Zero-
initialized Min-Max LRTA* that generates the local search
spaces for goal-directed navigation tasks with the method
from Figure 6 exhibits a similar behavior as the IG method:
it also performs a breadth-first search around its current
state until it finds a subplan whose execution results in a
gain in information. The method does this by starting with
the local search space that contains only the current state.
It performs a minimax search in the local search space and
then simulates the action executions of Min-Max LRTA*
starting from its current state. If the simulated action exe-
cutions reach a goal state or lead to a gain in information,
then the method returns. However, if the simulated action
executions leave the local search space, the method halts the
simulation, adds the state outside of the local search space
to the local search space, and repeats the procedure. Notice
that, when the method returns, it has already updated the
u-values of all states of the local search space. Thus, Min-
Max LRTA* does not need to improve the u-values of these
states again and can skip the minimax search. Its action-
selection step (Line 5) and the simulation have to break ties
identically. Then, Min-Max LRTA* with Line 8 in Fig-
ure 4 executes actions until it either reaches a goal state or
gains information. There are also differences between the
IG method and Min-Max LRTA*: Min-Max LRTA* can
use small look-aheads that do not guarantee a gain in in-
formation and it can improve its plan-execution time as it
solves similar planning tasks, at the cost of having to main-
tain u-values. The second advantage is important because
no method that interleaves planning and plan execution can
guarantee a good plan-execution time on the first run. For
instance, consider the goal-directed navigation task from
Figure 7 and assume that Min-Max LRTA* generates the
local search spaces with the method from Figure 6. Then,
both the IG method and zero-initialized Min-Max LRTA*
move forward, because this is the fastest way to eliminate

1(Genesereth & Nourbakhsh 1993) refers to the IG method
as the Delayed Planning Architecture (DPA) with the viable plan
heuristic. It also contains some improvements on the version of
the IG method discussed here, that do not change its character.

a possible pose, that is, to gain information. Even Min-
Max LRTA* with the goal-distance heuristic moves for-
ward, since it follows the gradient of the u-values. How-
ever, moving forward is suboptimal. It is best for the robot
to first localize itself by turning around and moving to a cor-
ridor end. If the goal-directed navigation task is repeated a
sufficient number of times with the same start pose, Min-
Max LRTA* eventually learns this behavior.

Homing Sequences

Localization tasks are related to finding homing sequences
or adaptive homing sequences for deterministic finite state
automata whose states are colored. A homing sequence
is a linear plan (action sequence) with the property that
the observations made during its execution uniquely de-
termine the resulting state (Kohavi 1978). An adaptive
homing sequence is a conditional plan with the same prop-
erty (Schapire 1992). For every reduced deterministic finite
state automaton, there exists a homing sequence that con-
tains at most (n−1)2 actions. Finding a shortest homing se-
quence is NP-complete but a suboptimal homing sequence
of at most (n−1)2 actions can be found in polynomial time
(Schapire 1992). Robot localization tasks can be solved
with homing sequences since the pose space is determin-
istic and thus can be modeled as a deterministic finite state
automaton.

Extensions of Min-Max LRTA*
Min-Max LRTA* uses minimax searches in the local search
spaces to update its u-values. For the robot navigation tasks,
it is possible to combine this with updates over a greater
distance, with only a small amount of additional effort. For
example, we know that gd(s) ≥ gd(s′) for any two states
s, s′ ∈ S with s ⊇ s′ (recall that states are sets of poses).
Thus, we can set u(s) := max(u(s), u(s′)) for selected
states s, s′ ∈ S with s ⊃ s′. If the u-values are admissi-
ble before the update, they remain admissible afterwards.
The assignment could be done immediately before the lo-
cal search space is generated on Line 3 in Figure 4. It is
also straightforward to modify Min-Max LRTA* so that it
does not assume that all actions can be executed in the same
amount of time, and change the theorems appropriately. Fi-
nally, it is also straightforward (but not terribly exciting) to
drop the assumption that action executions cannot leave the
current state unchanged, and change the theorems appropri-
ately. Future work will remove some of the limitations of
Min-Max LRTA*. For example, our assumption that there
is no uncertainty in actuation and sensing is indeed a good
approximation for robot navigation tasks in mazes. Future
work will investigate how Min-Max LRTA* can be applied
to similar tasks in less structured environments in which our
assumption is not a good one. Similarly, Min-Max LRTA*
works with arbitrary look-aheads. Future work will investi-

gate how it can adapt its look-ahead automatically to opti-
mize the sum of planning and plan-execution time, possibly
using methods from (Russell & Wefald 1991).

