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Abstract In this chapter, we discuss Artificial Intelligence (AI) and its impact on
automation. We explain what AI is, namely the study of intelligent agents, explain
a variety of AI techniques related to acquiring knowledge from observations of the
world (machine learning), storing it in a structured way (knowledge representation),
combining it (reasoning), and using it to determine how to behave to maximize
task performance (planning), in both deterministic and probabilistic settings and for
both single-agent and multi-agent systems. We discuss how to apply some of these
techniques, using automated warehousing as case study, and how to combine them.
We also discuss the achievements, current trends, and future of AI as well as its
ethical aspects.

Key words: Artificial Intelligence, Automated Warehousing, Ethics, Intelligent
Agents, Knowledge Representation, Machine Learning, Multi-Agent Systems, Opti-
mization, Planning, Reasoning

Sven Koenig
USC, e-mail: skoenig@usc.edu

Shao-Hung Chan
USC, e-mail: shaohung@usc.edu

Jiaoyang Li
USC, e-mail: jiaoyanl@usc.edu

Yi Zheng
USC, e-mail: yzheng63@usc.edu

1





Contents

Artificial Intelligence and Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Sven Koenig, Shao-Hung Chan, Jiaoyang Li, Yi Zheng

List of Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1 Artificial Intelligence (AI): The Study of Intelligent Agents . . . . . . 5
2 AI Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Knowledge Representation and Reasoning . . . . . . . . . . . . . 12
2.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Combining AI Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Case Study: Automated Warehousing . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 AI History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 AI Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7 AI Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Author Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3



4 Contents

List of Symbols and Abbreviations

AI Artificial Intelligence: the study of intelligent agents
CNN Convolutional Neural Network: a specialized NN
CSP Constraint Satisfaction Problem: the problem of assigning values

to variables so that given constraints are satisfied
FOL First-Order Logic: a language for knowledge representation
GA Genetic Algorithm: a local search technique
GAN Generative Adversarial Network: a machine learning technique
iid independent and identically distributed: a sampling assumption
ILP Integer Linear Program: a specification language for function op-

timization
LASSO Least Absolute Shrinkage and Selection Operator: a regression

technique
LP Linear Program: a specification language for function optimization
LSTM Long Short-Term Memory: a way of storing state in RNNs
MDP Markov Decision Process: a specification language for probabilis-

tic planning
MILP Mixed Integer Linear Program: a specification language for func-

tion optimization
NN Neural Network: a machine learning technique
PCA Principal Component Analysis: a machine learning technique
PDDL Planning Domain Definition Language: a specification language

for deterministic planning
POMDP Partially ObservableMDP: a specification language for probabilis-

tic planning
PPDDL Probabilistic PDDL: a specification language for probabilistic

planning
RL Reinforcement Learning: a stochastic dynamic programming tech-

nique for solving MDPs
RNN Recurrent Neural Network: a specialized NN
SAT Problem Satisfiability Problem: the problem of finding an interpretation

that makes a given propositional sentence true
STRIPS Stanford Research Institute Problem Solver: an early planner for

deterministic planning but now used for the specification language
of that planner

SVM Support Vector Machine: a machine learning technique
TSP Traveling Salesperson Problem: the problem of finding a shortest

route that visits each city of a given set of cities exactly once and
returns to the start city
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1 Artificial Intelligence (AI): The Study of Intelligent Agents

According to the Merriam-Webster dictionary, intelligence is 1) "the ability to learn
or understand to deal with new or trying situations" or 2) "the ability to apply
knowledge to manipulate one’s environment or to think abstractly as measured by
objective criteria (such as tests)" [1]. The field of Artificial Intelligence (AI) studies
how to endow machines with these abilities.

Compatiblewith this definition, creatingAI systems is often equatedwith building
(intelligent) agents, where an agent is an input-output system that interacts with the
environment, similar to a feedback controller. It receives observations about the
state of the environment from its sensors and can execute actions to change it. How
to obtain high-level observations from low-level sensor signals (for example, with
vision, gesture recognition, speech recognition, and natural language processing)
and how to translate high-level actions into low-level effector signals is considered
part of AI but not of core AI and thus not discussed here. The program of an
agent is essentially a function that specifies a mapping from possible sequences
of past observations and actions to the next action to execute. Cognitive agents
use functions that not only resemble those of humans but also calculate them like
humans. In other words, cognitive agents "think" like humans. In general, however,
agents can use any function, and the function is evaluated according to a given
objective function that evaluates the resulting agent behavior. For believable agents,
the objective function measures how close the agent behavior is to that of humans. In
other words, believable agents behave like humans, which might include modeling
human emotions. Examples are intelligent voice assistants and lifelike non-player
characters in video games. For rational agents, the objective function measures
how well the agent does with respect to given tasks. In other words, rational agents
maximize task performance. Examples are chess programs and autonomous vacuum
cleaners.

AI was originally motivated mostly by creating cognitive agents since it seems
reasonable to build agents by imitating how existing examples of intelligent systems
in nature, namely humans, think. AI quickly turned to non-cognitive agents as well
since the computing hardware of agents is different from the brains of humans. After
all, it is difficult to engineer planes that fly by flapping their wings like existing
examples of flying systems in nature, namely birds, due to their different hardware.
For a long time, AI then focused on rational agents, mostly autonomous rational
agents without humans in the loop but also autonomous rational agents that are
able to obtain input from humans, which often increases the task performance, and
non-autonomous rational agents (such as decision-support systems). More recently,
AI has also started to focus on believable agents as technological advances in both
AI and hardware put such systems within reach.

Both rational and believable agents are important for automation. Rational agents
can be used to automate a variety of tasks. Believable agents offer human-like
interactions with gestures and speech and understand and imitate emotions. They
can, for example, be used as teachers [44, 66] and companions [138, 24] as well
as for elderly care [113, 135, 26] and entertainment purposes [137]. In this article,
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we focus on rational agents. A thermostat is a rational agent that tries to keep the
temperature close to the desired one by turning the heating and air conditioning
on and off, but AI focuses on more complex rational agents, often those that use
knowledge to perform tasks that are difficult for humans.

2 AI Techniques

Knowledge is important since rational agents make use of it. The initial emphasis
of AI on cognitive agents explains why the study of rational agents is often struc-
tured according to the cognitive functions of humans. One typically distinguishes
acquiring knowledge from observations of the world (machine learning), storing it
in a structured way (knowledge representation), combining it (reasoning), and us-
ing it to determine how to behave to maximize task performance (planning). The
interaction between agents is also important. We will discuss all these AI techniques
separately in the context of stand-alone examples but also how to combine them. For
example, one can use knowledge representation to represent chemistry knowledge
and reasoning to utilize this knowledge to determine what happens when one mixes
two substances together. If one does not know which substances oxidize, then one
can perform experiments with some substances and use machine learning to predict
for untested and even not-yet-synthesized substances whether they will oxidize. Fi-
nally, one can use planning to come up with a sequence of steps to synthesize new
substances with given properties cheaply and, in case multiple persons are needed
for this task, specify who does what, where, and when. Rational agents can be built
based on a variety of techniques, often related to optimization, since they maximize
task performance. Since trivial techniques are typically much too slow, AI develops
techniques that exploit problem structure to result in the same or similar agent behav-
ior but satisfy existing time constraints. Some of these techniques originated in AI
but others originated much earlier in other disciplines that have also studied how to
maximize performance, including operations research, economics, and engineering.
AI has adopted many such techniques. The techniques used in AI are therefore very
heterogeneous.

2.1 Optimization

Optimization is the task of assigning values to variables, possibly under some con-
straints, so as to minimize the value of a function of these variables. One often cannot
systematically enumerate all possible assignments of values to all variables (solu-
tions) and return one with the smallest function value because their number is too
large or even infinite. In this case, one often starts with a random solution and then
moves from solution to solution to discover one with a small function value (local
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search). Optimization techniques allow planning to maximize task performance and
machine learning to find good models of the world.

