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Abstract. Agents often have preference models that are more complicated than
minimizing the expected execution cost. In this paper, we study how they should
act in the presence of uncertainty and immediate soft deadlines. Delivery robots,
for example, are agents that are often confronted with immediate soft deadlines.
We introduce the additive and multiplicative planning-task transformations, that
are fast representation changes that transform planning tasks with convex expo-
nential utility functions to planning tasks that can be solved with variants of stan-
dard deterministic or probabilistic artificial intelligence planners. Advantages of
our representation changes include that they are context-insensitive, fast, scale
well, allow for optimal and near-optimal planning, and are grounded in utility
theory. Thus, while representation changes are often used to make planning more
efficient, we use them to extend the functionality of existing planners, resulting
in agents with more realistic preference models.

1 Introduction

To determine how agents should act, one has to know their preference model. This is
an often neglected research topic in agent theory and artificial intelligence in general.
Many artificial intelligence planners, for example, assume that agents want to mini-
mize the expected cost or maximize the expected reward. Unfortunately, agents often
have preference models that are more complicated than that. They have, for example, to
trade-off between different resource consumptions (such as money, energy, and time),
take risk attitudes in high-stake decision situations into account, or act in the presence of
deadlines. Our research program aims at building agents with these preference models.
In this paper, we study planning tasks for delivery robots in the presence of uncertainty
and immediate soft deadlines. Uncertainty can be caused by actuator and sensor noise,
limited sensor ranges, map uncertainty, uncertainty about the initial pose of the robot,
and uncertainty about the dynamic state of the environment (such as people opening
and closing doors or moving furniture around). Immediate soft deadlines are caused
by delivery requests that are not made in advance but the goods are needed right away
and their utility declines over time, for example because the goods become obsolete
or lose their value over time (coffee, for example, gets cold). While artificial intelli-
gence planners usually determine plans that achieve the goal with minimal expected
execution time, here they have to determine plans that achieve the goal with maximal
expected utility for the convex exponential utility functions that model the immediate
soft deadlines. Maximizing expected utility and minimizing expected execution time



result in the same plans if either the domain is deterministic or the utility function is
linear, but these properties rarely hold. The goal of this paper is to develop a planning
methodology for planning in the presence of uncertainty and immediate soft deadlines
that determines optimal or near-optimal plans for agents and scales up to large domains.
To this end, we combine constructive planning approaches from artificial intelligence
with more descriptive approaches from utility theory [1, 18], utilizing known properties
of exponential utility functions [17, 10]. In particular, we develop efficient represen-
tation changes that transform planning tasks with convex exponential utility functions
to planning tasks that can be solved with variants of standard deterministic or prob-
abilistic artificial intelligence planners such as [5, 3, 8, 7, 13, 2, 16]. Our planning-task
transformations provide alternatives to the few existing approaches to planning with
non-linear utility functions, namely approximate planners [9], planners with limited
look-ahead [11], intelligent branch-and-bound methods [19], and hill-climbing meth-
ods [15]. Advantages of our planning-task transformations include that they are simple
context-insensitive representation changes that are fast, scale well, allow for optimal
and near-optimal planning, and are grounded in utility theory. While we use delivery
robots to illustrate the problem and our solution, our insights apply to other agents as
well, including agents that have to make decisions in high-stake decision situations.

2 Immediate Soft Deadlines

Delivery robots are agents that are often confronted with deadlines [6]. Immediate dead-
lines coincide with the time at which the execution of a plan begins. Soft deadlines are
those whose utility does not drop to zero immediately after the deadline has passed but
rather declines slowly. Immediate soft deadlines can often be modeled either exactly or
approximately with convex exponential utility functions, where a utility function maps
rewards � (here: the negative of the execution times) to the resulting real-valued utilities
������� . Convex exponential utility functions are of the form ���������
	�� with parameter
	�
�� or linear transformations thereof. The smaller 	 , the softer the deadline. An ex-
ample is the utility function ��������������������������� , where the reward � is the negative of
the execution time, measured in seconds. In this particular case, the utility of the deliv-
ery halves every five minutes. A simple example of an immediate soft deadline occurs
when coffee is delivered. Coffee gets colder during the delivery and one therefore often
wants to maximize its expected temperature at the time of delivery. The utility function
expresses how the temperature of the coffee depends on the execution time. Since the
rate of cooling is proportional to the temperature difference between the cup and its
environment, the utility function is convex exponential in the negative of the execution
time. A more complex example of an immediate soft deadline occurs when printouts
are delivered on demand. Imagine, for example, that you are debugging a program on
your computer. To get a better overview of the program, you print it out and send your
office delivery robot to fetch the printout from the remote printer room. In this case, the
printout is needed right away, but you do not need it any longer once you determine
the problem with the program. The probability that you have not found the problem
decreases during the delivery and one therefore often wants to maximize the expected
probability that the problem has not been found at the time of delivery. The utility func-



