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Ant robots are simple creatures with limited sensing and computational capabil-
ities. They have the advantage that they are easy to program and cheap to build.
This makes it feasible to deploy groups of ant robots and take advantage of the
resulting fault tolerance and parallelism. We study, both theoretically and in sim-
ulation, the behavior of ant robots for one-time or repeated coverage of terrain,
as required for lawn mowing, mine sweeping, and surveillance. Ant robots cannot
use conventional planning methods due to their limited sensing and computational
capabilities. To overcome these limitations, we study navigation methods that are
based on real-time (heuristic) search and leave markings in the terrain, similar to
what real ants do. These markings can be sensed by all ant robots and allow them to
cover terrain even if they do not communicate with each other except via the mark-
ings, do not have any kind of memory, do not know the terrain, cannot maintain
maps of the terrain, nor plan complete paths. The ant robots do not even need to
be localized, which completely eliminates solving difficult and time-consuming local-
ization problems. We study two simple real-time search methods that differ only in
how the markings are updated. We show experimentally that both real-time search
methods robustly cover terrain even if the ant robots are moved without realizing
this (say, by people running into them), some ant robots fail, and some markings
get destroyed. Both real-time search methods are algorithmically similar, and our
experimental results indicate that their cover time is similar in some terrains. Our
analysis is therefore surprising. We show that the cover time of ant robots that use
one of the real-time search methods is guaranteed to be polynomial in the number
of locations, whereas the cover time of ant robots that use the other real-time search
method can be exponential in (the square root of) the number of locations even in
simple terrains that correspond to (planar) undirected trees.
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Ants (that is, ant robots) are simple creatures with limited sensing and com-
putational capabilities. Ants have the advantage that they are simple to design,
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easy to program, and cheap to build. This makes it feasible to deploy groups
of ants and take advantage of the resulting fault tolerance and parallelism [6].
We study the behavior of ants for covering terrain, as required for vacuum clean-
ing, lawn mowing, mine sweeping, and surveillance. Vacuum cleaning and lawn
mowing, for example, are realistic applications for ants given that the first cheap
and small vacuum-cleaning and lawn mowing household robots are already on
the consumer market or are expected to be on the consumer market soon, includ-
ing the Koala robot, DC06 robot, Electrolux robot, Cye robot, Eureka robot,
Robomow robot, Solar Mower robot, and Dophin robot. We study both one-
time coverage and continuous coverage, where ants continuously cover a large
terrain without getting switched off, so that every part of the terrain gets visited
once every while. Ants cannot use conventional planning methods due to their
limited sensing and computational capabilities which limit their planning capa-
bilities even for simple planning tasks such as path planning or the coverage of
terrain. For example, ants might not be able to maintain maps and use them
for path planning. In fact, they might not be able to plan complete paths at all.
Thus, they might not be able to cover terrain as efficiently as robots with more
powerful sensing and computational capabilities. On the other hand, groups of
ants can take advantage of both their fault tolerance (they fail gracefully even
if some ants malfunction) and their parallelism (groups of ants can cover terrain
faster than a single ant).

We study ants that use real-time search methods. Real-time (heuristic)
search methods [17] interleave planning and plan execution. They can be used
by single ants as well as groups of ants, and require the ants to have only very
limited computational capabilities and look-aheads. The ants only have to leave
markings in the terrain, sense markings at their neighboring locations, and change
the marking of their current location. These markings can be sensed by all ants
and allow them to cover terrain even if they do not have any kind of memory,
cannot maintain maps of the terrain, nor plan complete paths. This is what some
insects do [1]. Unfortunately, not much is known about the properties of real-
time search methods since the area of real-time search is mostly an experimental
one and not many theoretical results are known. Real-time search methods differ
in this aspect from traditional search methods, whose properties have been re-
searched extensively. We therefore study, both theoretically and experimentally,
the behavior of ants that use two simple real-time search methods to cover ter-
rain. We show experimentally that both real-time search methods robustly cover
terrain even if the ant robots are moved without realizing this (say, by people
running into them), some ant robots fail, and some markings get destroyed. The
two real-time search methods differ only in how they update the markings. They
are algorithmically similar, and experimental results indicate that the cover time
of ants that use them is often similar on grids. Our analysis is therefore surpris-
ing. We show that the cover time of ants that use one of the real-time search
methods is guaranteed to be polynomial in the number of locations, whereas the
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Figure 1. Ants and Real-Time Search

cover time of ants that use the other real-time search method can be exponential
in (the square root of ) the number of locations even in simple terrains that corre-
spond to (planar) undirected trees. These results demonstrate that experimental
comparisons of the behavior of ants that use real-time search methods are often
insufficient to evaluate how well they scale up because the cover time of ants
that use two similar real-time search methods can be very different even if exper-
imental results seem to indicate otherwise. An analysis can help to detect these
problems and prevent surprises later on, as well as provide a solid theoretical
foundation for ant coverage with real-time search methods.

1. Task and Notation

Terrains can be modeled as (directed) graphs with their locations corre-
sponding to the vertices, for example by imposing regular grids on them. Fig-
ure 1 (left), for example, shows a regular four-connected grid, and Figure 1 (right)
shows the corresponding graph. We do not impose restrictions on the topology of
the graphs (unless stated otherwise), except that we require them to be strongly
connected (every vertex can be reached from every other vertex). Strongly con-
nected graphs guarantee that ants are always able to reach all vertices, no matter
which edges they have traversed in the past. For simplicity, we assume that sev-
eral ants can be at the same vertex at the same time. Their task is to cover the
graph (visit all vertices) once or repeatedly. We use the following notation in this
article: S denotes the finite set of vertices (states) of the graph, and ssqr € S
denotes the start vertex. The number of vertices is n = [S|. A(s) # 0 is the
finite, nonempty set of (directed) edges leaving vertex s € S (actions that can
be executed in state s). succ(s,a) denotes the successor vertex that results from
the traversal of edge a € A(s) in vertex s € S. We say that a graph is undirected
iff, for every directed edge between two vertices, there is also a corresponding
directed edge between the vertices in the opposite direction. To simplify matters,
we measure the distances in edge traversals throughout this article, which is jus-
tified if the costs of all edges are roughly the same. We also use two operators
with the following semantics: Given a finite set X, the expression “one-of X”
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Initially, the u-values u(s) are zero for all s € S.

1. s := Sgtart-
2. a = one-of argminge 4(s) u(succ(s, a)).
3. Update u(s) using the value-update rule.
4. Traverse edge a.
5. s := succ(s,a).
6. Go to 2.
Figure 2. Real-Time Search with Look-Ahead One

returns an element of X according to an arbitrary rule. A subsequent invoca-
tion of “one-of X” can return the same or a different element. The expression
“argmingex f(z)” returns the elements z € X that minimize f(z), that is, the set
{z € X|f(z) = ming¢cx f(2')}, where f is a function from X to the non-negative
integers.

2. Real-Time Search

Real-time (heuristic) search methods [16] interleave planning and plan ex-
ecution, and allow for fine-grained control over how much planning to perform
between plan executions. They are related to reinforcement-learning methods
[10,25], as pointed out in [3]. Planning is done via local searches, that is, searches
that are restricted to the part of the graph around the current vertex of an
agent. The white area of Figure 1 illustrates the limited look-ahead of real-time
search methods. Experimental evidence suggests that real-time search meth-
ods are efficient domain-independent search methods that outperform traditional
search methods such as A* [18] on a variety of search problems. Real-time search
methods have, for example, successfully been applied to traditional search prob-
lems [17], moving-target search problems [9], STRIPS-type planning problems
[5], robot navigation and localization problems with initial pose uncertainty [14],
totally observable Markov decision process problems [3], and partially observ-
able Markov decision process problems [4], among others. A good overview of
real-time search methods is given in [8] and newer developments can be found in
[11]. We study two similar real-time search methods that ants can use to cover
graphs, namely variants of Learning Real-Time A* and Node Counting that have
a look-ahead of only one edge traversal and fit the algorithmic skeleton shown
in Figure 2. Both real-time search methods associate a u-value u(s) with each
vertex s € S and initialize them with zeroes. The semantics of the u-values de-
pend on the real-time search method but are simple and result in intuitive rules
of thumb for which edges to traverse. The u-values correspond to markings that
the ants leave at the vertices of the graphs, see Figure 1. This is what some in-
sects do. Real ants, for example use chemical (pheromone) traces to guide their
navigation [1]. Mobile robots have been built that leave markings in the terrain
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but so far only short-lived markings such as odor traces [22], heat traces [21], or
alcohol traces [24]. One challenge is to build mobile robots that leave long-lived
markings in the terrain, especially long-lived markings that do not get destroyed
by activities such as vacuum cleaning or lawn mowing.