2.1.1 Continuous Function Minimization

The continuous function minimization problem is to find a global minimum of a
function of several variables with continuous domains. (A global maximum can be
determined by finding a global minimum of the negative function.) Since this can be
difficult to do analytically, one often uses local search in form of gradient descent to
find a small local minimum instead. Gradient descent first randomly assigns a value
to each variable and then repeatedly tries to decrease the resulting function value
by adjusting the values of the variables so that it takes a small step in the direction
of the steepest downward slope (against the gradient) of the function at the point
given by the current values of all variables. In other words, it first chooses a random
solution and then repeatedly moves from the current solution to the best neighboring
solution. Once this is no longer possible, it has reached a local minimum. it repeats
the procedure for many iterations to find local minima with even smaller function
values (random restart), a process which can easily be parallelized, until a time
bound is reached or the smallest function value found is sufficiently small. Gradient
descent can use a momentum term to increase the step size when the function value
decreases substantially (to speed up the process) and decrease it otherwise.

Function minimization under constraints has been studied in AI in the context of
constraint programming but has also been studied in operations research. A continu-
ous function minimization problem under constraints can be formulated as follows:

minimize
G1, . . . , G= ∈ R

50 (G1, . . . , G=)

subject to 58 (G1, . . . , G=) ≤ 0, for all 8 ∈ {1, . . . , <}.
(1)

Here, G1, . . . , G= ∈ R are real-valued variables, 50 is the function to be minimized
(objective function), and the remaining functions 58 are involved in constraints (con-
strained functions). (An equality constraint 58 (G1, . . . , G=) = 0 can be expressed as
58 (G1, . . . , G=) ≤ 0 and − 58 (G1, . . . , G=) ≤ 0. Similarly, a range constraint G 9 ∈ [0, 1]
can be expressed as −G 9 + 0 ≤ 0 and G 9 − 1 ≤ 0.) Lagrange multipliers can be used
for function minimization if all constraints are equality constraints. Other special
cases include Linear Programming (LP), where the objective function and con-
strained functions are linear in the variables, and quadratic programming, where
the objective function is quadratic and the constrained functions are linear [14].
“Programming” is a synonym for optimization in this context.
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2.1.2 Discrete Function Minimization

The discrete function minimization problem is to find the global minimum of a func-
tion of several variables with discrete domains. The local search analog to gradient
descent for discrete functions is hill climbing. One has to decide what the neighbors
of a solution should be. Their number should be small compared to the number of so-
lutions. Like gradient descent, hill climbing first chooses a random solution and then
repeatedly moves from the current solution to the best neighboring solution. Unlike
gradient descent, hill climbing can determine the best neighboring solution simply
by enumerating all neighboring solutions and calculating their function values.

For example, the Constraint Satisfaction Problem (CSP) consists of variables,
their domains, and constraints among the variables that rule out certain assignments
of values from their domains to them. The problem is to find a solution that satisfies
all constraints. (The constraint optimization problem is a generalization where every
constraint is associated with a non-negative cost and the problem is to find a solution
that minimizes the sum of the costs of the unsatisfied constraints.) For example,
the NP-hard map coloring problem can be modeled as a CSP where the countries
are the variables, the set of available colors is the domain of each variable, and
the constraints specify that two countries that share a border cannot be colored
identically. A solution to a map coloring problem is an assignment of a color to each
country. To solve a map coloring problem systematically, one can perform a depth-
first search by repeatedly first choosing a country and then a color for it. Different
strategies exist for how to choose countries, how to choose their colors, and how
to determine when the procedure should undo the last assignment of a color to a
country. It should definitely undo the last assignment when two countries that share a
border have been colored identically. However, the number of possible map colorings
is exponential in the number of countries, which makes such a (systematic) search
too slow for a large map. To solve a map coloring problemwith hill climbing, one can
define the neighbors of a solution to be the solutions that differ in the assignment of
a color to exactly one country. The function to be minimized is the number of errors
of a solution (error or loss function), that is, the number of pairs of countries that
share a border but are colored identically. Solving the map coloring problem then
corresponds to finding a global minimum of the error function with zero errors, that
is, a solution that obeys all coloring constraints. Hill climbing with random restarts
often finds a map coloring much faster than search (although this is not guaranteed)
but cannot detect that no map coloring exists. Many other NP-hard problems can
be solved with hill climbing as well, including the SATisfiability (SAT) problem,
which is the problem of finding an interpretation that makes a propositional sentence
true, or the Traveling Salesperson Problem (TSP), which is the problem of finding a
shortest route that visits each city of a given set of cities exactly once and returns to
the start city.

To avoid getting stuck in local minima, local search cannot only make moves
that decrease the function value (exploiting moves) but also has to make moves that
increase the function value (exploring moves). Exploring moves help local search
to reach new solutions. We now discuss several versions of local search that decide
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Fig. 1: Illustration of crossover and mutation.

when to make an exploring move, when to make an exploiting move, and which
moves to choose (exploration-exploitation problem).

Tabu Search

To encourage exploration by avoiding repeated visits of the same solutions, local
search can maintain a tabu list of previous solutions that it will not move to for a
number of steps. Tabu search first chooses a random solution and then repeatedly
chooses the best neighboring solution that is not in the tabu list and updates the tabu
list.

Simulated Annealing

Simulated annealing models the process of heating a metal and then slowly
cooling it down to decrease its defects, which minimizes the energy. It first chooses
a random solution and then repeatedly chooses a random neighboring solution. If
moving to this neighboring solution decreases the function value, it makes the move
(exploitation). Otherwise, it makes the move with a probability that is the larger,
the less the function value increases and the less time has passed since function
optimization started (exploration). Thus, simulated annealing makes fewer and fewer
exploring moves over time.

Genetic Algorithms

To allow for the reuse of pieces of solutions in a new context, local search can
maintain a set (population) of solutions (individuals or, synonymously, phenotypes)
that are represented with strings of a fixed length (chromosomes or, synonymously,
genotypes), rather than only one solution, and then create new solutions from pieces
of existing ones. A Genetic Algorithm (GA), similar to evolution in biology, first
determines the function values of all = solutions in the population and then creates
a new population by synthesizing two new solutions =/2 times, a process which can
easily be parallelized, see Figure 1: 1) It chooses two solutions from the population
as parent solutions, each randomly with a probability that is inversely proportional
to its function value, and generates two offspring solutions for them. Thus, solutions
with small function values (fitter solutions) are more likely to reproduce. It splits
both parent solutions into two parts by cutting their strings at the same random
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location. It then reassembles the parts into two new offspring solutions, one of which
is the concatenation of the left part of the first parent solution and the right part of
the second parent solution and the other one of which is the concatenation of the
left part of the second parent solution and the right part of the first parent solution
(crossover). This recombination step ensures that the offspring solutions are genetic
mixtures of their parent solutions and can thus be fitter than them (exploitation) or
less fit than them (exploration). 2) It changes random characters in the strings of
the two offspring solutions. This mutation step introduces novelty into the offspring
solutions and can thus make them fitter or less fit. Mutation is necessary to create
diversity that avoids convergence to a local minimum. For example, if all solutions
of a population are identical, then recombination creates only offspring solutions
that are identical to their parent solutions. Once all (new) offspring solutions have
been generated, they form the next population. This procedure is repeated for many
steps (generations) until a time bound is reached, the smallest function value of a
solution in the new population is sufficiently small, or this function value seems to
have converged. Then, the solution in the most recent population with the smallest
function value is returned. A good representation of a solution as string is important
to ensure that recombination and mutation likely create strings that are solutions and
have a chance to increase the fitness. In general, strings are discarded and replaced
with new strings if they are not solutions. GAs can move the best solutions from one
population to the next one to avoid losing them. To solve a map coloring problem
for < countries with a given number of colors, the function to be minimized is the
number of pairs of countries that share a border but are colored identically. GAs can
represent a solution with a string of < characters, where the 8th character represents
the assignment of a color to country 8. The strings of the initial population are
created by assigning colors to countries randomly. Recombination chooses a subset
of countries and creates two offspring solutions from two parent solutions, one of
which consists of the colors assigned by the first parent solution to the countries
in the subset and the colors assigned by the second parent solution to the other
countries and the other one of which consists of the colors assigned by the second
parent solution to the countries in the subset and the colors assigned by the first
parent solution to the other countries. Mutation iterates through the countries and
changes the color of each country to a random one with a small probability. Thus,
recombination and mutation create strings that are solutions. Actual applications of
GAs to map coloring use more complex recombination strategies.

Genetic programming, a form of GAs, uses tree-like representations instead of
strings to evolve computer programs that solve given tasks.