tion expresses how this probabilitydepends on the execution time. If the probability that
the problem is found in any period of time ��� is � , then the probability that it has not
been found after � such time periods (assuming probabilistic independence) is � ��� � ��� .
Thus, the utility function is convex exponential in the negative of the execution time,
just like in the coffee-delivery example.

3 Utility Theory

In this paper, we make use of the following concepts from utility theory [1, 18]: If the
execution of some plan �
	��
� leads with probability ��� to reward � � , then its expected
reward is � � � �
	��
� � := � ��� �
� � ��� and its expected utility is � � � ��	��
� � := � ��� ��� ����� � � �
for the convex exponential utility function � ����� � 	�� with parameter 	�
 � that mod-
els the immediate soft deadline. (If the utility function that models the immediate soft
deadline is a linear transformation of this utility function, we can use this utility func-
tion instead.) The certainty equivalent of the plan is ��� � �
	��
� ��� � ����� � � ��� �
	��
� ��� . A
decision maker is indifferent between a plan and a deterministic plan (that is, obtaining
a certain reward for sure) if and only if the reward of the deterministic plan is the same
as the certainty equivalent of the other plan. This explains the name of this concept from
utility theory. It is easy to see that maximizing the certainty equivalent and maximizing
the expected utility are equivalent.

4 Approximation Error

Traditional artificial intelligence planners determine plans that achieve the goal with
minimal expected execution time or, equivalently, with maximal expected reward. Our
planners, on the other hand, have to determine plans that achieve the goal with maximal
expected utility. We first show that, in general, plans that achieve the goal with maxi-
mal expected reward cannot be used to closely approximate plans that achieve the goal
with maximal expected utility. To determine the approximation error of choosing a plan
with maximal expected reward over a plan with maximal expected utility, let �
	������! 
denote a plan that achieves the goal with maximal expected utility and ��	��
��� � a plan
that achieves the goal with maximal expected reward. We quantify the approximation
error � ��� of choosing ��	��
�"� � over �
	��
�#�$ as the amount of time by which we have to
delay the execution of �
	����%�! so that the resulting expected utility equals the expected
utility of �
	���� � � . This is the idle time that is available for other tasks. Thus, if the ex-
ecution of plan ��	��
� �! leads with probability ��� to reward � � , then the approximation
error � ��� satisfies the equation

&('�)+*
,.-0/�1!2�35476�89* 8 '�)�: 8�; &<:�:�3>= (1)