Ants that use real-time search methods do not need to know or learn the
graph (and can thus operate on known and unknown graphs) nor compute com-
plete paths. Rather, they always decide which neighboring vertex to move to
based only on the u-values of the neighboring vertices. Before moving to that
vertex, the ants can change the u-value of their current vertex. Both Learning
Real-Time A* and Node Counting first decide which edge the ants should tra-
verse in their current vertex (Line 2). They look one edge traversal ahead (larger
look-aheads are possible) and always greedily let the ants traverse the edge that
leads to a neighboring vertex with a smallest u-value (ties can be broken arbitrar-
ily). Then, they update the u-value of their current vertex using a value-update
rule that depends on the semantics of the u-values and thus the real-time search
method (Line 3). We assume that the ants execute Lines 2 and 3 together and
atomically (for example, because the body of the ant covers the current location
and its neighbors). Finally, both real-time search methods let the ants traverse
the selected edge (Line 4), update the current vertex (Line 5), and iterate the pro-
cedure (Line 6). Both real-time search methods can be executed by ants without
memory, require only a very limited look-ahead and computational capabilities,
and can be used by single ants as well as groups of ants that share the u-values but
do not directly communicate with each other. These properties match the lim-
ited sensing and computational capabilities of ants. In the following, we describe
Learning Real-Time A* and Node Counting in detail.

2.1. Learning Real-Time A*

Value-Update Rule of LRTA* (Line 3 in Figure 2)
u(s) 1= 1 + u(suce(s, a)).

Learning Real-Time A* (LRTA*) can be described as follows. The u-value
u(s) of vertex s approximates the sum of the smallest u-value of any state and
the distance from vertex s to a closest vertex with such a smallest u-value. To
understand the semantics of the u-values, consider the u-values until the graph
has been covered for the first time. In this case, a vertex with u-value zero
corresponds to an unvisited vertex (to be precise: a vertex that has never been
left by an ant). The u-value u(s) of vertex s then approximates the distance from
vertex s to a closest vertex with u-value zero, that is, a closest vertex that has
not yet been visited. LRTA* always moves the ants to a neighboring vertex with
a smallest u-value to reach a vertex that has not yet been visited, to eventually
visit all vertices and cover the graph. LRTA* sets the new u-value of the current
vertex to one plus the minimum of the u-values of its neighboring vertices. The
reason for this value-update rule (that can easily be generalized to graphs with
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One Ant
0/0]0 0|0 1/0|0 0|0 1/1/|0 0|0 1/1|0 0|0
0(0]|0 0|0 0(0]0 0|0 0[0]|0 0|0 0(1]0 0|0
0[0 0|0 0|0 0|0 0[0 0|0 0|0 0|0
0oj0oj0j0|0|0O 0[{0|0|0|0|O 0oj0oj0j|0|0|0O ojojo0j0|0|0
0oj0oj0|0|0|0O 0[{0|0|0|0|O ojoj0j0|0|0O ojojojo0|0|0
1|10 0|0 112 0|0 1112 0|0 112 0|0
011 0|0 0|11 0|0 012 0|0 012 0|0
0[0 0|0 0|0 0|0 0oj0 0|0 ofo 0|0
0j{0j0|0|0]|0O 0[{0|0|0|0|O 0oj{0j0|0|0]|0O 0j{0|0|0|0|0O
0j{0[0|0|0]|0O 0[{0[0|0|0|O 0{0(0|0|0]|0O 0[{0[0|0|0|0O
Three Ants
ojo|o0 0|0 1/0|0 0|0 1|10 0|0 1)/1|0 0|0
0/0|0 0|0 0(0]|0 0|0 1/0]|0 0|0 1|10 0|0
0of0 0|0 0|0 0|0 0[0 0|0 110 0|0
0oj{0j0|0|0]|0O 0({0|0|0|0|O 0j{0j0|0|0]|0O 0j{0|0|0|0O|0O
0oj{0j0|0|0]|0O 0({0|0|0|0|O 0oj{0j0|0|0]|0O 0j{0|0|0|0|0O
1/1]0 0|0 1(1]2 0|0 1(1]2 0|0 1(1]2 0|0
1(1)1 0|0 1111 0|0 1(1]2 0|0 1122 0|0
1)1 0|0 1)1 0|0 1|1 0|0 11 0|0
0[0j0|0|0]|0 0[{1/0]0|0|0 oj{1(1/0(0]|0 0oj{1/1/0|0]0
0oj0oj0|0|0|0O 0[0|0|0|0]|O 0({1/070|0]|0 1/1/1|0]0|0

Figure 3. Example: LRTA*

non-uniform edge costs) is that the shortest path to a closest unvisited vertex
has to go through one of the neighboring vertices. Thus, an approximation of
the distance from the current vertex to a closest unvisited vertex is one plus the
minimum of the estimates of the distances from the neighboring vertices to a
closest unvisited vertex.

LRTA* was first described in [17] and is probably the most popular real-
time search method. It is often used to find paths to a goal vertex on known
or unknown graphs. In this case, one can initialize the u-value of a vertex with
an approximation of its goal distance, which focuses the search towards the goal
vertices. Furthermore, if LRTA* is always restarted when it reaches a goal vertex,
then it will eventually follow a shortest path to a goal vertex. In this article,
however, we apply LRTA* to graph coverage. Figure 3 demonstrates how ants
that use LRTA* cover a regular four-connected grid. The ants can move to each
of the four neighboring cells of their current cell provided that the destination
cell is traversable (white). The ants move in a given sequential order (although
this is not necessary in general). The cells are marked with their u-values. If
a cell contains an ant, one of its corners is marked. Different corners represent
different ants. Figure 3 (top) demonstrates how single ants that use LRTA* cover
the grid, and Figure 3 (bottom) demonstrates how three ants that use LRTA*
cover it.
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One Ant
0/0]0 0|0 1/0|0 0|0 1/1/|0 0|0 1/1|0 0|0
0/0]|0 0|0 0(0]0 0|0 0[0|0 0|0 0(1]0 0|0
0[0 0|0 0|0 0|0 0[0 0|0 0|0 0|0
0oj0oj0j0|0|0O 0({0|0|0|0|O 0oj0oj0j|0|0|0O ojojojo0|0|0
0ojoj0j0|0|0 0/{0[0|0|0|O 0ojoj0j0|0|0O ojojojo0|0|0
1|10 0|0 111 0|0 111 0|0 111 0|0
011 0|0 0|11 0|0 012 0|0 022 0|0
0oj0 0|0 0|0 0|0 0[o0 0|0 ofo 0|0
0j{0j0|0|0]|0O 0({0[0|0|0|O 0j{0j0|0|0]|0O 0j{0|0|0|0O|0O
0j{0(0|0|0]|0O 0[{0[0|0|0|O 0j{0[0|0|0]|0O 0[{0[0|0|0|0O
Three Ants
0ojo|o0 0|0 3/0]0 0|0 3/1]0 0|0 3/1]0 0|0
0/0]|0 0|0 0(0]|0 0|0 2/0]0 0|0 2120 0|0
0of0 0|0 0|0 0|0 0[0 0|0 110 0|0
0oj{0j0|0|0]|0O 0[{0|0|0|0|O 0j{0j0|0|0]|0O 0({0[0|0|0|0O
0oj{0j0|0|0]|0O 0[{0|0|0|0|O 0oj{0j0|0|0]|0O 0j{0(0|0|0|0O
3/1]0 0|0 3/1]1 0|0 3/1]1 0|0 3[1]2 0|0
2121 0|0 2|21 0|0 212|2 0|0 2122 0|0
1(2 0|0 1(2 0|0 1|2 0|0 1|2 0|0
0(0j0|0|0]|0 0(2/0]0|0|0 0j{2(1/0|0]|0 0({2(1/0|0]0
0ojoj0j0|0|0O 0[0|0|0|0|O 0({1/070|0]|0 1/1/1|0]0|0

Figure 4. Example: Node Counting

2.2. Node Counting

Value-Update Rule of Node Counting (Line 3 in Figure 2)
u(s) =1 4 u(s).

We compare LRTA* to Node Counting, that can be described as follows.
The u-value u(s) of vertex s corresponds to the number of times vertex s has
been visited by ants. To understand the semantics of the u-values, consider the
u-values until the graph has been covered for the first time. In this case, vertices
with u-values zero correspond to unvisited vertices (to be precise: vertices that
have never been left by an ant). Node Counting always moves the ants to a
neighboring vertex with a smallest u-value to reach a vertex that has not yet
been visited, to eventually visit all vertices and cover the graph. Node Counting
sets the new w-value of the current vertex to one plus the old u-value of the
current vertex (meaning that the vertex has been visited another time).

Variants of Node Counting have been used in the literature to explore un-
known terrain, either on their own [20] or to accelerate reinforcement-learning
methods [28]. Node Counting is also the foundation of “Avoiding the Past: A
Simple but Effective Strategy for Reactive [Robot] Navigation” [2]. It is proba-
bly easier to implement ants that use Node Counting than ants that use LRTA*
because Node Counting always increases the u-value of the current vertex by the
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same constant, whereas LRTA* increases the u-value of the current vertex by a
value that depends on the u-values of the neighboring vertices. Figure 4 demon-
strates how ants that use Node Counting cover a regular four-connected grid.
Figure 4 (top) demonstrates how single ants that use Node Counting cover the
grid, and Figure 4 (bottom) demonstrates how three ants that use Node Counting
cover it.