Other Discrete Function Minimization Techniques

A discrete function minimization problem under constraints can be formulated
like its continuous counterpart (1), except that all or some of the variables have
discrete domains. Special cases are Integer Linear Programming (ILP) and Mixed
Integer Linear Programming (MILP), where the objective function and constrained
functions are linear in the variables, just like for LP, but all (for ILPs) or some
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(for MILPs) variables have integer rather than real values. An LP relaxation, where
all integer-valued variables are replaced with real-valued variables, the resulting
LP is solved, and the values of integer-valued variables in the resulting solution
are rounded, is often used to find reasonable solutions for ILPs or MILPs quickly.
However, since many discrete function minimization problems under constraints can
be expressed as ILPs or MILPs, a lot of effort has been devoted to developing more
effective but still reasonably efficient solvers for them.

To solve a map coloring problem for < countries with the smallest number of
colors under the assumption that there are at most = colors available, one can use the
following ILP:

minimize
H1, . . . , H< ∈ {0, 1}

∑
:

H:

subject to
∑
:

G8: = 1, for all 8 ∈ {1, . . . , <},

G8: + G 9: ≤ 1, for all 8, 9 ∈ {1, . . . , <} and : ∈ {1, . . . , =},
where countries 8 and 9 share a border,

G8: ≤ H: , for all 8 ∈ {1, . . . , <} and : ∈ {1, . . . , =}.

Here, G8: , H: ∈ {0, 1} are variables for all 8 ∈ {1, . . . , <} and : ∈ {1, . . . , =}. G8: = 1
if and only if country 8 has color : , and H: = 1 if and only if color : is used. The
objective function minimizes the number of colors used. If one only wants to find
out whether a map coloring with at most = colors exists, one can use the constant
objective function 1. The first constraint states that every country has exactly one
color, the second constraint states that countries that share a border do not have the
same color, and the third constraint states that a color is used if at least one country
has this color.

2.1.3 Example Applications

LPs have been used for controlling oil refinement processes [60]. CSPs have been
used for designing complex systems like hybrid passenger ferries [131], mechanical
systems like clusters of gear wheels [156], and software services like plan recognition
[108]. TSPs have been used for overhauling gas turbine engines, wiring computers,
and plotting masks for printed circuit boards [89]. Simulated annealing has been
used for global wiring [139] and optimizing designs of integrated circuits [40].
GAs have been used for tuning operating parameters of manufacturing processes
[57, 125, 160]. MILPs have been used for scheduling chemical processing systems
[36]. Other constraint programming techniques have been used for optimizing the
layouts of chemical plants [8].
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2.2 Knowledge Representation and Reasoning

Knowledge representation is the task of storing knowledge in a structured way. An
ontology describes the world in terms of its objects and their properties and re-
lationships. Agents need to represent such knowledge about their environment and
themselves in a knowledge basewith a knowledge-representation language that is un-
ambiguous and expressive. They also need to reason with the knowledge. Reasoning
is the task of combining existing knowledge, that is, inferring new facts from given
ones. For example, knowledge representation is about representing the rules of a coin
flip game “heads, I win; tails, you lose” as well as background knowledge about the
world (for example, that “heads” and “tails” always have opposite truth values and “I
win” and “you lose” always have identical truth values), while reasoning is about in-
ferring that “I win” is guaranteed to hold when playing the game. Facts, like “heads;
I win”, are expressed with sentences. The syntax of a knowledge-representation lan-
guage defines which sentences are well-formed, while the semantics of well-formed
sentences define their meanings. For example, arithmetic formulas are sentences.
“x+2=5” is a well-formed arithmetic formula, and so it makes sense to ask for its
meaning, that is, when it is true.

2.2.1 Propositional Logic

We first discuss propositional logic as a knowledge-representation language.

Knowledge Representation with Propositional Logic

Sentences in propositional logic represent statements that are either true or false
(propositions). The syntax specifies how sentences are formed with the truth values
t(rue) and f(alse), propositional symbols (here: in capital letters), and operators such
as ¬, ∧, ∨, ⇒, and ⇔, that roughly represent “not”, “and”, ”or” (in the inclusive
sense of “and/or”), “if . . . then . . .”, and “if and only if” in English. For example,
“heads, I win” can be represented with “H ⇒ I”, where the propositional symbol
H represents “coin flip results in heads” and the propositional symbol I represents
“I win”. An interpretation assigns each propositional symbol a truth value. The
semantics specifies for which interpretations a well-formed sentence is true.

Reasoning with Propositional Logic

We want to be able to infer that, whenever the rules of our game are followed,
I will win even though we might not know the complete state of the world, such
as the outcome of the coin flip. More formally: Whenever an interpretation makes
the knowledge base “heads, I win; tails, you lose” (plus the background knowledge)
true, then it also makes the sentence “I win” true. In this case, we say that the
knowledge base entails the sentence. Entailment can be checked by enumerating all
interpretations and checking that the definition of entailment holds for all of them.



Contents 13

In our example, it does. However, this procedure is very slow since it needs to check
2100 interpretations for knowledge bases that contain 100 propositional symbols.
Instead, AI systems use inference procedures, like proof by contradiction using the
inference rule resolution, that check entailment by manipulating the representations
of the knowledge base and the sentence, similar to how we add two numbers by
manipulating their representations as sequences of digits.

2.2.2 First-Order Logic

First-Order Logic (FOL) is often more adequate to represent knowledge than propo-
sitional logic since propositional logic is often not sufficiently expressive. Sentences
in FOL still represent propositions, but FOL is a superset of propositional logic that
uses names (here: in all caps) to refer to objects, predicates (here: in mixed case) to
specify properties of objects or relationships among them, functions to specify map-
pings from objects to an object, and quantification to express both at least one object
makes a given sentence true or that all objects make a given sentence true. For exam-
ple, the knowledge base “Poodle(FIDO) ∧∀ x (Poodle(x)⇒Dog(x))” expresses that
Fido is a poodle and all poodles are dogs. This knowledge base entails the sentence
“Dog(FIDO)”. An interpretation now corresponds to functions that map names to
objects, predicates to properties or relationships, and functions to mappings from
objects to an object. A finite sentence in FOL, different from one in propositional
logic, can have an infinite number of interpretations (because one can specify in-
finitely many objects, such as the non-negative integers, for example, by representing
zero and a function that calculates the successor of any given non-negative integer),
so we can no longer check entailment by enumerating all interpretations. In general,
there is a fundamental limit for FOL since entailment is only semi-decidable for
FOL, that is, there are inference procedures (such as proof by contradiction using
resolution) that can always confirm that a knowledge base entails a sentence, but it is
impossible to always confirm that a knowledge base does not entail a sentence (for
example, because the inference procedure can run forever in this case).

2.2.3 Other Knowledge Representation Languages

FOL requires sentences to be either true or false. However, the truth of a sentence
might need to be quantified, for example, in terms of how true it is (as in “the
machine is heavy”), resulting in fuzzy logic, or in terms of the likelihood that it is
true (as in “the coin flip will result in heads”), resulting in probabilistic reasoning.
For example, fuzzy logic allows one to represent vague (but certain) propositions,
based on fuzzy set theory where membership in a set (such as the set of heavy
machines) is indicated by a degree of membership between zero (the element is not
in the set) and one (the element is in the set) rather than the Boolean values false and
true. Figure 2 shows membership functions of the fuzzy sets for “light,” “medium,”
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Fig. 2: Membership functions of three fuzzy sets.

and “heavy” machines. Fuzzy control systems are control systems based on fuzzy
logic.

In general, FOL has been extended or modified in many directions, for example,
to be able to express facts about time (as in “a traffic light, once red, always becomes
green eventually”) and to allow for the retraction of entailment conclusions when
more facts are added to a knowledge base (non-monotonic reasoning). For example,
if someone is told that “someone saw a bird yesterday on the roof”, then they will
typically assume that the bird could fly (default reasoning). But when they are then
also told that “the bird had a broken wing”, then they know that it could not fly.
Also, proof by contradiction using resolution can be slow for FOL, and its steps can
be difficult to explain to users, resulting in hard-to-understand explanations for why
a knowledge base entails a sentence. Knowledge-representation languages with less
powerful but faster and easier-to-understand reasoning techniques are thus also used,
such as rule-based expert systems and semantic networks.