It follows that
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Consequently, the approximation error is � ��� � ��� � �
	��
�5�$ � � ��� � �
	��
�#� � ����� . To
construct an example with a large approximation error, assume that the utility function
is ������� � ��� ��� ����� � � (as before). Consider a plan ��	��
����� � that leads with probability 0.37
to an execution time of 80.00 seconds and with the complementary probability to an ex-
ecution time of 800.00 seconds. The expected utility of �
	��
� ��� � is � � � ��	��
� ��� � � ����! " � ,
its certainty equivalent is ��� � ��	��
� ���#� � � �%$�&(')!*$ � seconds, and its expected reward is� � � �
	��
� ��� � � � �%+($�$)!*,(� seconds. Also consider a plan �
	��
��-/. �10 � that leads with prob-
ability ��!*��� to an execution time of 533.60 seconds. The expected utility of �
	����2-/. �10 � is� � � ��	��
��-/. �10 � � �3�)! �(' , its certainty equivalent is � � � �
	��
��-/. �10 � � � �%+($�$)!*,(� seconds,
and its expected reward is � � � �
	��
��-/. �40 � � � ��+($�$�! ,(� seconds as well. The approx-
imation error of choosing ��	��
��-/. �40 � over ��	��
� ��� � calculates to roughly 2.5 minutes
( �#"�"5! �(' seconds) for this delivery task whose expected execution time is only about 9
minutes (533.60 seconds). This example might appear to be constructed but delivery
robots face indeed similar planning tasks. Assume, for example, that a robot operates
in the corridor environment from Figure 1 and has to reach office X, at which point
execution stops. There are only two candidate plans that are not clearly dominated by
some other plan. The robot can either follow path 1 or path 2. Path 1 is known not to
be blocked and thus results in a deterministic execution time, just like ��	��
� -/. �40 � in the
worst-case example above. Path 2 leads through a door that the robot is not able to open.
Furthermore, the robot cannot sense whether the door is open or closed until it is close
to the door. Thus, it has to move towards the door and, if the door is closed, return to
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its start location and then take the long path to office X. Consequently, path 2 can result
in different execution times depending on whether the door is open or closed, just like�
	��
����� � in the worst-case example above.

5 Optimal Planning

The previous section showed that it is important to directly determine plans that achieve
the goal with maximal expected utility. Unfortunately, utility theory is a purely descrip-
tive theory that specifies only what optimal plans are, but not how plans that achieve
the goal with maximal expected utility can be obtained other than by enumerating every
chronicle of every possible plan, where a chronicle is a specification of the state of the
world over time, representing one possible course of execution of the plan. Operations
research and control theory have picked up on the results from utility theory and use
dynamic programming methods to determine plans that achieve the goal with maximal
expected utility in the context of risk-sensitive Markov decision process models [14]
and risk-sensitive control [20]. These methods do not utilize available domain knowl-
edge. Artificial intelligence has investigated knowledge-based planners that promise to
scale up to larger domains, but traditionally do not determine plans that achieve the
goal with maximal expected utility. In the following, we therefore extend the range of
planners that determine plans that achieve the goal with maximal expected utility for
convex exponential utility functions from methods of operations research to variants
of standard deterministic or probabilistic artificial intelligence planners. We limit our
attention to plans that are mappings from states to actions and planning tasks where the
chronicles of all plans have a bounded reward. In other words, they always terminate
after a bounded execution time. We also assume that all rewards are negative, which is
the case if the rewards correspond to resource consumptions.

5.1 The Additive Planning-Task Transformation

The additive planning-task transformation applies to special cases of planning tasks,
namely those for which every action is deterministic in the sense that its execution al-
ways ends in the same state although it can result in different rewards. This requirement
is similar to assumptions sometimes made in the literature [19]. For example, the plans
that we studied in the context of the example from Figure 1 satisfy it because the ac-
tions correspond to plans (or “macro actions”) for getting from one office to another and
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Fig. 3. Additive Planning-Task Transformation

move the robot to its destination, although the robot can take different paths depending
on whether the door is open or closed and thus incur different execution times. The
additive planning-task transformation converts the planning tasks by modifying all of
their actions (everything else remains the same): If an action can be executed in state �
and its execution leads with probability ��� and reward � � to state �

�
(for all

�
), then it is

replaced with a deterministic action. This action can be executed in state � and its execu-
tion leads with probabilityone and reward ����� � � � � �
� � ��� � � � � (= the certainty equivalent
of the original action) to state �

�
. We illustrate the additive planning-task transforma-

tion using the planning task from Figure 2. This example is the simplest example we
could devise that allows us to demonstrate the advantages of the additive planning-task
transformation. It is similar to the example from Figure 1 but consists of three parts.
The robot has to first visit office X to pick up a form, then obtain a signature in office Y,
and finally deliver the signed form to office Z, at which point plan execution stops. We
assume throughout this paper that the probabilities with which doors are open when
the robot visits them are independent (even if the robot visits the same door multiple
times). Consider the action that corresponds to trying to take path 2 to get from office X
to office Y. If the robot reaches office Y in 120.00 seconds with probability 0.50 (= the
door is open) and in 576.00 seconds with probability 0.50 (= the door is closed), then
the action is replaced with a deterministic action that can be executed when the robot
is at office X and whose execution moves the robot with probability one and reward
�#� � � ��!*+�� � �!��� �(�)!*��� ��� �)!*+�� � �!�%+���,)!*�(� ��� ���
	���
�� ��! +(� 	#� ������� ����� �)!*+�� 	#��������� � � � to
office Y. The other actions are transformed similarly.