3. Ant Coverage with Real-Time Search

In this section, we show that ants that use LRTA* and ants that use Node
Counting cover (strongly connected) graphs repeatedly and thus avoid cycling
forever in parts of the graphs, despite their limited sensing and computational
capabilities. We first show that ants that use LRTA* cover graphs repeatedly,
following [20] and [23]. This can be shown by assuming that, at some point in
time, they do not cover the graphs (again). Then, there is some (possibly later)
point in time when they only visit those vertices again that they visit infinitely
often; they cycle on part of the graphs. The u-values of all vertices in the cycle
then increase beyond every bound since LRTA* increases the smallest u-value of
the vertices in the cycle by at least one every time an ants leaves the vertex. But
then the u-values of all vertices in the cycle increase above the u-values of all ver-
tices that border the cycle. Such vertices exist according to our assumptions that
the graph is strongly connected but will not be covered again. Then, however,
at least one ant is forced to leave the cycle, which is a contradiction. The same
argument also applies unchanged to ants that use Node Counting. This argument
holds no matter in which order the ants move even if some ants move less often
than others. Thus, ants that use LRTA* and ants that use Node Counting cover
graphs repeatedly and can be used for one-time or continuous vacuum cleaning
or lawn mowing. Furthermore, they have advantages over other search methods
that also cover graphs repeatedly. For example, they are far more systematic than
random walks and, different from chronological backtracking (depth-first search),
can be suspended and restarted elsewhere, without even knowing where they get
restarted. This is important for graph coverage with ants because sometimes the
ants might get pushed accidentally to a different vertex. Most of the time they
will not even realize this. Ants that use either LRTA* or Node Counting handle
these situations automatically.

4. Cover Time of Real-Time Search Methods

The cover time is the time it takes for ants to cover a graph for the first
time, that is, to visit all of its vertices at least once (it does not matter by which
ant or ants a vertex was visited). This is important for one-time vacuum cleaning
or lawn mowing since each cell has to be vacuumed or mowed at least once. In
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the following sections, we study the cover time of ants that use LRTA* and ants
that use Node Counting, both theoretically and experimentally.

4.1. Cover Time: Theoretical Results

In this section, we analyze the cover time (as a function of the number of
vertices) that can be guaranteed by ants that use LRTA* or Node Counting. The
ants share the u-values but do not directly communicate with each other. We
assume that each move of an ant takes one time step and that each ant moves
once during each time step. For simplicity, we assume that several ants can be at
the same vertex at the same time but they can move completely asynchronously.
Since LRTA* and Node Counting are algorithmically similar, it can be speculated
that ants that use Node Counting guarantee a similar cover time as ants that use
LRTA*. We show that the cover time of ants that use LRTA* is guaranteed to
be polynomial in the number of vertices. Then, we show, surprisingly, that the
cover time of ants that use Node Counting can be exponential in (the square
root of ) the number of vertices on both directed and undirected graphs including
(planar) undirected trees. Finally, we attempt to explain the difference in cover
time between ants that use LRTA* and ants that use Node Counting by presenting
a condition that is sufficient for the cover time to be polynomial. Almost all of
the proofs are by induction. The lower bounds require one to come up with graph
topologies on which ants that use real-time search methods perform badly. This
can be tricky since not much is known about real-time search methods. Instead
of studying the cover time of ants directly, we study the time it takes one ant of
a group of ants to reach a goal vertex for the first time, that is, any vertex in a
given set } # G C S of goal vertices. gd(s) denotes the goal distance of vertex s,
that is, the distance from s to a closest goal vertex. Since ants that use LRTA*
and ants that use Node Counting cover graphs, they also reach a goal vertex.
Their cover time in the worst case is the same as the time it takes in the worst
case to reach a goal vertex for the first time (where an adversary can pick the
goal vertices), for example, the vertex that was visited last when covering the
graph. All of our example graphs are planar graphs, a property that is realistic
for graphs that model terrains.

4.1.1. Theoretical Results about LRTA*

In this section, we prove that the cover time of ants that use LRTA* is
guaranteed to be at most n? — n, that is, polynomial in the number of vertices,
no matter whether the graphs are directed or whether they are planar. But first,
we study how long it takes until one ant of a group of ants that use LRTA* reaches
a goal vertex for the first time. We need the following property of wu-values to
state our results.



10 Koenig, Szymanski, Liu / Efficient and Inefficient Ant Coverage Methods

Definition 1. U-values of LRTA* are admissible iff 0 < u(s) < gd(s) for all
s€ES.

Admissibility means that the u-values of LRTA* never overestimate the goal
distances. For example, zero-initialized wu-values are admissible. Admissibility is
an important concept in the context of traditional search methods such as A*
[19]. We can now prove the following theorem.

Theorem 2. The u-values remain admissible after every edge traversal of ants
that use LRTA* (until a goal vertex is reached for the first time) and are mono-
tonically non-decreasing over time.

Proof. by induction, see [9]. O

We can now prove the following theorems, following [12]. Similar theorems
were also independently proved in [30].

Theorem 3. Consider one particular ant of a group of ants that use LRTA*. Let
s; denote the current vertex of the ant, and s;y; the vertex of the ant after it has
traversed the chosen edge. Let u;(s) denote the u-value of vertex s immediately
before the ant updates the u-value of s;, and ;41 (s) the same u-value immediately
after the update. Whenever the ant updates the u-value of its current vertex and
instantaneously traverses the chosen edge, then (23, cgut1(s) — usq1(St41)) —
(23 s ut(s) —us(sy)) > 1, that is, the potential 237 g u(s) —u(s;) increases by
at least one.

Proof. The only u-value that changes is u(s;). It increases according to Theo-
rem 2 by wuigq1(8:) — us(s:) > 0. According to the value-update rule of LRTA*, it
changes to w41 (s¢:) = 1 4+ u¢(Se41). We distinguish two cases.

1. If s441 # s¢, then the potential increases by

(2> i (s) —uea(sie1)) = (2 uels) — wi(se))

s€s s€s
= (2urgr (s0) = g (s041)) = (2ue(s1) — (1))
(20141 (50) = e(s041)) — we(s0)
= @i (50) = (g (se) = 1) = ue(s2)
1
1

+ (urg1(se) — ue(se))

A%

2. If 5441 = 54, then the potential increases by
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Figure 5. Single Ants that use LRTA* on Directed Graphs

(23 uesr(8) = wegr(ses1)) = (2 wels) = we(se)

s€S s€S
= (2ues (1) = s (s141)) — (us(s0) = wi(se))
= (2urs1(se) = uega(se)) = (2ue(se) — ue(se))
= Ut41 (Sr) - U:(Sr)
= (14 m(si41)) — wi(se)
= (14 w(s0) = we(se)
1.

O

Theorem 4. The time it takes one ant of a group of ants that use LRTA* to
reach a goal vertex for the first time is at most 2", 5 gd(s).

Proof. Consider one particular ant and the potential 237 _gu(s) — u(s¢) for
this ant, where s; is the current vertex of the ant. Initially, the potential is zero.
According to Theorem 3, if the ant updates the u-value of its current vertex
and traverses the chosen edge, the potential increases by at least one. According
to Theorem 2, if a different ant updates the u-value of its current vertex, the
potential cannot decrease. Finally, according to Theorem 2, the potential is
bounded from above by 23 ¢ gd(s). Consequently, at least one ant of a group
of ants that use LRTA* reaches a goal vertex for the first time after at most
23 se59d(s) edge traversals. a

Theorem 4 states that the time it takes one ant of a group of ants that
use LRTA* to reach a goal vertex for the first time is at most 237 .5 gd(s).
Thus, the fewer vertices there are and the smaller the average goal distance over
all vertices, the smaller the upper bound. This corresponds to our intuition.
For example, if all vertices are clustered around the goal vertices, then each
ant can never move far away from the goal vertices and always has a chance of
getting to one quickly even if it behaved suboptimally in the past. It holds that
23 es9d(s) < 22?;01 i = n? — n according to our assumption that the graphs
are strongly connected. In the following, we present an example graph that
shows that this upper bound is tight for single ants that use LRTA*. Consider
the graph in Figure 5. The following program in pseudo code shows one possible
vertex sequence that single ants that use LRTA* can traverse. The scope of
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0080

start goal

Figure 6. Single Ants that use LRTA* on Undirected Graphs

the for-statements is shown by indentation. Ties are broken by remaining in the
current vertex if possible and otherwise choosing the vertex with the lowest label.

for i := 1 to n-1
for j :=1 to i
print s(i)
for j := i downto 1
print s(j)
print s(n)

This can be proved by induction on n. It is then easy to determine from an
inspection of the pseudo code that single ants traverse n? — n edges before they
reach the goal vertex for the first time, proving that the upper bound of n? — n
edge traversals is tight. For example, for n = 5, they traverse the vertex sequence
S1, S1, 82, S2, S2, S1, S3, S3, S3, S3, S2, S1, S4, S4, Sa, S4, S4, S3, Sz, S1, and s, and
thus 20 edges. The graph used in the above example was artificially constructed.
However, the upper bound of O(n?) edge traversals is tight even for more realistic
graphs such as regular four-connected grids. Consider the grid shown in Figure 6
and assume that n > 2 with n mod 4 = 2. The following program in pseudo code
shows one possible vertex sequence that single ants that use LRTA* can traverse.

for i := n-3 downto n/2 step 2
for j := 1 to i step 2

print s(j)
for j := i+1 downto 2 step 2
print s(j)
for i := 1 to n-1 step 2
print s(i)

This can be proved by induction on n. It is then easy to determine that
single ants traverse 3n%/16 — 3/4 edges before they reach the goal vertex for the
first time, proving that the upper bound of O(n?) edge traversals is tight even for
undirected planar graphs without edges that leave the current vertex unchanged
and for which the number of outgoing edges of any vertex is bounded from above
by a small constant (here: three). For example, for n = 10, they traverse the
vertex sequence Sy, S3, S5, S7, S], S, S4, S2, S1, S3, S5, S, S4, S2, S1, S3, S5, S7,
and sg, and thus 18 edges.