Rule-Based Expert Systems

Rule-based expert systems partition the knowledge base into an “if-then” rule
memory and a fact memory (or, synonymously,working memory) since reasoning
leaves the rule memory unchanged but adds facts to the fact memory. For example,
the rule memory contains “if Poodle(x) then Dog(x)” for our earlier example, and the
initial fact memory contains “Poodle(FIDO)”. The inference rule that utilizes that
“P(A) ∧ ∀ x (P(x)⇒ Q(x))” entails “Q(A)” (modus ponens) is used for reasoning.
In forward chaining, it is used to determine that the knowledge base entails the
query “Dog(FIDO)”, which is then added to the fact memory. Forward chaining
can be used for configuration planning in design and to find all possible diagnoses.
In backward chaining, one needs to be given the sentence that one wants to show
as being entailed by the knowledge base (query), such as “Dog(FIDO)”. The rule
“if Poodle(x) then Dog(x)” shows that the knowledge base entails “Dog(FIDO)” if
it entails “Poodle(FIDO)”, which it does since “Poodle(FIDO)” is in fact memory.
Backward chaining can be used to confirm a given hypothesis in diagnosis. Rule-
based expert systems cannot always confirm that a knowledge base entails a sentence.
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Fig. 3: Semantic network.

For example, they cannot confirm that the knowledge base consisting of the rule
memory “Rule 1: if P then R; Rule 2: if ¬P then R” and an empty fact memory
entails “R”, even though it does. Rule-based expert systems have the advantage of
representing knowledge in a modular way and isolating the decisions which rules
to apply from the knowledge, making modifications of the knowledge base easy.
They have also been extended to logic programming languages, such as Prolog, by
allowing commands in the “then” part of rules.

Semantic Networks

Semantic networks, a concept from psychology, are directed graphs that represent
concepts visuallywith nodes and their properties or relationshipswith directed edges.
For example, Figure 3 shows a semantic network that represents the knowledge that
Fido is a poodle, all poodles are dogs, and all dogs can bark. Semantic networks can
use specialized and fast reasoning procedures of limited reasoning capability that
follow edges to reason about the properties and relationships of concepts. This way,
they can determine inherited properties. For example, to find out whether Fido can
bark, one can start at node “Fido” in the semantic network from Figure 3 and see
whether one can reach a node with an outgoing edge that is labeled with “able to”
and points to node “Bark” by repeatedly following edges labeled with “element of”
and “subset of”. They can also disambiguate the meaning of words in sentences.
For example, to find out that the word “bank” in the sentence “the bank keeps my
money safe” likely refers to the financial institution rather than the land alongside
of a body of water, one can determine that node “Money” is fewer hops away in
the semantic network that expresses knowledge about the world from the node of
the first meaning of bank than the node of the second meaning of bank. Semantic
networks can be more expressive than FOL by allowing for default reasoning, but
the semantics of edges and reasoning procedures needs to be very carefully defined
and some operators (such as “not” and “or”) are not easy to represent and reason
with.

Bayesian Networks
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C

H R

P(C=t)=1/4

P(H=t|C=t)=1
P(H=t|C=f)=2/3

P(R=t|C=t)=1
P(R=t|C=f)=1/3

(a) Bayesian network.

H R C P(H=t ∧ R=t ∧ C=t)
t t t 1 × 1 × 1/4 = 1/4
t t f 2/3 × 1/3 × 3/4 = 1/6
t f t 1 × 0 × 1/4 = 0
t f f 2/3 × 2/3 × 3/4 = 1/3
f t t 0 × 1 × 1/4 = 0
f t f 1/3 × 1/3 × 3/4 = 1/12
f f t 0 × 0 × 1/4 = 0
f f f 1/3 × 2/3 × 3/4 = 1/6

(b) Joint probability table.

H R C
t t t
t f f
t f f
f t f

(c) Training
examples.

Fig. 4: Bayesian network, corresponding joint probability table, and training exam-
ples.

Probabilistic reasoning is an especially important extension of FOL because the
world is often non-deterministic or the knowledge bases of agents are incomplete, for
example, because the agents do not have complete knowledge of the world or do not
include known facts in their knowledge bases, for example, to keep the sizes of their
knowledge bases manageable. For example, an “if-then” rule “if Jaundice(x) then
YellowEyes(x)” states that someone with jaundice always has yellow eyes (in other
words, that the conditional probability P(YellowEyes(x)=t|Jaundice(x)=t), which is
the probability that YellowEyes(x) is true given that Jaundice(x) is true, is 1), which
is not true in reality.

Knowledge Representation with Bayesian Networks

For a medical diagnosis system, each symptom or disease is a random variable,
and its presence or absence is indicated by the truth value of that random variable.
An interpretation assigns a truth value to each random variable. A joint probability
tablemaps each interpretation to the probability of the corresponding scenario (joint
probability). From the joint probability table, one can calculate the conditional
probability that a sick person has a certain disease given the presence or absence
of some symptoms. However, there are too many interpretations to be able to elicit
all joint probabilities from a doctor, and many of the them are too close to zero to
result in good estimates. Instead, one can represent the joint probability table with
a directed acyclic graph that represents random variables visually with nodes and
their conditional dependences with directed edges (Bayesian network). Every node
is assigned a conditional probability table that maps each combination of values of
the predecessor nodes of the node to the conditional probability that the node takes
on a certain value if the predecessor nodes take on the given values. Figure 4a shows
an example Bayesian network with three random variables that take on the values
true or false (Boolean random variables): C(old), H(igh Temperature), and R(unning
Nose). The joint probabilities are calculated as products of conditional probabilities,
one from each conditional probability table. Here, P(C=c ∧ H=h ∧ R=r) = P(C=c)
P(H=h|C=c) P(R=r|C=c), where the notation means that the equation holds no matter
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whether C, H, and R are true or false. Thus, the joint probability table in Figure 4b
results. The joint probabilities are products of several conditional probabilities. Thus,
the joint probabilities are often close to zero, but the conditional probabilities are
not necessarily close to zero. Furthermore, the conditional probabilities directly
correspond to medical knowledge (such as the probability that a person with a cold
has a high temperature), which makes them often easier to estimate. There are 8
possible interpretations, and one thus needs to specify 8-1 = 7 joint probabilities
for the joint probability table. The eighth joint probability does not need to be
specified since all joint probabilities sum to one. The reason why one only needs
to specify five conditional probabilities across all conditional probability tables of
the Bayesian network is that the Bayesian network makes conditional independences
visible in its graph structure rather than only in its (conditional) probabilities. Two
random variables X and Y are independent if and only if P(X=x ∧ Y=y) = P(X=x)
P(Y=y). Thus, one needs only two probabilities, namely P(X=t) and P(Y=t), instead
of three probabilities to specify the joint probability table of two independentBoolean
random variables. However, making independence assumptions is often too strong.
For example, if diseases and symptoms were independent, then the probability that
a sick person has a certain disease would not depend on the presence or absence
of symptoms. Diseases could thus be diagnosed without seeing the sick person.
Making conditional independence assumptions is often more realistic. Two random
variables X and Y are conditionally independent given a third random variable Z
if and only if P(X=x ∧ Y=y|Z=z) = P(X=x|Z=z) P(Y=y|Z=z), in other words, X
and Y are independent if one knows the value of Z (no matter what that value is).
The graph structure of a Bayesian network implies conditional independences that
hold no matter what the values of the conditional probabilities in its conditional
probability tables are. Here, P(H=h ∧ R=r|C=c) = P(H=h|C=c) P(R=r|C=c). While
a Bayesian network corresponds to exactly one joint probability table (meaning
that both of them specify the same joint probabilities), a joint probability table can
correspond to many Bayesian networks (namely, one for each factorization of the
joint probabilities, such as P(C=c ∧H=h ∧ R=r) = P(H=h | R=r ∧ C=c) P(R=r | C=c)
P(C=c) or P(C=c ∧ H=h ∧ R=r) = P(C=c | H=h ∧ R=r) P(H=h | R=r) P(R=r)) –
and these Bayesian networks can differ in their number of conditional probabilities
after their simplification. A Bayesian network with few conditional probabilities
can typically be found by making most of its edges go from causes to effects, for
example, from diseases to symptoms (as in our example). Then, one typically needs
to specify many fewer conditional probabilities than joint probabilities and speeds
up reasoning.