We now explain why the additive planning-task transformation is such that a plan
that achieves the goal with maximal reward for the transformed planning task corre-
sponds to a plan that achieves the goal with maximal expected utility for the original
planning task, see Figure 4. Exponential utility functions satisfy the Markov property,
which implies that it is unimportant how much reward has already been accumulated
for acting optimally in the future. This property of exponential utility functions is also
known as the delta property [10] or, equivalently, constant local risk aversion [17].
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Now consider the certainty equivalent of any sequential plan for the original planning
task. As an example, we use the plan from Figure 3 (top) that solves the planning task
from Figure 2 by trying to take path 2 for all three parts of the planning task. We use
the following notation: The first action �
	���� � corresponds to reaching office X. It has
two possible subchronicles ��	��
� ��� and �
	���� ��� . Subchronicle �
	��
� ��� denotes the case
where the door is open, whereas subchronicle ��	��
� � � corresponds to the door being
closed. Subchronicle ��	��
� ��� has reward � ��� and occurs with probability � ��� , subchron-
icle �
	��
� � � has reward � � � and occurs with probability � ��� (where � ��� � � � � � � ), and
similarly for the other actions and subchronicles. Then, the certainty equivalent of plan�
	��
� � � ��	��
� � � ��	��
� � (the concatenation of the three actions) is
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Instead of calculating its certainty equivalent directly, we can first transform the
plan. Its structure remains unchanged, but all of its actions are transformed (as de-
scribed above). The reward of the transformed plan is the same as the certainty
equivalent of the original plan. Figure 3 (bottom), for example, shows the trans-
formation of the plan from Figure 3 (top). The reward of the transformed plan is��� � �
	���� � � � ��� � �
	���� � � � � � � �
	��
� � � , which is also the certainty equivalent of the original
plan according to Equation 3. To determine a plan that achieves the goal with maximal
expected utility for the original planning task, one can transform all actions of the plan-
ning task. Since there is a one-to-one correspondence between the sequential plans of
the original planning task and the sequential plans of the transformed planning task,
a plan that achieves the goal with maximal reward for the transformed planning task
corresponds to a plan that achieves the goal with maximal certainty equivalent (and
thus also maximal expected utility) among all sequential plans for the original planning
task. To summarize, the original planning task can be solved by applying the additive
planning-task transformation and then solving the transformed planning task with any
planner that determines plans that achieve the goal with maximal reward.

The additive planning-task transformation, although simple, can solve standard
kinds of delivery tasks. We give two examples in the following. The first example is
the planning task from Figure 3. It can be solved as follows:
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Thus, to determine a plan that achieves the goal with maximal expected utility for
the original planning task, a planner can determine separate actions for the three parts of
the planning task, each of which achieves its subgoal with maximal certainty equivalent
and thus also with maximal expected utility. This can be done by transforming each
part of the planning task individually with the additive planning-task transformation
and solving the transformed planning task. The three resulting actions combined then
form a plan that achieves the goal with maximal expected utility for the original plan-
ning task. This is no longer true in the next example, that is similar to the previous one.
This time, however, the robot starts at the secretary's office with the task of collecting
ten signatures on a form and returning it to the secretary. This planning task is essen-
tially one of task sequencing. The additive planning-task transformation converts the
planning task to a traveling-salesman problem on a directed graph with deterministic
edge rewards. The reward of an edge is the certainty equivalent of a plan with maximal
expected utility that moves from the office at the beginning of the edge to the office
at its end. The traveling-salesman problem can then be solved with traveling-salesman
problem methods or standard deterministic artificial intelligence planners. While these
examples show that the additive planning-task transformation is useful, it cannot be
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Fig. 5. Multiplicative Planning-Task Transformation