Since the time it takes one ant of a group of ants in the worst case to reach
a goal vertex for the first time is an upper bound on the cover time in the worst
case, the following corollary follows from Theorem 4.
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Figure 7. Single Ants that use Node Counting on Directed Graphs (m = 5,n = 11)

Corollary 5. The cover time of ants that use LRTA* on strongly connected (di-
rected or undirected, planar or non-planar) graphs is guaranteed to be polynomial
in the number of vertices.

4.1.2. Theoretical Results about Node Counting

In this section, we prove that the cover time of ants that use Node Counting
can be exponential in (the square root of) the number of vertices for both directed
and undirected graphs, including (planar) undirected trees. First, we discuss
directed graphs. Then, we discuss undirected graphs, a special case of directed
graphs since every undirected edge is modeled with two directed edges of opposite
directions. We first discuss directed graphs because our directed example graphs
are simpler than our undirected example graphs. In both cases, we first study
how long it takes until a single ant that uses Node Counting reaches a goal vertex
for the first time. Then, we generalize to how long it takes until one ant of a
group of ants that use Node Counting reaches a goal vertex for the first time.
Finally, we generalize to the cover time of ants that use Node Counting.

Cover Time of Node Counting on Directed Graphs: In this section, we present
a directed example graph that shows that the number of edge traversals until a
single ant that uses Node Counting reaches a goal vertex for the first time can be
exponential in the number of vertices. Figure 7 shows an instance of this example
graph. In general, the graphs have m + 1 levels (for m > 1). The levels consist
of vertices of two different kinds: g-vertices and r-vertices. At level ¢+ = 0, there
is only one vertex, namely a g-vertex gg. This vertex is connected to g-vertex g;.
At levels 2 = 1...m, there are two vertices, namely a g-vertex g; and an r-vertex
ri. The g-vertex g; is connected to g-vertex g,y (if i # m) and r-vertex r;. The
r-vertex r; is connected to g-vertex go. The start vertex is go and the goal vertex
is gm. The graphs have n = 2m + 1 vertices. Single ants that use Node Counting
can traverse the vertex sequence that is printed by f(m) of the following program
in pseudo code. Ties are broken towards r-vertices.

proc f(i) =
if 1 = 1 then
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m number of vertices Node Counting LRTA*
cdge traversals edge traversals cdge traversals ~ —cdge traversals
number of vertices number of vertices
1 3 1 0.3 1 0.3
2 5 5 1.0 5 1.0
3 7 13 1.9 10 1.4
4 9 29 3.2 16 1.8
5 11 61 5.5 26 2.4
6 13 125 9.6 34 2.6
7 15 253 16.9 43 2.9
8 17 509 29.9 60 3.5
20 41 2097149 51150.0 321 7.8
21 43 4194301 97541.9 344 8.0
22 45 8388605 186413.4 378 8.4
23 47 16777213 356962.0 433 9.2

Table 1
Results for Node Counting and LRTA*

edge trayersals until Node Counfing reaches a goal vertex for the first time (from simulation or formula) —
edge traversdls until LRTA* reaches a goal vertex for the first time (from simulation) ----

le+12
le+ll
le+10
1le+09
1le+08
1le+07
1le+06

100000

10000
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number of vertices (n)

Figure 8. Results (Log Scale!)

print g(0)
else
f£(i-1)
print r(i-1)
f£(i-1)
print g(i)

This can be proved by induction on m. It is then easy to determine that
single ants traverse 2”/2+1/2_3 odges before they reach the goal vertex for the first
time, proving that the number of edge traversals until the goal vertex is reached
for the first time can be exponential in the number of vertices. Theorem 6 follows.
For example, for m = 5 and n = 11, they traverse the vertex sequence gg, g1,

1, o, 91, 92, T2, Jo, 91, T1, 90, 91, 92, 93, T3, Jo, 91, T1, Jo, 91, 92, T2, Jo, 41,
1, gos 91, 92, 93, 94, T4, Jo, 91, "1, o, 91, 92, T2, Yo, 91, 1, o, 91, g2, 93, T3,
gos 915 T15 905 91, 92, T2, 9o, 91, T15 Yo, 91, 92, 93, g4, and g5, and thus 61 edges.
This is consistent with Figure 7 since summing up the number of times that the

vertices in the figure have been visited until a goal vertex is reached for the first
time (except for the goal vertex) yields 61. The reason for the large number of
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Figure 9. Ants that use Node Counting

edge traversals is the large number of ties between the successor g-vertex and the
successor r-vertex when the ant is at a g-vertex. Since ties are broken towards
r-vertices, the ant moves away from the goal vertex. The u-value of the r-vertex
is subsequently increased by only one, which soon results in another tie between
the g-vertex and the r-vertex. This could be avoided by increasing the wu-value
of the r-vertex by more than one, which is what happens if the ant uses LRTA*
instead of Node Counting. Table 1 and Figure 8 show results for single ants that
use Node Counting and single ants that use LRTA*. In both cases, the ants break
ties towards r-vertices.

Theorem 6. The time it takes a single ant that uses Node Counting to reach
a goal vertex for the first time on strongly connected (directed) graphs can be
exponential in the number of vertices even if the graphs are planar.

Proof. by induction on the number of vertices. |

This theorem can easily be extended to groups of k£ ants (for any constant
k). In this case, we replicate our graph k times, see Figure 9 (left). We introduce
a new start vertex, with (directed) edges going from it to all old start vertices.
The new goal vertex is (any) one of the old goal vertices. Finally, we redirect all
edges from the successor vertices of the old goal vertices to the new start vertex.
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Figure 10. Single Ants that use Node Counting on Undirected Graphs (m = 2,n = 18)

If £ ants that use Node Counting are started in the new start vertex, each ant
can move to a different one of the old start vertices and then exhibit the behavior
described above in the context of single ants. Since the number of vertices of the
new example graph is only a constant factor larger than the number of vertices
of the old example graph, the following theorem follows.

Corollary 7. The time it takes a given number of ants that use Node Counting
to reach a goal vertex for the first time on strongly connected (directed) graphs
can be exponential in the number of vertices even if the graphs are planar.

Since the time it takes a group of ants in the worst case to reach a goal
vertex for the first time is a lower bound on the cover time in the worst case, the
following corollary follows.

Corollary 8. The cover time of a given number of ants that use Node Counting
on strongly connected (directed) graphs can be exponential in the number of
vertices even if the graphs are planar.

Cover Time of Node Counting on Undirected Graphs: Graphs that correspond
to terrain are often undirected, including grids. It is conceivable that ants that use
Node Counting are more efficient on undirected graphs than directed graphs and
thus that their cover time might always be polynomial in the number of vertices on
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undirected graphs. In this section, however, we present an undirected example
graph that shows that their cover time can still be exponential in (the square
root of) the number of the vertices even for (planar) undirected trees. Despite
its elegance, this example graph proved to be rather difficult to construct. We
first study the number of edge traversals until single ants that use Node Counting
reach a goal vertex for the first time. Figure 10 shows an instance of our example
graph. In general, the trees have m + 1 levels (for m > 2). The levels consist
of vertices of three different kinds: g-subroots, r-subroots, and leafs that are
connected to the subroots. g-subroots and r-subroots alternate. At level i = 0,
there is one subroot, namely a g-subroot go. At levels i = 1...m, there are two
subroots, namely an r-subroot r; and a g-subroot g;. Subroot g; has m + ¢ leafs
connected to it, and subroot r; has one leaf connected to it. Finally, subroot g,,
is connected to two additional vertices, namely the start vertex and the only goal
vertex. The trees have n = 3/2 m? 4+ 9/2 m + 3 vertices. Single ants that use
Node Counting proceed in a series of passes through the trees. During each pass,
they traverse the subroots in the opposite order than the previous pass. We call
a pass during which they traverse the subroots in descending order a down pass,
and a pass during which they traverse them in ascending order an up pass. We
number passes from zero on upward, so even passes are down passes and odd
passes are up passes. A pass ends immediately before it switches directions. We
break ties as follows: During pass zero, ties among successor vertices are broken
in favor of leaf vertices of g-subroots (with highest priority) and then subroots.
Pass zero ends when the single ants have visited the leafs of subroot gg once each.
As a result, at the end of pass zero they have visited the subroots ¢; m + 1+ 1
times each and their leafs once each. They have visited the subroots r; once each
and their subroots not at all. During all subsequent passes, ties among successor
vertices are broken in favor of subroots whenever possible. A tie between two
r-subroots (when the single ants are at a g-subroot) is resolved by continuing
with the current pass. A tie between two g-subroots (when the single ants are at
an r-subroot) is resolved by terminating the current pass and starting a new one
in the opposite direction. In the following, we provide a sketch of the proof that
single ants that use Node Counting traverse (at least)

VAT

edges in this case, where n is the number of vertices and 0 < ¢ < 1/6 is an
arbitrarily small constant.