Reasoning with Bayesian Networks

Reasoningwith Bayesian networksmeans calculating probabilities, often conditional
probabilities that one random variable takes on a given value if the values of some
other random variables are known, for example, the probability P(C=t|R=f) that a
sick person with no running nose has a cold or the probability P(C=t|H=f ∧ R=f) that
a sick person with normal temperature and no running nose has a cold. In general,
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reasoning is NP-hard but can often be scaled to large Bayesian networks by exploiting
their graph structure in form of their conditional independence assumptions.

2.2.4 Example Applications

FOL has been used for verifying software [119] and proving theorems [35]. Fuzzy
logic has been used for controlling machines, including maintaining a constant feed
rate for weight belt feeders [157], increasing the machining efficiency for rough
milling operations [46], and improving vehicle control of anti-lock braking systems
[91, 158]. Rule-based expert systems have been used for tele-monitoring heart fail-
ures [120], analyzing satellite images [124], and developing load-shedding schemes
for industrial electrical plants [25]. Semantic networks have been used for understand-
ing consumer judgments [45, 41] and capturing knowledge of production scheduling
[116]. Bayesian networks have been used in manufacturing for diagnosing and pre-
dicting faults [20, 143], calculating failure rates for maintenance planning [59], and
predicting the energy consumption of manufacturing processes [98].

2.3 Planning

Planning is the optimization task of using knowledge to determine how to behave to
maximize task performance. It can use the generic optimization techniques discussed
earlier but often solves the specific optimization problem of finding an (ideally)
shortest or cost-minimal sequence of actions that allows an agent to transition from a
given start state to a given goal state and thus uses specialized optimization techniques
to exploit the structure of this problem well and run fast. A state characterizes the
information that an agent needs to have about the past and present to choose actions
in the future that maximize its task performance. For example, a soda machine
does not need to remember in which order a customer has inserted which coins. It
only needs to remember how much money the customer has already inserted. An
important part of planning is scheduling, which is the assignment of resources to
plans (including when actions should be executed). We first discuss planning for an
agent in the absence of other agents (single-agent systems) and then planning in the
presence of other agents (multi-agent systems).

2.3.1 Deterministic Planning in Single-Agent Systems

Deterministic planning problems assume that the execution of the same action in
the same state always results in the same successor state and the actions thus have
deterministic effects. The input of a deterministic planner is the start state of an agent
(which is typically its current state), the (desired) goal state, and a set of actions that
the agent can execute to transition from one state to another one. Its output is a plan,
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1 2 3
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Start state

1 2 3

4 5 6

7 8

Goal state

Action MoveTile(x,y,z) - "Move tile x from location y to location z"
Precondition set = {At(x,y), MissingTile(z), Adjacent(y,z)}
Add effect set = {At(x,z), MissingTile(y)}
Delete effect set = {At(x,y), MissingTile(z)}

Start state = {At(T1, L1), At(T2, L2), At(T3, L3), At(T4, L4), At(T5, L5),
At(T6, L6), At(T7, L8), At(T8, L9), MissingTile(L7),
Adjacent(L1, L2), Adjacent(L2, L3), Adjacent(L4, L5),
Adjacent(L5, L6), Adjacent(L7, L8), Adjacent(L8, L9),
Adjacent(L1, L4), Adjacent(L4, L7), Adjacent(L2, L5),
Adjacent(L5, L8), Adjacent(L3, L6), Adjacent(L6, L9),
Adjacent(L2, L1), Adjacent(L3, L2), Adjacent(L5, L4),
Adjacent(L6, L5), Adjacent(L8, L7), Adjacent(L9, L8),
Adjacent(L4, L1), Adjacent(L7, L4), Adjacent(L5, L2),
Adjacent(L8, L5), Adjacent(L6, L3), Adjacent(L9, L6)}

Goal state = {At(T1, L1), At(T2, L2), At(T3, L3), At(T4, L4), At(T5, L5),
At(T6, L6), At(T7, L7), At(T8, L8), MissingTile(L9)}

Fig. 5: Eight puzzle instance.

which is an (ideally) shortest or, if costs are associated with the actions, cost-minimal
sequence of actions that the agent can execute to transition from the start state to the
goal state. Since many planning problems have more than 10100 states [112], one
often trades off solution quality for runtime and is satisfied with a short sequence of
actions. Consider, for example, the eight puzzle, which is a toy with eight numbered
square tiles in a square frame. A state specifies which tiles are in which locations
(configuration of the eight puzzle). The current state can be changed by repeatedly
moving a tile that is adjacent to the location with the missing tile to that location.
Figure 5 shows a start state in the upper-left corner and a goal state in the lower-left
corner. A shortest plan is to move the 7 tile to the left with MoveTile(T7,L8,L7)
and then the 8 tile to the left with MoveTile(T8,L9,L8).

Specifying Deterministic Planning Instances with STRIPS

Deterministic planning is essentially the graph-search problem of finding a short
path from the start state to the goal state on the directed graph (state space) that
represents states with vertices and actions with edges. However, the state space
of the eight puzzle has 9!/2 = 181,440 states (since, to populate the eight puzzle,
the 1 tile can be placed in any of the 9 locations, the 2 tile can be placed in any
of the remaining 8 locations, and so on, but only half of the states are reachable
from any given state), which makes the state space tedious to specify explicitly by
enumeration. Even larger state spaces, such as those with more than 10100 states,
cannot be specified explicitly by enumeration since both the necessary time and
amount of memory are too large. Therefore, one specifies state spaces implicitly
with a formal specification language for planning instances, such as STRIPS. STRIPS
was first used for the Stanford Research Institute Problem Solver, an early planner,
which explains its name. States are specified with a simplified version of FOL
as conjunctions (often written as sets) of predicates whose arguments are names
(grounded predicates). Actions are specified as parameterized action schemata, that
define when an action can be executed in a state (namely, when one can replace
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Fig. 6: A path-finding instance.

each parameter with a name so that all predicates in its precondition set are part of
the state) and how to calculate the resulting successor state (namely, by deleting all
predicates in its delete effect set from the state and then adding all predicates in its
add effect set). Figure 5 shows the input of the planner for our example. The Planning
Domain Definition Language (PDDL) [39] is a more expressive version of STRIPS
that includes typing, negative preconditions, conditional add and delete effects, and
quantification in preconditions, add effects, and delete effects. Its more advanced
version PDDL2.1 [37] further supports optimization metrics, durative (rather than
instantaneous) actions, and numeric preconditions, add effects, and delete effects.
PDDL3 [38] further supports constraints over possible actions in the plan and the
states reached by them (trajectory constraints) as well as soft trajectory constraints,
that are desirable but do not necessarily have to be satisfied (preferences).

Solving Deterministic Planning Instances

Deterministic planning instances can be solved by translating them into different
optimization instances, such as (M)ILP instances [12, 105] or SAT instances [64,
110]. Deterministic planning instances can also be solved with search techniques
that find short paths in the given state space. These search techniques build a search
tree that represents states with nodes and actions (that the agent can execute to
transition from one state to another) with edges. Initially, the search tree contains
only the root node labeled with the start state. In each iteration, the search technique
selects an unexpanded leaf node of the search tree for expansion. If no such leaf node
exists, then it terminates and returns that no path exists. Otherwise, if the state of the
selected node is the goal state, then it terminates and returns the action sequence of
the unique path in the search tree from the root node to the selected node. Otherwise,
it expands the selected node as follows: For each action that can be executed in the
state of the selected node, it creates an edge that connects the selected node with
a new node labeled with the successor state reached when the agent executes the
action in the state of the selected node. Finally, it repeats the procedure.

Different search techniques differ in the information that they use for selecting
an unexpanded fringe node. All of the following search techniques find a path from
the start state to the goal state or, if none exists, report this fact (they are complete)
when used on state spaces with a finite number of states and actions. Figure 6 shows
a path-finding instance, and Figure 7 shows the resulting search trees.
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(c) Uniform-cost search.
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(d) A* search.

Fig. 7: Search trees for depth-first search, breadth-first search, uniform-cost search,
and A* search for the path-finding instance from Figure 6. The admissible h-value
of a node for the A* search is the goal distance of its state. The numbers indicate
the order of node expansions, and the found paths are shown in bold. Not used here
is the common optimization to prune nodes once a node labeled with the same state
has been expanded.