Experimental Results

Nourbakhsh (Nourbakhsh 1996) has already shown that
performing a complete minimax search to solve the goal-
directed navigation tasks optimally can be completely in-
feasible. We take this result for granted and show that
Min-Max LRTA* solves the goal-directed navigation tasks
fast, converges quickly, and requires only a small amount
of memory. We do this experimentally since the actual
plan-execution time of Min-Max LRTA* and its memory
requirements can be much better than the upper bound of
Theorem 1 suggests. We use a simulation of the robot nav-
igation domain whose interface matches the interface of an
actual robot that operates in mazes (Nourbakhsh & Gene-
sereth 1997). Thus, Min-Max LRTA* could be run on that
robot. We apply Min-Max LRTA* to goal-directed naviga-
tion and localization tasks with two different look-aheads
each, namely look-ahead one (Slss = {s}) and the larger
look-ahead from Figure 6. As test domains, we use 500
randomly generated square mazes. The same 500 mazes
are used for all experiments. All mazes have size 49 × 49
and the same obstacle density, the same start pose of the
robot, and (for goal-directed navigation tasks) the same
goal location, which includes all four poses. The robot
is provided with no knowledge of its start pose and ini-
tially senses openings in all four directions. The mazes are
constructed so that, on average, more than 1100 poses are
consistent with this observation and have thus to be con-
sidered as potential start poses. We let Min-Max LRTA*
solve the same task repeatedly with the same start pose
until its behavior converges.2 To save memory, Min-Max
LRTA* generates the initial u-values only on demand and
never stores u-values that are identical to their initial values.
Line 5 breaks ties between actions systematically according
to a pre-determined ordering on A(s) for all states s. Fig-
ure 8 shows that Min-Max LRTA* indeed produces good
plans in large domains quickly, while using only a small
amount of memory. Since the plan-execution time of Min-
Max LRTA* after convergence is no worse than the mini-
max goal distance of the start state, we know that its initial
plan-execution time is at most 231, 151, 103, and 139 per-
cent (respectively) of the worst-case optimal plan-execution
time. Min-Max LRTA* also converges quickly. Consider,
for example, the first case, where the initial plan-execution
time is worst. In this case, Min-Max LRTA* with look-

2Min-Max LRTA* did not know that the start pose remained
the same. Otherwise, it could have used the decreased uncertainty
about its pose after solving the goal-directed navigation task to
narrow down its start pose and improve its plan-execution time
this way.

after . . . measuring . . . using . . . Min-Max LRTA* with look-ahead one Min-Max LRTA* with larger look-ahead
(using the method in Figure 6)

goal-directed navigation localization goal-directed navigation localization
goal-distance heuristic zero heuristic goal-distance heuristic zero heuristic

the first run plan-execution time action executions 113.32 13.33 50.48 12.24
planning time state expansions 113.32 13.33 73.46 26.62
memory usage u-values remembered 31.88 13.32 30.28 26.62

convergence plan-execution time action executions 49.15 8.82 49.13 8.81
planning time state expansions 49.15 8.82 49.13 8.81
memory usage u-values remembered 446.13 1,782.26 85.80 506.63

number of runs until convergence 16.49 102.90 3.14 21.55

Figure 8: Experimental Results

ahead one more than halves its plan-execution time in less
than 20 runs. This demonstrates that this aspect of Min-
Max LRTA* is important if the heuristic knowledge does
not guide planning sufficiently well.