We use the following notation for the proof. Let u,.,(s) denote the total
number of times that subroot s has been entered at the end of pass p for a tree
with m+1 levels. By definition, u, ., (s) is a nondecreasing function of p. Our tie
breaking rules guarantee that all leafs of a subroot have been entered the same
number of times at the end of each pass, so we let w, ,,(s) denote the number
of times that each of the leafs of subroot s has been entered at the end of pass
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p for a tree with m + 1 levels. Finally, let 2, ,,(s) denote the total number of
times that subroot s has been entered from non-leafs at the end of pass p for a
tree with m 4+ 1 levels. These values relate as follows: The total number of times
that a subroot was entered at the end of pass p is equal to the product of the
number of its leafs and the total number of times that it was entered from each
of its leafs at the end of pass p (which equals the total number of times that
each of its leafs was entered at the end of pass p) plus the total number of times
that the subroot was entered from non-leafs at the end of pass p. For example,
Up,m (9i) = (M + D)wp i (gi) + Tpm (9:)-

We now outline the idea of the proof. Pass 0is the first pass during which the
single ants move from subroot ry to subroot go. The u-value of subroot gy at the
end of pass 0 is ugm (go) = m+1. In the following, we show that every subsequent
pass during which the single ants move from subroot r; to subroot gy at least
doubles the u-value of subroot go. Thus, the total number of edge traversals
grows exponentially in the number of down passes that move the single ants from
subroot ry to subroot gg. For the proof, assume that the single ants move from
subroot ry to subroot gg during down pass p > 0. At this point in time, the u-value
of subroot go must be less than or equal to the u-value of the leaf of subroot rq,
otherwise the single ants could not move to subroot go (#p—1,m(90) < wWpm(r1)).
Furthermore, at this point in time, the u-value of the leaf of subroot r; must be
less than or equal to the u-value of subroot ry, because the single ants have to
move to subroot r; whenever they are in its leaf (wy, (1) < %pm(r1)). The down
pass is over when the single ants switch direction and move from subroot gg back
to subroot r1. At this point in time, the u-value of subroot r; must be less than
or equal to the u-value of each of the leafs of subroot gy, otherwise the single
ants could not move to subroot ry (upm(r1) < wpm(go)). Furthermore, at this
point in time, m times the u-value of each of the leafs of subroot gy must be less
than or equal to the u-value of subroot g, because the single ants have to move
to subroot gy whenever they are in one of its m leafs (m wp m(90) < upm(g0))-
Put together: mu,_1 1, (g0) < mwy p(r1) < Mty m(r1) < mwpm(go) < Upm(go)
for m > 2, which proves that every pass during which the single ants move from
subroot ry to subroot gy at least doubles the u-value of subroot gy. Thus, the total
number of edge traversals grows exponentially in the number of down passes that
move the single ants from subroot r; to subroot gy. To ensure that this number
is large, we need to ensure that the number of down passes is large and thus that
many up passes end before the goal vertex is reached. In the following, we show
that every time an up pass reaches a subroot r;41 for the second time, the up
pass ends. Pass 0 is the first pass during which the single ants visit subroot ¢;
for 1 < 4 < m. Assume that the second pass during which the single ants visit
subroot g; is pass p. This pass must be an up pass since pass 0 is a down pass
and ends at subroot gg. In the following, we show that the single ants, after they
have moved from subroot r; to subroot g¢; for the first time, continue to move
to subroot r;4; and then end the up pass and start a down pass. Thus, every
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time an up pass reaches a subroot r;;; for the second time, the up pass ends.
Consequently, there are a large number of up and thus also down passes. For the
proof, notice that, at the end of pass 0, the u-values of subroot r;, subroot r;;1,
and the leafs of subroot g¢; are one. The u-value of subroot g; is m+i+1, and the
u-value of subroot g;11 is m+ ¢+ 2. Now assume that the single ants move from
subroot r; to subroot g; for the first time. At this point in time, subroot r;;4; and
the leafs of subroot g; have not been visited again since pass 0 and their u-values
are thus still one. Subroot g; has been visited only one time after pass 0 and its
u-value is thus m + ¢ + 2. Subroot r; has been visited at least once after pass 0
and thus its u-value is at least two. According to our tie breaking rules, the up
pass p continues and the single ants move from subroot g¢; to subroot r;yy. At
this point in time, the u-value of subroot g; is still m+1i+2 (see above). Subroot
gi+1 has not been visited again since pass 0 and its u-value is thus still m +174 2.
According to our tie breaking rules, the next subroot that the ants move to is
subroot g;. Thus, the up pass ends and the single ants move towards subroot g
again. Consequently, there are a large number of up and thus also down passes.
The purpose of the particular topology of the graph then is to ensure that the
single ants move from subroot r; to subroot go during each down pass and do
not stop the down pass earlier. In the following, we provide a sketch of the proof
that this is indeed the case.

Lemma 9. Assume that single ants that use Node Counting visit subroot s (with
s # ¢p) during pass p, where 0 < p < 2m + 2. The values u,,,(s) can then be
calculated as follows, for 72 > 0:

Uzk41,m(go) = m uak,m(r1) + 2k,m(go)

Uzk,m (Go) = M ok m(r1) + T2k,m(g0)

Uzk,m (g:) = (m 4 1) min(uzk—1,m (i), U2k,m (rit1)) + T2k,m(gi)
uzkt1,m(gi) = (m + 0) min(uzk m(rit1), 2kt 1,m(r:)) + T2r41,m(g6)
U2k, m(r:) = min(uzk—1,m(gi—1), U2k,m (gi)) + T25,m(r:)
Unkt1,m (75) = min(uzk,m (g:), U2k41.m (Gi=1)) + Torg1,m(rs)

Proof. by induction on the number of passes p for the example graphs, see [26]. O

Theorem 10. If p = 2k for 0 < k£ < m, then the down pass ends at subroot gq
and it holds that
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(m 4+ 1) (uok—2,m(gi) + 2k — 21

Usk,m (gi) =
m+14+1

+1)+2k—2i+1

forO0<i <k
otherwise

{ m(usk—2m(gi) +2k) +k+1 fori=0<k

(r) = Uzk—1,m(gi—1) + 2k — 2 + 2 for0<i<k
uzk,m (ri) = 1 otherwise
k+1 for1 =0

Tok,m(gi) = § 2k —21+1 for0<i<k
1 otherwise

- (r' _ 2k — 214+ 2 forO0<i1 <k
2k,m(ri) = 1 otherwise

Uk,m (ri) > Usk—1,m(riz1) forl<i<k

Uzk,m (9i) > U2k—1,m(Gi—1) for0<i<k

If p=2k+1for 0 <k < m, then the up pass ends at subroot ryy; (with

the exception of up pass 2m + 1 that ends at the goal vertex) and it holds that

Uk, m (gi) for:1=0
(m + i) (uak—1,m(g:) + 2k
u2k41,m(gi) = —21) 42k — 21+ 2 for0<i< k
m-4+14+2 forO<i1=k
m-4+14+1 otherwise
uzk,m(gi) + 2k — 2043 for0<i1<k
Unkg1,m(ri) = {U2k+1,m(gi_1)+2 fori=k+1<m
1 otherwise
k+1 forz =0
Tokt1,m(gi) = {2k—2i+2 for0<i1<k
1 otherwise
2k — 2143 for0<i1<k
Tokt1,m(ri) = {2 fori=k+1<m
1 otherwise
Uzk1,m (i) > Uok,m(rit1) for0<:1<k
uzk4+1,m(gi) > u2k,m(git1) for0<i< k

Proof. by induction on the number of traversed edges for the example graphs,

using Lemma 9, see [26]. O

Thus, there are 2m + 2 passes until a goal vertex is reached for the first
time. Each down pass ends at subroot gg. The final up pass ends at the goal
vertex. All other up passes p end at subroot r(,1)/2. In the following, we need
two inequalities. First, according Theorem 10, it holds for 0 < £ < m that
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(00) = m4+1 for k=0
Uzk,m(go) = m(uzk—2,m(go) + 2k) + k + 1 otherwise.