Uninformed (or, synonymously, blind) search techniques use only information
from the search tree for selecting an unexpanded fringe node. The g-value of a node
= is the sum of the edge costs from the root node to node =.Depth-first search always
selects an unexpanded fringe node with the largest g-value under the assumption
that all edge costs are one (no matter what the actual edge costs are), that is, that
the g-value of a node = is the number of edges from the root node to node =. To be
complete, it has to prune nodes if one of their ancestors is labeled with the same
state, which avoids paths with cycles. It is not guaranteed to find shortest paths
(even if all actual edge costs are one) but can be implemented with a stack, resulting
in a memory consumption that is linear in the search depth. Uniform-cost search
always selects an unexpanded fringe node with the smallest g-value (using the actual
edge costs). It is guaranteed to find shortest paths and can be implemented with a
priority queue. Breadth-first search always selects an unexpanded fringe node with
the smallest g-value under the assumption that all edge costs are one (no matter what
the actual edge costs are). It is a special case of uniform-cost search since uniform-
cost search behaves like breadth-first search if all edge costs are one. It is guaranteed
to find shortest paths only if all actual edge costs are one and can be implemented
with a first-in first-out queue. Both uniform-cost search and breadth-first search can
result in a memory consumption that is exponential in the search depth. Iterative
deepening implements a breadth-first search with a series of depth-first searches of
increasing search depths. It is guaranteed to find shortest paths when breadth-first
search does, can be implemented with a stack, and results in a memory consumption



22 Contents

that is linear in the search depth but has a runtime overhead compared to breadth-first
search. More sophisticated linear-memory search techniques also exist, including in
case all edge costs are not one.

Informed (or, synonymously, heuristic) search techniques use additional problem-
specific information for selecting an unexpanded fringe node. The h-value of a node
= is an estimate of the goal distance of the state of node =, which is the smallest sum
of the edge costs from the state of node = to the goal state. An h-value is admissible
if and only if it is not an overestimate of the corresponding goal distance. The f-value
of a node is the sum of its g- and h-values. A* always selects an unexpanded fringe
node with the smallest f-value, that is, the smallest estimated sum of the edge costs
from the start state via the state of the node to the goal state. Uniform-cost search is a
special case of A* since A* behaves like uniform-cost search if all h-values of A* are
zero. A* is guaranteed to find shortest paths (if all h-values are admissible) and can
be implemented with a priority queue. There exist linear-memory search variants of
A*. The h-values being admissible guarantees that the f-values of all nodes are not
overestimates, a principle known in AI as “optimism in the face of uncertainty” (or
missing knowledge). This way, when A* expands a node, the state of the node is
either on a shortest path from the start state to the goal state (which is good) or not
(which allows A* to discover the fact that the state is not on a shortest path). On the
other hand, if some h-values are not admissible, then A* might not expand all nodes
on a shortest path (because their f-values are too large) and is thus not guaranteed to
find shortest paths. An admissible h-value of node = is typically found as the smallest
sum of the edge costs from the state of node = to the goal state in a state space that
contains additional actions (relaxation of the original state space) because adding
actions cannot increase the goal distances. For example, for path finding on a map
of cities and their highway connections, one could add actions that move off-road on
a straight line from any city to any other city. The resulting admissible h-value of a
node is the straight-line distance from the city of the node to the goal city. For the
eight puzzle, one could add actions that move a tile on top of a neighboring tile. The
resulting admissible h-value of a node is the sum, over all tiles, of the differences in
the x- and y-coordinates of the location of a tile in the configuration of the node and its
location in the goal configuration. For a planning problem specified in STRIPS, one
needs large admissible h-values to keep the number of expanded nodes manageable
due to the large state space since the larger the admissible h-values, the fewer nodes
A* expands. One could delete some or all of the elements of the precondition sets
of action schemata but often deletes all elements of their delete sets instead. In both
cases, additional actions can be executed in some states because the actions need
to satisfy fewer preconditions in the first case and because previous actions did not
delete some of their preconditions in the second case.

So far, we have assumed a forward search from the start state to the goal state. For
this, one needs to determine all possible successor states of a given state. One can
also perform a backward search from the goal state to the start state, provided that one
is able to determine all possible predecessor states of a given state. If both forward
and backward searches are possible, then one should choose the search direction
that results in the smaller average number of child nodes of nodes in the search tree
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(average branching factor). Bi-directional search searches simultaneously in both
directions to search faster and with less memory. If the state space is specified with
STRIPS, then it is easy to determine all possible successor states of a given state and
thus implement a forward search, while it is more difficult to determine all possible
predecessor states of a given state.

2.3.2 Probabilistic Planning in Single-Agent Systems

Actions often do not have deterministic effects in practice. For example, a sick person
might not respond to their medicine. The resulting probabilistic (or, synonymously,
decision-theoretic) planning problems are often specified with (totally observable)
Markov Decision Processes (MDPs) or Probabilistic PDDL (PPDDL) [151]. MDPs
assume that 1) the current state is always known (for example, can be observed
after every action execution), and the probability distributions over the cost and
the successor state resulting from an action execution 2) are known and 3) depend
only on the executed action and the state it is executed in (Markov property). For
deterministic planning problems, a plan is a sequence of actions. But, for MDPs, a
plan needs to specify which action to execute in each state that can be reached during
its execution. It is a fundamental result that a plan that minimizes the expected total
(discounted) plan-execution cost can be specified as a function that assigns each
state the action that should be executed in that state (policy). (The discount factor
weighs future costs less than current ones and is primarily used as a mathematical
convenience since it ensures that all infinite sums are finite.) Policies that minimize
the expected total (discounted) plan-execution cost can be found with stochastic
dynamic programming techniques, such as value iteration and policy iteration.

Assumptions 1-3 from above do not always hold in practice. Partially Observable
MDPs (POMDPs) relax Assumption 1 by assuming that the current state can be
observed after every action execution only with noisy observations, which means
that only a probability distribution over the current state is known. For example,
the disease of a sick person is not directly observable, but the observed symptoms
provide noisy clues about it. A policy now assigns each probability distribution over
the current state the action that should be executed in this belief state, which results
in more complicated and slower stochastic dynamic programming techniques than
for MDPs since the number of states is typically finite but the number of belief states
is infinite.

2.3.3 Planning in Multi-Agent Systems

Multi-agent systems have become more important as parts of companies have been
connectedwith the internet, computational devices have been increasingly networked
as part of the internet of things, and teams of robots have been fielded successfully.
Several agents can be more robust than a single agent since they can compensate
for the failure of some agents. Several agents can also act in parallel and reduce the
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task-completion time. Centralized planning techniques for multi-agent systems can
be obtained from planning techniques for single-agent systems and maximize the
performance of the team (social welfare) but might raise privacy concerns for the in-
volved agents. Decentralized (and distributed) planning techniques correspond to the
many ways of making decentralized collective decisions in multi-agent systems, for
example, with negotiating, voting, or bidding.Competitive agents are self-interested,
that is, maximize their own performance, while cooperative agents maximize the
performance of the team, for example, because they are bound by social norms or
contracts (in case of humans) or are programmed this way (in case of robots). In both
cases, one needs to understand how the agents can interact (mechanism) and what so-
lutions can result from these interactions. One often wants to design the mechanism
so that the solutions have desirable properties. For this, AI can utilize insights from
other disciplines. Economics has mostly studied competitive agents, for example, in
the context of non-cooperative game theory or auctions. An important part of the
design of an auction mechanism in this context is to ensure that agents cannot game
the system, for example, with collusion or shilling. Operations research, on the other
hand, has mostly studied cooperative agents, for example, in the context of vehicle
routing. Concepts from economics also apply to cooperative agents since they can,
for example, use cooperative auctions to assign tasks to themselves: Each agent bids
on all tasks and is then assigned the tasks that it must execute, for example, the
tasks for which it was the highest bidder. An important part of the design of an
auction mechanism in this context is to design the auction so that, if each agent
maximizes its own performance, the team maximizes social welfare. Different from
many applications in economics, it is often also important that task allocation is fast.

2.3.4 Example Applications

PDDL has been used for managing greenhouses [49] and composing and verifying
web services [102, 54]. A* has been used for planning the paths of automated guided
vehicles [142].MDPs andPOMDPs have been used for planning robotmotions [133],
tuning the parameters of wireless sensor networks [67, 96], and managing power
plants [109]. Planning for multi-agent systems has been used for planningmulti-view
drone cinematography [97], production planning for auto engine plants [101], and
assembling furniture with robots [69].