used to solve all planning tasks because it is often not the case that each action is
atomic and always ends in the same state. As an example, consider again a robot that
has to collect ten signatures. The actions move the robot to a specified office. They are
not atomic in practice because their execution can be interrupted. For example, while
the robot moves to some office, it might have to take a detour because a door is closed.
If this detour leads past another office, it can be advantageous for the robot to go first
to that office in order to obtain another signature on the way to its original destination.
This suggests considering “move to the door” as an action because this would allow the
robot to re-plan and change its destination when it recognizes that the door is closed.
However, this action can end in two different states: the robot being at an open door or
the robot being at a closed door. Thus, it does not satisfy the assumption of the additive
planning-task transformation and we have to consider ways of determining conditional
(rather than sequential) plans that achieve the goal with maximal expected utility.

5.2 The Multiplicative Planning-Task Transformation

The multiplicative planning-task transformation is more general than the additive
planning-task transformation. It extends our previous work on planning with expo-
nential utility functions [12] from reactive planning in high-stake decision situations
to deliberative planning in the presence of immediate soft deadlines. The multiplica-
tive planning-task transformation applies to planning tasks that can be solved optimally
with conditional plans and converts them by modifying all of their actions (everything
else remains the same): If an action can be executed in state � and its execution leads
with probability � � and reward � � to state � � (for all

�
), then it is replaced with an ac-

tion that can be executed in state � and whose execution leads with probability � � 	 � � to
state � � (for all

�
) and with probability � � � � � ��� 	�� � � to a new nongoal state (“death”)

in which execution stops. The rewards do not matter. We illustrate the multiplicative



planning-task transformation using the planning task from Figure 2 (as before). Con-
sider the action that corresponds to trying to take path 2 to get from office X to office Y.
If the robot reaches office Y in 120.00 seconds with probability 0.50 (= the door is open)
and in 576.00 seconds with probability 0.50 (= the door is closed), then the action is
replaced with an action that can be executed when the robot is at office X and whose
execution moves the robot with probabilities �)!*+�	���� ��� � ��� and �)!*+�	"��������� � � to office Y
and with probability � � ��! + 	%��� ��� � ��� � ��! + 	#��������� ��� to the new nongoal state “death.”
The other actions are transformed similarly.

We now explain why the multiplicative planning-task transformation is such that a
plan that achieves the goal with maximal probability for the transformed planning task
and always stops in the goal states or “death” corresponds to a plan that achieves the
goal with maximal expected utility for the original planning task, see Figure 4. We first
consider sequential plans as a special case and then conditional plans in general. As an
example, we use again the sequential plan �
	���� � � �
	��
� � � �
	���� � from Figure 5 (top). It
solves the planning task from Figure 2 by trying to take path 2 for all three parts of the
planning task. Its expected utility for the original planning task is
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where the parameters ��� � are new values with ��� � := � � � 	 ����	 . These values sat-
isfy ��
 ��� � 
 � � � according to our assumption that the utility function is convex
exponential ( 	 
 � ) and all rewards are negative ( � � ��
 � ). Thus, the parameters � � �
can be interpreted as probabilities of not dying during the execution of the transformed
action, one probability for each of its subchronicles. The complementary probability
�#� � � ��� � � � is the probability of dying during the execution of the transformed ac-
tion. Instead of calculating the expected utility of the original plan directly, we can first
transform it. Its structure remains unchanged, but all of its actions are transformed (as
described above). The expected utility of the original plan is the same as the probability
of not dying while executing the transformed plan, which is the product of the prob-
abilities of not dying while executing its actions (due to probabilistic independence).
Figure 5 (bottom), for example, shows the transformation of the plan from Figure 5
(top). The probability of not dying during the execution of the transformed plan is� ���� � � � � � 	 � � � ��� � �� � � � � � � 	 � ��� ��� � �� � � � � � � 	 � ��� � , which is also the expected util-
ity of the original plan according to Equation 4. Now consider an arbitrary conditional



plan for the original planning task. We can use the multiplicative planning-task trans-
formation on the plan and it remains true that the expected utility of the original plan is
the same as the probability of not dying while executing the transformed plan. This is
so because the expected utility of the original plan is the sum of the utility contributions
over all of its chronicles, where the utility contribution of a chronicle is the product of
its probability and utility. A chronicle is a sequence of subchronicles. If subchronicle�

of the chronicle has probability � � and reward � � , then the utility contribution of the
chronicle is