Solving the recursion yields

m* LA LRt 2k 4 2ym 4 (k= 2)m +k+1
m2—-2m+1 ’

Uzk,m(go) =

Setting £ = m in this formula results in

mmt L mm 2 ™t _om® 2 4 1

m2—-2m+1

uQm,m(gCl) =

21

This implies that #,,41,m(90) = %am,m(go) > m™. For example, u4,2(g0) = 35,

which is consistent with Figure 10.

Second, consider an arbitrary constant 0 < ¢ < 1/6 and assume that m >

1/€
max (% — 4, (%) / ) > 2. Notice that n > m for our trees. Then,
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and thus m > (/2n(1—4¢) > 1 (A). In the following, we also utilize that

1/e
(an)* > n0=9% for n > G) / and arbitrary constants ¢ > 0 and £ > 0 (B).

Then,
%n(l—‘lé)
m 2 .
m™ > ( zn (1 —46)) since (A)
1. /2n(1—4e

= (3 = 3o m) VA
> n(l_é)% in(1-19 since (B)
—n (l—e)z%n(l—4e)
>n (1—2¢) n(1—4¢)
—n (%—6-}-%62)’",

o=

>nv( —<)n

Using the two inequalities above, it holds that usm41.m(g0) > m™ >
1/e
nV(E=)" for m > max (% —4, (%) / > and thus also for sufficiently large
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ber of vertic b ¢ \ . u-value of gg deet ! edge traversals
m number of vertices number of passes u-value of g Tomber of vertizes edge traversals Tumber of vertices
n Uam41,m (90)
2 18 6 35 9 190 10.6
3 30 8 247 8.2 1380 46.0
4 45 10 2373 52.7 12330 274.0
5 63 12 30256 480.3 142318 2259.0
6 84 14 481471 5731.8 2063734 24568.3
7 108 16 9127581 84514.6 36135760 334590.4
8 135 18 199957001 1481163.0 740474450 5484995.9
Table 2
Results for Node Counting
m  number of vertices  number of passes  edge traversals __cdge traversals
number of vertices
n
2 18 2 32 1.8
3 30 2 56 1.9
4 45 2 86 1.9
5 63 2 122 1.9
6 84 2 164 2.0
7 108 2 212 2.0
8 135 2 266 2.0
Table 3
Results for LRTA*
T T T T T T T
edge traversals until Node Counting reaches a goal vertex for the first'time (from simulation) —
number of times Node Coynting visits vertex g0 until it reaches a goal vertex for the first time (from simulation or formula) ----
number of times Node Counting visits vertex g0|until it reaches a goal vertex for the first time (from formula) -----
edge traversals until LRTA* reaches a goal venexﬂ}o‘r the first time (from simulation)
le+1l - q
1e+10 B
1e+09 |- 4
le+08 A
1e+07 | B
1e+06 |- 4
100000 - 4
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1000 |- 4
00 F 4
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number of vertices (n)
Figure 11. Results (Log Scale!)
n. U2m+1,m(go) is the u-value of g after single ants that use Node Counting

reach a goal vertex for the first time on a tree with m + 1 levels. This u-value
equals the number of times that the single ants have visited go, which is a lower
bound on the number of edges they have traversed until a goal vertex is reached
for the first time. Consequently, single ants that use Node Counting traverse (at
least)

edges, and the number of edge traversals until a goal vertex is reached for the
first time can be exponential in (the square root of) the number of vertices even
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for (planar) undirected trees. Theorem 11 follows. For comparison, single ants
that use LRTA* visit each leaf of a g-subroot once while they move in one down
pass from the start vertex to g-subroot gy (if ties are broken as before). Then,
they visit each leaf of an r-subroot once while they move in one up pass from
the g-subroot gy to the goal vertex, for a total of 3m? + 9m + 2 = 2n — 4 edge
traversals.

Theorem 11. The time it takes single ants that use Node Counting to reach
a goal vertex for the first time on strongly connected undirected graphs can
be exponential in (the square root of) the number of vertices even for (planar)
undirected trees.

Proof. by induction on the number of traversed edges for the example graphs
using Lemma 9 and Theorem 10. O

To confirm this theoretical result, we performed a study of single ants that
use Node Counting on our example graphs, see Table 2. We report only results
for small m because the number of edge traversals grows quickly. These results
confirmed our formulas for how the number of vertices n, the number of passes
until a goal vertex is reached for the first time, and the u-value of gy when a
goal vertex is reached for the first time depend on m. They also provided us
with the number of edge traversals until a goal vertex is reached for the first
time, for which we do not have a formula in closed form, only a lower bound in
form of the u-value of gg when a goal vertex is reached for the first time. How
the number of edge traversals and its lower bound relate is shown in Figure 11.
Visual inspection of the graphs suggests that the lower bound is approximately at
a constant distance from the number of edge traversals in the log plot, suggesting
that the lower bound underestimates the number of edge traversals by roughly
a constant factor. For comparison, Table 3 and Figure 11 contain results for
LRTA* on the example graphs (if ties are broken as before).

Theorem 11 can easily be extended to groups of &k ants (for any constant
k). In this case, we replicate our example graph k times, see Figure 9 (right).
We introduce a new start vertex, with (undirected) edges between it and all old
start vertices. The new goal vertex is (any) one of the old goal vertices. If k
ants that use Node Counting are started in the new start vertex, each ant can
move to a different one of the old start vertices and then exhibit the behavior
described above in the context of single ants. Since the number of vertices of the
new example graph is only a constant factor larger than the number of vertices
of the old example graph, the following theorem follows.

Corollary 12. The time it takes a given number of ants that use Node Counting
to reach a goal vertex for the first time on strongly connected undirected graphs
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Eulerian Graph Converted Graph

Figure 12. Sample Fulerian Graph and its Conversion

can be exponential in (the square root of) the number of vertices even for (planar)
undirected trees.

Since the time it takes a group of ants in the worst case to reach a goal
vertex for the first time is a lower bound on the cover time in the worst case, the
following corollary follows.

Corollary 13. The cover time of a given number of ants that use Node Counting
on strongly connected undirected graphs can be exponential in (the square root
of) the number of vertices even for (planar) undirected trees.

Cover Time of Node Counting for Special Cases: So far, we have shown that the
cover time of ants that use Node Counting is not guaranteed to be polynomial in
the number of vertices for either directed or undirected graphs, including (planar)
undirected trees. We are also able to describe a graph property that guarantees
a polynomial cover time of single ants that use Node Counting. A FEulerian
graph is a graph that contains a Eulerian tour. A Kulerian tour is a path whose
start vertex equals its end vertex and that contains all of the edges of the graph
exactly once [7]. This implies for directed Eulerian graphs that each vertex has
an equal number of incoming and outgoing directed edges. Now consider an
arbitrary strongly connected directed Eulerian graph whose number of edges is
at most polynomial in the number of its vertices (for example, because no two
edges connect the same vertices in the same direction), and a graph that is derived
from the directed Eulerian graph by replacing each of the directed edges with two
directed edges that are connected with a (unique) intermediate vertex. Figure 12
shows an example. Using results from [13], we can show that the performance
of single ants that use Node Counting on the converted graph is guaranteed to
be polynomial in its number of its vertices. This is so because the behavior
of single ants that use Node Counting on the converted graph is the same as
the behavior of single ants that use Edge Counting [13] on the original graph,
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a real-time search method that always makes the ant traverse an edge that has
been traversed the least number of times, and the performance of single ants that
use Kdge Counting on strongly connected directed Kulerian graphs is polynomial
in the product of the number of its edges and the number of its vertices [13].
It is currently unknown whether grids and other graph topologies that represent
realistic terrains guarantee ants that use Node Counting a polynomial cover time.

4.1.3. Discussion of the Theoretical Results

So far, we have shown that the cover time of single ants that use Node
Counting can be exponential in (the square root of) the number of vertices even
for (planar) undirected trees. While we realized early on that the cover time of
single ants that use Node Counting is exponential on directed graphs, we tried
to prove for a long time that it was polynomial on undirected graphs. That we
eventually proved the opposite was surprising to us because the value-update
rule of LRTA* is similar to that of Node Counting but guarantees single ants a
cover time that is polynomial in the number of vertices instead of exponential.
There also exist other real-time search methods whose cover time on directed or
undirected graphs is polynomial in the number of vertices (perhaps with the re-
striction that the graphs have no edges that leave the current vertex unchanged).
Table 4 shows some of these real-time search methods. Wagner, Lindenbaum
and Bruckstein’s Value-Update Rule' [29] (short: Wagner’s Value-Update Rule)
and Thrun’s Value-Update Rule [27] resemble Node Counting even more closely
than LRTA* resembles Node Counting since their value-update rules contain the
term 1+ u(s) just like Node Counting. Their cover times were analyzed by their
authors and shown to be polynomial in the number of vertices for single ants.
We have shown that the cover time of Node Counting can be exponential in the
number of vertices for single ants. Consequently, these small modifications of
Node Counting are necessary to guarantee a polynomial cover time.