2.4 Machine Learning

Machine learning is the task of acquiring knowledge from observations of the world,
often because knowledge is hard to specify by hand. Machine learning typically
involves specifying a set of considered functions as possible models of some aspect
of the world and choosing a good function from this set based on the observations.
The set of considered functions is often specified in form of a parameterized function
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(a) Classification instance with training examples
(shown as small blue and green dots) with two
real-valued features G and H and a label with the
discrete values blue or green. The predicted values
of the label on one side of the red line are blue, and
the predicted values on the other side are green.
Not all predictions are accurate.

(b) Regression instance with training exam-
ples (shown as small blue dots) with one real-
valued feature G and real-valued label H. The
red line shows the predicted values of the label
for all possible values of G. Not all predictions
are accurate.

Fig. 8: Illustration of classification and regression.

and using optimization techniques to determine its parameters. The key challenge
is to ensure that the resulting learned function generalizes beyond the observations.
For example, it is difficult to program an agent to ride a bicycle without falling down,
and it thus makes sense to let it learn from experience (that is, past observations) how
to do it well, which involves handling situations that the agent did not experience
during learning.

We discuss three classes of machine learning techniques. Assume that one wants
to learnwhich actions to execute in different situations. Supervised learning is similar
to a teacher presenting examples for how to behave optimally in many situations,
unsupervised learning is similar to experiencing many situations and trying to make
sense of them without any further information, and reinforcement learning is similar
to experiencing many situations, experimenting with how to behave in each of them,
and receiving feedback as to how good the behavior was (for example, when falling
down while learning how to ride a bicycle).

2.4.1 Supervised Learning

In supervised learning, an agent is provided with observations in form of labeled
examples, where the agent knows the values of a fixed number of features and the
value of the label of each example. Its task is to predict the values of the label of
the encountered unlabeled examples in use, where the agent knows only the values
of the features. This task can be framed as learning a function that maps examples
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to the predicted values of the label. There is a possibly infinite set of considered
functions (hypothesis space), and one wants to find the best function from this set,
which is ideally the true function that actually generates the values of the label. If
the set of possible values of the label is discrete, then this is a classification task, see
Figure 8a. Otherwise, it is a regression task, see Figure 8b. For example, recognizing
handwritten digits from the pixels in images or spam emails from the number of
times certain words occur in them are classification tasks, while predicting the life
expectancy of a person from their medical history is a regression task.

An objective function captures howwell a function predicts the values of the label
of examples encountered in use (error function or, synonymously, loss function). The
task is to choose the function from the set of considered functions that minimizes the
error function. Examples of error functions are mappings from the set of considered
functions to the resulting number of prediction errors for classification tasks and the
resulting average of the squared differences between the true and predicted values
of the label (mean squared error) for regression tasks. One often characterizes
the number of prediction errors for classification tasks using precision and recall.
Assume, for example, that 100 emails are provided to a spam email detection system,
of which 20 are spam emails (actual positive examples). If the system identifies 15
emails as spam emails (identified positive examples) and 10 of them are indeed
spam emails (correctly identified positive examples), then the number of correctly
identified positive examples divided by the number of identified positive examples
(precision) is 10/15 and the number of correctly identified positive examples divided
by the number of actual positive examples (recall) is 10/20.

Since there are too many examples that could be encountered in use, one cannot
provide all of them as labeled examples. Machine learning thus needs to generalize
from the labeled examples to the ones encountered in use. To make this possible, one
typically assumes that the labeled examples are independently drawn from the same
probability distribution as the examples encountered in use, resulting in them being
independent and identically distributed (iid). The labeled examples serve different
purposes and are therefore often partitioned randomly into three sets, namely training
examples, validation examples, and (if needed) test examples:

• The training examples are used to learn the functionwith a givenmachine learning
technique and its parameters. For example, one might want to find the polynomial
function of a given degree that has the smallest mean squared error on the
examples encountered in use. Since these examples are not available during
learning, one settles for finding the polynomial function of the given degree that
has the smallest mean squared error on the training examples, which can be found,
for example, with gradient descent. If the error is small, then one says that the
function fits the training examples well. Any machine learning technique has to
address underfitting and overfitting, see Figure 9. Underfitting means that the
learned function is not similar to the true function, typically because the true
function is not in the set of considered functions (resulting in high bias). For
example, if the set of considered functions contains only linear functions for
regression tasks (linear regression tasks) but the true function is a polynomial
function of higher degree, then the best linear function is likely not similar to
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(a) The learned function underfits. (b) The learned function overfits.

Fig. 9: Illustration of underfitting and overfitting.

the true function and thus fits neither the training examples nor the examples
encountered in use well, as shown in Figure 9a.Overfittingmeans that the learned
function fits the training examples well but has adapted so much to the training
examples that it is no longer similar to the true function even if the true function is
in the set of considered functions, typically because there is lots of sampling noise
in the training examples due to their small number or because the error function
or machine learning technique is too sensitive to the noise in the feature or label
values of the training examples (resulting in high variance). For example, if the
training examples consist of a single photo that contains a cat, then a function
that predicts that every photo contains a cat fits the training examples well but
is likely not similar to the true function and thus likely does not fit the examples
encountered in use well. Similarly, if there is noise in the values of the features or
the label for regression tasks, then a polynomial function of higher degree than
the true function can fit the training examples better than the true function but is
likely not similar to the true function and thus likely does not fit the the examples
encountered in use well, as shown in Figure 9.
The bias-variance dilemma states that there is a trade-off between the bias and
the variance. To balance them, one can enlarge or reduce the set of considered
functions, for example, by increasing or decreasing the number of parameters to be
learned. Other techniques exist as well. For example, Least Absolute Shrinkage
and Selection Operator (LASSO) regression is a popular technique to reduce
overfitting for linear regression tasks. It minimizes the mean squared error plus a
weighted penalty term (regularization term) that is the L1 norm of the weights
of the linear function to be learned.

• The validation examples are used to select parameters for the machine learning
technique (hyperparameters) that allow it to learn a good function, which has to
be done with examples that are different from the training examples (cross vali-
dation). Hyperparameters are, for example, the degree of the polynomial function
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Fig. 10: Decision tree for the example from Figure 4c.

to be learned for polynomial regression tasks or the weight of the regularization
term for LASSO. They can be selected manually or automatically with exhaustive
search, random search, or machine learning techniques.

• The test examples are used as proxy for the examples encountered in use when
assessing how well the learned function will likely do in use.

The more training and validation examples are available, the better a function
can be learned. A fixed split of the non-test examples into training and validation
examples does not make good use of the non-test examples, which is a problem if
their number is small. One therefore often uses each non-test example sometimes
as training example and sometimes as validation example. For example, k-fold cross
validation partitions the non-test examples into : sets and then performs : rounds
of learning for given hyperparameters, each time using the examples in one of the
partitions as validation examples and the remaining non-test examples as training
examples. After each round, it calculates how well the resulting function predicts
the values of the label of the validation examples. The hyperparameters are then
evaluated according to the average of these numbers over all : rounds.

Supervised machine learning techniques differ in how they represent the set of
considered functions. We discuss several examples in the following because none
of them is universally better than the others (no free lunch theorem) [146]. We do
not discuss variants of supervised learning, such as the one where one synthesizes
examples and then is provided with their values of the label at a cost (active learning)
or the one where one uses the knowledge gained from solving one classification or
regression task to solve a similar task with fewer examples or less runtime (transfer
learning), which is important since machine learning techniques are typically both
training data and runtime intensive.Meta-learning, which is learning from the output
of other machine learning techniques, can be used to improve the learning ability
of machine learning techniques by learning to learn, for example, across related
classification or regression tasks for multi-task learning [75].