)�� 8 * 8 30'�) � 8 : 8 354 )�� 8 * 8 3�
 � � 2�� 4�� 8 	 * 8 
 2�� 
 4�� 8 * 8 = (5)

A chronicle of the original plan corresponds to several chronicles of the transformed
plan, only one of which does not end in “death.” Equation 5 is the probability of this
chronicle. The sum of these probabilities over all chronicles of the original plan is the
probability of not dying during the execution of the transformed plan. To determine
plans that achieve the goal with maximal expected utility for the original planning task
one can transform all actions of the planning task. Then, a plan that achieves the goal
with maximal probability for the transformed planning task and always stops in only
the goal states or “death” also achieves the goal with maximal expected utility for the
original planning task. This is so because there is a one-to-one correspondence between
the plans of the transformed planning task that always stop in only the goal states or
“death” and the plans that achieve the goal for the original planning task. The expected
utility of a plan for the original planning task is the same as the probability of not dying
during the execution of the corresponding plan for the transformed planning task, which
is the same as the probability with which the transformed plan achieves the goal if it
stops in only the goal states or “death.” To summarize, the original planning task can
be solved by applying the multiplicative planning-task transformation and then solving
the transformed planning task with any planner that determines plans that achieve the
goal with maximal probability and always stop in the goal states or “death” or, syn-
onymously, correspond to plans for the original planning task that achieve the goal.
It is not a problem for planners to only consider plans with this property. Thus, per-
haps surprisingly, planners that do not reason about rewards at all can be used, in con-
junction with the multiplicative planning-task transformation, to determine plans that
achieve the goal with maximal expected utility. Weaver [3], for example, is an artificial
intelligence planner based on Bayesian networks, and standard software for Bayesian
networks often performs only inferences on probabilities, not rewards. Other artificial
intelligence planners that reason only with probabilities include [5, 8, 7, 13, 2, 16]. How-
ever, the transformed planning task cannot only be solved with planners that determine
plans that achieve the goal with maximal probability. After another transformation, it
can also be solved with planners that determine plans that achieve the goal with maxi-
mal expected reward (as long as they are able to handle rewards that are zero), such as
many standard artificial intelligence planners including those based an Markov models
[4], by declaring “death” another goal state and making the rewards for stopping in goal
states other than “death” one and all other rewards zero.



6 Near-Optimal Planning

We have assumed so far that planners are available that determine optimal plans for the
transformed planning tasks. However, both the additive and multiplicativeplanning-task
transformation have the following desirable property: the better the plan that planners
find for the transformed planning task, the better the corresponding plan is for the origi-
nal planning task. Thus, both planning-task transformations can be used in conjunction
with planners that can determine only near-optimal (“satisficing”) plans for the trans-
formed planning tasks. In this section, we analyze the worst-case approximation error
of planners that are used in conjunction with the additive and multiplicative planning-
task transformation. Remember from Section 4 that the approximation error of a plan
that attempts to maximize expected utility is the difference between the certainty equiv-
alent of a plan with maximal expected utility and the certainty equivalent of the plan
in question. The worst-case approximation error of a planner is the largest possible dif-
ference between the certainty equivalent of a plan with maximal expected utility and
the certainty equivalent of the plan found by the planner, over all planning tasks. While
the multiplicative planning-task transformation is more general than the additive one,
it turns out that the multiplicative planning-task transformation can magnify the worst-
case approximation error of a planner whereas the additive one does not. This is a
disadvantage of the multiplicative planning-task transformation because, even if a plan-
ner has a small worst-case approximation error when used in isolation, its worst-case
approximation error can be large when it is used in conjunction with the multiplicative
planning-task transformation.