Table 4
Different Real-Time Search Methods

Value-Update Rules WITHOUT Polynomial Cover Time Guarantee

u(s) = 1 4 u(s). Node Counting

Value-Update Rules WITH Polynomial Cover Time Guarantee

u(s) 1= 1+ u(suce(s, a)). LRTA*
if u(s) < u(suce(s, a)) then u(s) := 1 + u(s). Wagner’s Value-Update Rule [29]
u(s) := max(1 + u(s), 1 + u(succ(s, a))). Thrun’s Value-Update Rule [27]

' The authors call this real-time search method Vertex-Ant Walk. We do not use this name
here because they call one real-time search method Vertex-Ant Walk in [29] and a different
one Vertex-Ant Walk in [30]. We refer to the real-time search method described in [29]. The
other real-time search method is a version of LRTA*.
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We now attempt to give an intuition why the cover time of ants that use
some real-time search methods can be exponential in the number of vertices while
the cover time of ants that use other real-time search methods is guaranteed to be
polynomial. We do this in form of a guideline for how to design real-time search
methods that result in a polynomial cover time. For simplicity, we discuss only
the case where single ants have to reach a goal vertex for the first time. As argued
earlier, the time it takes single ants in the worst case to reach a goal vertex for
the first time is the same as the cover time of single ants in the worst case. The
results can then be generalized to groups of ants, which we do elsewhere.

Theorem 14. Let s; denote the current vertex of a single ant at point in time
t, and s;4; the vertex of the ant after it has traversed the chosen edge. Let u,(s)
denote the u-value of vertex s immediately before the ant updates the u-value
of s¢, and us1q1(s) the same u-value immediately after the update. The time it
takes the single ant to reach a goal vertex on strongly connected (directed or
undirected, planar or non-planar) graphs for the first time is at most (f(n) +

1) f(n) ¥-ses gd(s) if all of the following conditions hold.
Condition 1: At every point in time, the u-values u(s) are integers.
Condition 2: At every point in time ¢, it holds that wu.(s;) < weg1(se).

Condition 3: At every point in time ¢ where u(s;) < min,ga(,,) ue(suce(s, a)),
it holds that us(s;) + 1 < usg1(ss).

Condition 4: At every point in time, it holds that |u(s) — u(suce(s, a))| < f(n)
for all non-goal vertices s € S and a € A(s), where f(n) > 1 is a function of
the number of vertices n.

Proof. 'The proof is in three parts.

1. First, we prove by induction on the number of time steps ¢ that, at every point
in time, it holds that u(s) < f(n)gd(s) for all vertices s. It holds at time
step t = 0 since then u(s) = 0 for all vertices s. Suppose that the induction
hypothesis holds at time step ¢. The only u-value that changes at time step
t is u(s;) for the non-goal vertex s;. Let a™ = argmin,e(s,) gd(succ(ss, a)).
Then, gd(s;) = 1+ gd(suce(ss, a*)) and thus s; # succ(sy, a*). It follows that

e (51) < e (suee(si,a)) + ()
us(succ(st,a*)) + f(n)
F(n)gd(succ(se,a*)) + f(n)
F(n)(1 + gd(suce(ss,a*)))
f(n)gd(s:).

Al
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Furthermore, for all vertices s # sy, it holds that w11 (s) = us(s) < f(n)gd(s).
Consequently, the induction hypothesis holds again at time step t 4 1.

. Next, we prove by induction on the number of time steps ¢ that ((f(n) +
1) Yses te41(8) — ueg(se41)) — ((f(n) + 1) Yges ue(s) — ue(se)) > 1, that is,
that the potential (f(n)+1) > ,csu(s) — u(s;) increases by at least one with
each movement. Consider an arbitrary time step ¢. The only u-value that
changes is u(s¢) for the non-goal vertex s;. We distinguish three cases:

(a) If sip1 # s¢ (1) and wue(sy) < ue(si41) (2), then wepq(si41) = ue(Si41)
according to (1). us41(s¢) > 1+ u¢(s¢) according to (2) and Condition 3.
us(S¢) — ug(s441) > —f(n) according to Condition 3. Consequently, the
potential increases by

((F) + 1) D uesa(s) = urr (se1)) = ((F(n) 4 1) D ui(s) = uils)
s€S seS

= ((f(n) + Durg1(se) — uegr(se41)) — ((F(n) + Due(se) — ue(se))

> ((f(n) + 1)(1 +ui(se)) = uegr(si41)) — f(n)ur(se)

=((f(n) + (1 +ui(s:)) — ue(se41)) — f(n)u(se)

=(f(n) + 1) + (ue(se) — ue(se41))

2 (f(n)+ 1)+ (=f(n))

=1.

(b) If si41 # s¢ (1) and wue(se) > we(se41) (2), then wepq(si41) = ue(s41)
according to (1). us(si41) < u¢(s¢) — 1 according to (2) and Condition 1.
w1 (st) > ug(se) according to Condition 2. Consequently, the potential
increases by

n)+1)ZUt+1 ) — g1 (se41)) = (( n)-l-l)ZUt ) — ui(se)

=((f(n) + 1)U:+1(Sr) — urg1(set1)) = ((F(n) + 1)Ut(8t) — ue(st))
= ((F(n) + Vs (se) = ue(se41)) = ((f(n) + Due(se) — welse))

2 ((f(n) + Durpr(se) = (ue(se) = 1)) = ((f(n) + Dua(se) — ue(se))
= (f(n) + V(g (se) = ue(se)) +1

> 1.

(c) If sip1 = s¢, then ugpq(sy) > 14 ue(s¢) according to Condition 3 and the
potential increases by

n)+1)ZUt+1 8) = upg1(se+1)) n)-l-UZUt ) — ue(se)
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3. Finally, we prove the main theorem. The potential (f(n)+ 1) > ,csu(s) —
u(s) is initially zero, increases with every movement by at least one, and
is bounded from above by (f(n) + 1) ,cs f(n)gd(s). The main theorem
follows.

O

Real-time search methods that satisfy Conditions 1, 2, and 3 of Theorem 14
cover (strongly connected) graphs repeatedly since the proof in Section 3 applies
to them. In the following, we show how Theorem 14 can be used to prove that
the cover times of single ants that use LRTA*, Wagner’s Value-Update Rule, or
Thrun’s Value-Update Rule are polynomial in n. This is so because all three
conditions of the theorem hold for these three real-time search methods for a
function f(n) that is polynomial in n. Then, (f(n)+1)f(n) Y ses9d(s) < (f(n)+
Df(n) X0 i = (f(n)+1)f(n)(n(n—1)/2), according to our assumption that the
graph is strongly connected. Consequently, the cover time is polynomial in n. On
the other hand, all three conditions of the theorem hold for Node Counting only
for a function f(n) that can be exponential in n. For example, f(n) > 2n/2=5/2 for
the graph topology in Figure 7 since u(g1) — u(ga) = 2"/275/2 after termination.

LRTA*: Condition 2 of Theorem 14 holds as shown by Theorem 2. Conditions 1
and 3 hold because, according to the value-update rule of LRTA*, u;4q(s;) = 1+
min, e A(s,) Ut(suce(sy, a)), where ug(s) denotes the u-value of vertex s immediately
before the ant updates the u-value of s; and w41 (s) the same u-value immediately
after the update. That Condition 4 holds for f(n) = 1 was proved in [30].
Condition 4 holds on directed graphs for f(n) =n — 1.

Wagner’s Value-Update Rule: Conditions 1, 2 and 3 of Theorem 14 hold be-
cause, according to Wagner’s Value-Update Rule, wu;yq(s:) = 1 + ue(se) if
u(s:) < mingga(s,) ue(suce(sy, a)). That Condition 4 holds for f(n) = 1 was
proved in [29]. Condition 4 holds on directed graphs for f(n) =n — 1.

Thrun’s Value-Update Rule: Conditions 1, 2 and 3 of Theorem 14 hold be-
cause, according to Thrun’s Value-Update Rule, usyq(s;) = max(1 + us(ss), 1+
ming e 4(s,) Ut (succ(sy, a))). That Condition 4 holds for f(n) = n was proved in
[27].
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Figure 13. Terrain
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Figure 14. Cover Time and Total Number of Moves for First Coverage

4.2. Cover Time: Frperimental Results

In this section, we report experimental results for the cover times of vacuum-
cleaning ants that use various real-time search methods, including LRTA* and
Node Counting, in part of an office building that contains three offices and a
small waiting area, see Figure 13 (the results for different terrains were similar).
We imposed a regular four-connected grid over the terrain, resulting in 40 x
30 cells. The ants could move to each of the four neighboring cells of their
current cell provided that the destination cell was traversable (white). Cells were
untraversable if they contained either walls (black) or furniture (grey). All ants
started in the same cell (marked “start”) and used the same real-time search
method, breaking ties randomly. The ants executed the real-time search method
independently even if several ants shared a cell. Each ant moved once during
each time step in a given sequential order.?