Conclusions
We studied goal-directed navigation (and localization) tasks
in mazes, where the robot knows the maze but does not
know its initial pose. These problems can be modeled as
nondeterministic planning tasks in large state spaces. We
described Min-Max LRTA*, a real-time heuristic search
method for nondeterministic domains and showed that it
can solve these tasks efficiently. Min-Max LRTA* in-
terleaves planning and plan execution, which allows the
robot to gather information early that can be used to re-
duce the amount of planning done for unencountered sit-
uations. Min-Max LRTA* allows for fine-grained control
over how much planning to do between plan executions
and uses heuristic knowledge to guide planning. It amor-
tizes learning over several search episodes, which allows
it to find suboptimal plans fast and then improve its plan-
execution time as it solves similar planning tasks, until its
plan-execution time is at least worst-case optimal. This is
important since no method that executes actions before it
knows their complete consequences can guarantee a good
plan-execution time right away, and methods that do not
improve their plan-execution time do not behave efficiently
in the long run in case similar planning tasks unexpectedly
repeat. Since Min-Max LRTA* partially relies on observ-
ing the actual successor states of action executions, it does
not plan for all possible successor states and thus can still
have computational advantages even over several search
episodes compared to a complete minimax search if nature
is not as malicious as a minimax search assumes and some
successor states do not occur in practice.

Acknowledgements
Thanks to Matthias Heger, Richard Korf, Michael Littman,
Tom Mitchell, and Illah Nourbakhsh for helpful discus-
sions. Thanks also to Richard Korf and Michael Littman
for their extensive comments and to Joseph Pemberton
for making his maze generation program available to us.

This research was sponsored by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency
(ARPA) under grant number F33615-93-1-1330. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the spon-
soring organizations or the U.S. government.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
to act using real-time dynamic programming. Artificial
Intelligence 73(1):81–138.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism. In Proceedings of the
National Conference on Artificial Intelligence, 714–719.

Chrisman, L. 1992. Reinforcement learning with per-
ceptual aliasing: The perceptual distinctions approach. In
Proceedings of the National Conference on Artificial In-
telligence, 183–188.

Dean, T.; Kaelbling, L.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains. Artificial Intelligence 76(1–2):35–74.

Genesereth, M., and Nourbakhsh, I. 1993. Time-saving
tips for problem solving with incomplete information. In
Proceedings of the National Conference on Artificial In-
telligence, 724–730.

Good, I. 1971. Twenty-seven principles of rationality. In
Godambe, V., and Sprott, D., eds., Foundations of Statis-
tical Inference. Holt, Rinehart, Winston.

Heger, M. 1996. The loss from imperfect value functions
in expectation-based and minimax-based tasks. Machine
Learning 22(1–3):197–225.

Koenig, S., and Simmons, R. 1995. Real-time search in
non-deterministic domains. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 1660–
1667.

Koenig, S. 1997. Goal-Directed Acting with Incomplete
Information. Ph.D. Dissertation, School of Computer Sci-

ence, Carnegie Mellon University, Pittsburgh (Pennsylva-
nia).

Kohavi, Z. 1978. Switching and Finite Automata Theory.
McGraw-Hill, second edition.

Korf, R. 1990. Real-time heuristic search. Artificial Intel-
ligence 42(2-3):189–211.

Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.

Littman, M. 1996. Algorithms for Sequential Decision
Making. Ph.D. Dissertation, Department of Computer
Science, Brown University, Providence (Rhode Island).
Available as Technical Report CS-96-09.

Lozano-Perez, T.; Mason, M.; and Taylor, R. 1984. Auto-
matic synthesis of fine-motion strategies for robots. Inter-
national Journal of Robotics Research 3(1):3–24.

Nourbakhsh, I., and Genesereth, M. 1997. Teaching
AI with robots. In Kortenkamp, D.; Bonasso, R.; and
Murphy, R., eds., Artificial Intelligence Based Mobile
Robotics: Case Studies of Successful Robot Systems. MIT
Press.

Nourbakhsh, I. 1996. Interleaving Planning and Execu-
tion. Ph.D. Dissertation, Department of Computer Sci-
ence, Stanford University, Stanford (California).

Pearl, J. 1985. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley.

Russell, S., and Wefald, E. 1991. Do the Right Thing –
Studies in Limited Rationality. MIT Press.

Schapire, R. 1992. The Design and Analysis of Efficient
Learning Algorithms. MIT Press.

Stentz, A. 1995. The focussed D* algorithm for real-
time replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1652–1659.