6.1 The Multiplicative Planning-Task Transformation

For the multiplicative planning-task transformation, the probability of not dying during
the execution of any plan for the transformed planning task is the same as the expected
utility of the corresponding plan for the original planning task. Thus, the larger the
probabilityof not dying during the execution of a plan for the transformed planning task,
the larger the expected utility of the corresponding plan for the original planning task,
and a near-optimal plan for the transformed planning task corresponds to a near-optimal
plan for the original planning task. However, a near-optimal planner with a given worst-
case approximation error for the transformed planning task can have a larger worst-
case approximation error for the original planning task. Assume, for example, that the
optimal plan for the transformed planning task achieves the goal with probability �
and stops in only the goal states or “death.” Consequently, the expected utility of the
optimal plan that achieves the goal for the original planning task is � and its certainty
equivalent is �
	�� 
 � . Case 1: Consider a near-optimal planner with absolute (= additive)
approximation error for the transformed planning task. This means that the planner
determines a plan whose quality is at least � ��� for a constant � 
 � if the quality
of the best plan is � . If this planner is used to solve the transformed planning task, it
can potentially determine a plan that stops in only the goal states or “death” and whose
probability of goal achievement is only � ��� (but not worse). Thus, the corresponding
plan for the original planning task achieves the goal but its expected utility is only � ���
and its certainty equivalent is only � 	���
 � � ��� � . To determine the approximation error



of this plan for the original planning task, we need to consider how close its certainty
equivalent is to the certainty equivalent of the plan that achieves the goal with maximal
expected utility. Table 1 summarizes this data.

Table 1. Approximation Error for Case 1

probability of goal achievement certainty equivalent
for the transformed planning task for the original planning task

optimal plan * ���
	 � *
found plan (worst case) * ;

� ���
	 � 	 * ; �



Thus, the resulting approximation error for the original planning task, �
	���
 � �
�
	�� 
 � � � � � � �
	�� 
��

� ��� , increases as � and 	 decrease. It can get arbitrarily large.
Case 2: Now consider a near-optimal planner with relative (= multiplicative) approxi-
mation error for the transformed planning task. This means that the planner determines
a plan whose quality is at least ��� ����� � for a constant ��
 � if the quality of the best
plan is � . Table 2 summarizes the resulting data.

Table 2. Approximation Error for Case 2

probability of goal achievement certainty equivalent
for the transformed planning task for the original planning task

optimal plan * ���
	 � *
found plan (worst case) )�� ; � 3 * ��� 	 � 	 �

;
�

 � ���
	�� *

Thus, the resulting approximation error for the original planning task, �
	�� 
 � �
�
	�� 
 � � � � � � � 	�� 
 � � �
	�� 
 �

� ��� , is additive. Figure 6 shows its graph.

6.2 The Additive Planning-Task Transformation

For the additive planning-task transformation, the reward of any sequential plan for the
transformed planning task is the same as the certainty equivalent of the correspond-
ing plan for the original planning task. Thus, the larger the reward of a plan for the
transformed planning task, the larger the certainty equivalent of the corresponding plan
for the original planning task, and a near-optimal plan for the transformed planning
task corresponds to a near-optimal for the original planning task. Furthermore, a near-
optimal planner that has a given absolute or relative worst-case approximation error for
the transformed planning task has the same absolute or relative worst-case approxima-
tion error, respectively, for the original planning task.
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Fig. 6. Approximation Error for Case 2

7 Conclusions

Many existing artificial intelligence planners attempt to determine plans that achieve
the goal with maximal probability or minimal expected execution time, but agents of-
ten need to determine plans that achieve the goal with maximal expected utility for
nonlinear utility functions. In this paper, we developed a planning methodology for
determining plans that achieve the goal with maximal expected utility for convex expo-
nential utility functions. These utility functions are necessary to model the immediate
soft deadlines often encountered in the context of delivery tasks. Our planning method-
ology combines constructive approaches from artificial intelligence with more descrip-
tive approaches from utility theory. It is based on simple representation changes, that
we call the additive and multiplicative planning-task transformations. Advantages of the
planning-task transformations are that they are fast, scale well, allow for optimal and
near-optimal planning, and are grounded in utility theory. Future work includes study-
ing planning for agents with even more general preference models, including trading-off
between different resource consumptions (such as money, energy, and time).
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