2 We also performed experiments where the ants moved asynchronously or in random order but
this led to similar results except that the variance of the total number of moves for the first
coverage decreased with the number of ants instead of remaining roughly constant.
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In our first three experiments, we studied the cover times of the real-time
search methods for one-time vacuum cleaning and their visit frequencies for con-
tinuous vacuum cleaning. In our first experiment, we measured the number of
time steps until the ants covered the terrain for the first time (cover time), aver-
aged over 2,000 runs. This is important for one-time vacuum cleaning since each
cell has to be vacuumed at least once. Figure 14 (left) shows the results. The
trend was the same for all real-time search methods. The cover times improved
as more ants were added although the rate of improvement decreased. In gen-
eral, the cover times of all real-time search methods were similar. To differentiate
better between the real-time search methods, Figure 14 (right) shows the total
number of moves made by all ants, that is, (roughly) the number of ants times
the cover time. It appears that the difference in the total number of moves of
the different real-time search methods was independent of the number of ants.
Thrun’s Value-Update Rule was best, followed by LRTA* and Node Counting
(that were almost indistinguishable), and finally followed by Wagner’s Value-
Update Rule. The cover time of single ants was between 3,200 and 3,500 with
a standard deviation between 600 and 700. Thus, the difference in performance
was dominated by the standard deviation. This experimental result is interesting
because our theoretical worst-case results suggested that the cover time of Node
Counting might be much larger than the cover time of LRTA*. We also exper-
imented with random walks but their cover time was much larger than those of
the real-time search methods above. For example, the cover time of single ants
that use random walks was approximately 49,000 with a standard deviation of
about 20,000.

In our second experiment, we measured the frequency with which the ants
visited each cell of the terrain when they covered the terrain repeatedly. This is
important for continuous vacuum cleaning because one probably wants to vacuum
each cell equally often in the long run (although one could argue that most dirt
accumulates where people walk and thus that one wants to vacuum cells close
to obstacles less often). We stopped the ants after 2,000,000 time steps. The
visit frequencies did not change significantly as the number of ants increased,
no matter which real-time search methods were used. We therefore report the
visit frequencies for single ants only. Figure 15 shows the results. Darker cells
in the figure were visited less frequently. As the figure shows, some real-time
search methods visited the cells more uniformly than others. For example, Node
Counting visited the cells much more uniformly than LRTA*. This is interesting
because the total number of movements of LRTA* and Node Counting was similar
in our first experiment. One measure for the uniformity of the visit frequencies is
their entropy. The larger the entropy — Y, P(s) log, P(s), the closer to uniform
the visit frequencies P(s) are. The entropy of uniform visit frequencies is 9.7830
and the entropies of the visit frequencies of the real-time search methods were:
Node Counting (9.7829), Wagner’s Value-Update Rule (9.7779), Thrun’s Value-
Update Rule (9.7772), and LRTA* (9.7727). Another measure for the uniformity
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LRTA* Node Counting
Wagner’s Value-Update Rule Thrun’s Value-Update Rule

Figure 15. Visit Frequencies for Repeated Coverage
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Figure 16. Difference of Largest and Smallest Mean Time between Visits for Repeated Coverage

of the visit frequencies is the difference between the mean times between visits to
the cells with the largest and smallest mean time between visits. The smaller this
value, the closer to uniform the visit frequencies. Figure 16 shows the results,
that were similar to those for the entropies. Only the positions of Thrun’s Value-
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Figure 18. Total Number of Moves for First Coverage if the Ants Were Kicked

Update Rule and LRTA* were switched.

In our third experiment, we measured whether the times between visits
to the cells were spread out evenly. This is important for continuous vacuum
cleaning because it seems better if a cell gets visited every 100 time steps than
if it gets visited every 10 time steps for 9 times in a row and then again only
after 910 time steps. One measure of how evenly the times between visits are
spread out is the average of the standard deviations of the times between visits
over all cells, weighted with their visit frequencies. The closer to zero this value,
the more evenly spread out the times between visits. We stopped the ants after
2,000,000 time steps. Figure 17 shows the results. The times between visits were
very unevenly spread out for Node Counting and more evenly spread out for all
other real-time search methods, with almost no difference among them. This
is interesting because Node Counting had very uniform visit frequencies in our
second experiment.

In the next three experiments, we studied the cover times of the real-time
search methods for one-time vacuum cleaning under various failure conditions.
(We also performed experiments where we studied the visit frequencies of the
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real-time search methods for continuous vacuum cleaning but the effect of the
failure conditions on the visit frequencies was small.) In our fourth experiment,
we measured the robustness of the real-time search methods when the ants were
moved away from their current cell without realizing this. This is important
because people can easily run into small vacuum-cleaning ants and accidentally
push them to a different location. During each time step, with a given probability
exactly one ant was moved (otherwise no ant was moved). If an ant was moved,
exactly one ant and its new cell were chosen with uniform probability, with the
restriction that the ant was moved by at most two cells. Figure 18 shows the total
number of moves until eight ants covered the terrain for the first time, averaged
over 2,000 runs. All real-time search methods continued to cover the terrain, and
the number of movements increased gracefully as the probability of being moved
increased. The order of the real-time search methods remained unaffected by this
failure condition.

In our fifth experiment, we measured the robustness of the real-time search
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Figure 21. Total Number of Moves for First Coverage if Markings Were Erased

methods when the ants failed. This is important because robots can malfunction.
During each time step, each functional ant failed with a given failure probability
and each failed ant can recovered with a given recovery probability. Figure 19
shows the cover time (left) and total number of moves (right) until eight ants
covered the terrain for the first time, averaged over 2,000 runs. We kept the
failure probability constant at 0.01 and varied the recovery probability from 0.01
to 0.10 (implying that it took a failed ant an average of 10 to 100 time steps to
recover). Figure 20 shows the results of a similar experiment where we kept the
recovery probability constant at 0.10 and varied the failure probability from 0.00
to 0.10. All real-time search methods continued to cover the terrain as long as the
failure probability was no larger than the recovery probability. The number of
movements remained roughly the same and the cover time increased gracefully as
the failure probability increased or the recovery probability decreased. The order
of the real-time search methods remained unaffected by this failure condition.

In our sixth and last experiment, we measured the robustness of the real-
time search methods when the markings were erased. This is important because
physical markings can get destroyed. During each time step, with a given prob-
ability exactly one marking was erased (otherwise no marking was erased). If a
marking was erased, exactly one cell was chosen with uniform probability and its
u-value was set to zero (because ants cannot distinguish between a cell without
a marking and a cell whose marking was destroyed). Figure 21 shows the total
number of moves until eight ants covered the terrain for the first time, averaged
over 2,000 runs. All real-time search methods continued to cover the terrain,
and the number of movements increased gracefully as the probability with which
markings were erased increased. The order of the real-time search methods re-
mained unaffected by this failure condition.
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5. Conclusion

We studied real-time search methods that allow ants to cover terrain, as
required for one-time or continuous vacuum cleaning, lawn mowing, mine sweep-
ing, or surveillance. In particular, we studied LRTA* and Node Counting, two
real-time search methods that are algorithmically similar. Node Counting, for
example, always moves the ant to a neighboring location that has been visited
the least number of times. Our experimental results on regular four-connected
grids indicated that they result in similar cover times. Therefore, it could be
speculated that ants that use Node Counting guarantee a similar cover time as
ants that use LRTA*. We showed that the cover time of ants that use LRTA*
is guaranteed to be polynomial in the number of locations of the terrain. Then,
we showed, surprisingly, that the cover time of ants that use Node Counting can
be exponential in (the square root of) the number of locations even in terrain
that corresponds to (planar) undirected trees. Thus, while ants that use Node
Counting experimentally performed well in some terrains that correspond to pla-
nar undirected graphs, this property alone is not sufficient to explain why they
performed well since their cover time on planar undirected graphs is not always
good. This means that one is not assured that ants that use Node Counting
exhibit a good cover time in terrains whose topology differs from the topology
of the terrains used for testing. On the other hand, ants that use LRTA* al-
ways guarantee a good cover time, no matter whether the terrains correspond to
directed graphs or whether they correspond to planar graphs. The cover time
guarantee of ants that use LRTA* does not seem to come at the cost of a worse
average-case cover time in practice since ants that use LRTA* seem to perform
as well as ants that use Node Counting on regular four-connected grids. Other
advantages of LRTA* over Node Counting have been studied in [15].

Our results demonstrate that theoretical results are important because it
is unlikely that one will find worst-case example graphs by randomly generating
graphs and experimentally determining how long it takes ants that use a given
real-time search method to cover them. Our results also demonstrate that ap-
plications of real-time search methods are important because they suggest which
kinds of terrains are important in practice and thus should be analyzed theoret-
ically. For example, our worst-case example graphs might not occur in practice
and thus ants that use real-time search methods might be able to guarantee a
better cover time in practice than is suggested by a worst case analysis over all
terrain topologies. Consequently, our results raise a variety of questions and thus
suggest future work that follows from the discrepancy of the theoretical worst-
case results and the experimental average-case results on grids. For example,
it would be interesting to perform a theoretical average-case analysis (say, for
random tie breaking). Even in the context of a theoretical worst-case analysis, it
would be interesting to identify realistic properties of graphs that guarantee ants
that use Node Counting a cover time that is polynomial in the number of vertices.
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Grids, for example, are undirected graphs whose vertices have a bounded degree,
and no worst-case results are known for graphs with this property.
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