Decision Tree Learning
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Decision tree learning represents the set of considered functions with trees where
each non-leaf node is labeled with a feature, the branches of each non-leaf node are
labeled with a partition of the possible values of that feature, and each leaf node is
labeled with a value of the label (decision trees), see Figure 10. Decision trees can be
used for both classification and regression tasks (classification and regression trees).
The value of the label of an unlabeled example is determined by starting at the root
node and always following the branch that is labeled with the value of that feature for
the example that labels the current node. The label of the leaf node eventually reached
is the predicted value of the label for the example. For example, the decision tree in
Figure 10 predicts that a sick person with normal temperature and no running nose
does not have a cold. Decision tree learning constructs a small decision tree, typically
from the root node down. It chooses the most informative feature for the root node
(often using metrics from information theory) and then recursively constructs each
subtree below the root node. Overfitting can be reduced by limiting the depth of a
decision tree or, alternatively, pruning it after its construction. It can also be reduced
by using ensemble learning to learn several decision trees (random forest) and then
letting them vote on the value of the label by outputting the most common value
among them for classification tasks and the average of their values for regression
tasks. One can also use meta-learning to determine how to combine the predictions
of the decision trees.

Naïve Bayesian Learning

Naïve Bayesian learning represents the set of considered functions with Bayesian
networks of a specific graph structure. The graph structure of the Bayesian networks
is the one given in Figure 4a, with an edge from the class to each feature. Naïve
Bayesian learning estimates the conditional probabilities, typically using frequencies.
Assume, for example, a diagnosis task where the features are the symptoms H(igh
Temperature) and R(unning Nose) in Figure 4c and the label is the disease C(old).
Three training examples have C=f, and two of those have H=t, so P(H=t|C=f) =
2/3. Overall, the conditional probabilities in Figure 4a result for the given training
examples. Bayesian networks of the simple graph structure shown in Figure 4a are
called naïve Bayesian networks because the conditional independences implied by
their graph structure might not be correct. In fact, the conditional independence
P(H=t ∧ R=t|C=f) = P(H=t|C=f) P(R=t|C=f) does not hold for the training examples
since P(H=t∧R=t|C=f) = 0≠ 2/3 1/3 = P(H=t|C=f) P(R=t|C=f). Thus, naïveBayesian
learning can underfit but is often expressive enough for the learned function to be
sufficiently similar to the true function and then has the advantage that it reduces
the set of considered functions compared to Bayesian networks with more complex
graph structures and thus reduces overfitting. When one needs to predict the value
of the label of an unlabeled example, for example, H=f and R=f, one calculates
P(C=t|H=f ∧ R=f) = P(C=t ∧ H=f ∧ R=f) / P(H=f ∧ R=f) = P(C=t ∧ H=f ∧ R=f)
/ (P(C=t ∧ H=f ∧ R=f) + P(C=f ∧ H=f ∧ R=f)) = P(C=t) P(H=f|C=t) P(R=f|C=f) /
(P(C=t) P(H=f|C=t) P(R=f|C=f) + P(C=f) P(H=f|C=f) P(R=f|C=f)) = 0 to determine
the probability that the value of the label is true, that is, that a sick person with normal
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Fig. 11: NN with three inputs, fully connected layers, and two outputs.

(a) Sigmoid function. (b) Threshold function.

Fig. 12: Sigmoid function and its corresponding threshold function.

temperature and no running nose has a cold. This calculation is essentially the one
of Bayes’ rule P(C=t|H=f) = P(C=t ∧H=f) / P(H=f) = P(C=t ∧H=f) / (P(C=t ∧H=f)
+ P(C=f ∧ H=f)) = P(C=t) P(H=f|C=t) / (P(C=t) P(H=f|C=t) + P(C=f) P(H=f|C=f))
but generalized to multiple observed symptoms with the conditional independences
implied by the graph structure of naïve Bayesian networks.

Neural Network Learning

Neural network learning represents the set of considered functions with artificial
Neural Networks (NN), see Figure 11. NNs are directed acyclic graphs, inspired
by the networks of neurons in brains, that represent primitive processing units
(perceptrons) with nodes and the flow of information from one perceptron to another
with directed edges. A perceptron has a number of real-valued inputs and produces
one real-valued output. If a single perceptron is used for learning, then the inputs
of the perceptron are the feature values and its output is the value of the label. A
weight is associated with each input. The perceptron calculates the weighted sum
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of its inputs and then applies a nonlinear activation function to the weighted sum to
create its output. The activation function is typically monotonically nondecreasing.
An example is the sigmoid function f(G) = 1/(1 + 4−G), see Figure 12, which is
a differentiable approximation of a threshold function to facilitate gradient descent.
Perceptron learning finds the weights (including the amount of horizontal translation
of the activation function, which is often expressed as weight) that minimize the error
function. A single perceptron can essentially represent all functions from = real-
valued feature values (for any =) to a label with two values where all examples that
the function maps to one value of the label lie on one side of an (=− 1)-dimensional
separating plane and all examples that the function maps to the other value lie on
the opposite side of the plane (the examples are linearly separable). This might
be expressive enough for the learned function to be sufficiently similar to the true
function and then has the advantage that it reduces the set of considered functions
compared to a NN and thus reduces overfitting.

Often, however, a single perceptron is not expressive enough (for example, be-
cause it cannot even specify an exclusive or function), which is why one connects
perceptrons into a NN. If a NN is used for learning, then the inputs of a percep-
tron in the NN can be either feature values, which are the inputs of the NN, or the
outputs of other perceptrons. The output of a perceptron in the NN can be an input
to multiple other perceptrons and/or the value of the label, which is the output of
the NN. The perceptrons are often organized in layers, see Figure 11. NNs can have
multiple outputs (for example, one for each value of the label, such as the possible
diseases of a sick person), which are produced by the output layer. Sometimes they
are postprocessed by a softmax layer to yield a probability distribution over the
possible values of the label. The remaining layers are the hidden layers. A NN is
deep if and only if it has many hidden layers. There is typically a regularity in the
connections from layer to layer. For example, in fully connected layers, the output
of each perceptron in a layer is the input of all perceptrons in the next layer, see
Figure 11. NN learning often, but not always, takes the graph structure of the NN as
given and uses gradient descent to find the weights of all perceptrons of the NN that
minimize the error function. For example, the backpropagation technique adjusts
the weights repeatedly with one forward pass through the layers (that calculates the
outputs of all perceptrons for a given training example) and one backward pass (that
calculates the gradient of the error function with respect to each weight). Specialized
NNs exist for specific tasks:

• Convolutional NNs (CNNs) are NNs that are specialized for processing matrix-
like data, such as images. They use several kinds of layers in addition to the layers
already described. For example, a convolutional layer (without kernel flipping)
is associated with a filter whose values are learned. The filter is a matrix A
(kernel) that moves over the matrix B of the outputs of the previous layer with
a step size that is given by the stride. It calculates the dot product of matrix A
and the submatrix of matrix B that corresponds to each location. The matrix
of these dot products is the output of the convolutional layer, see Figure 13.
Overall, a convolutional layer extracts local features. A pooling layer is similar to
a convolutional layer except that, instead of calculating the dot product, it returns
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Fig. 13: Illustration of convolution (without kernel flipping) with stride one.

Fig. 14: Illustration of max pooling and average pooling with stride two.

the maximum value (max pooling) or the average value (average pooling) of the
elements of the submatrix of matrix B that corresponds to each location, see
Figure 14. Overall, a pooling layer compresses the information in a lossy way.

• Recurrent NNs (RNNs) are NNs that are specialized for classifying sequences
(of examples) over time, including handwriting and speech. They use internal
state to remember the outputs of some perceptrons from the previous time step
and can use them as input of some perceptrons in the current time step. Long
Short-Term Memory (LSTM) networks are versions of RNNs that make it easier
to maintain the internal state by using three gates to the memory, namely one that
decides what to store in memory (input gate), one that decides what to delete
from memory (forget gate), and one that decides what to output from memory
(output gate).

k-Nearest Neighbor Learning

k-nearest neighbor learning represents the set of considered functions with all
training examples rather than parameters. There is nothing to be learned, but more
effort has to be spent when determining the value of the label of an unlabeled
example, which involves finding the : training examples most similar to it and then
letting them vote on the value.
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Support Vector Machine Learning

Linear support vector machine learning considers the same functions as single
perceptrons in NNs but represents them differently, namely with the subset of the
training examples that are closest to the separating plane (support vectors), rather
than parameters. Support Vector Machine (SVM) learning improves on k-nearest
neighbor learning since it only uses the necessary training examples rather than
all of them to represent the learned function. It improves on single perceptrons
since its separating plane has the largest possible distances to the training examples
(maximum margin separator), which makes it more robust to sampling noise. The
set of considered functions and thus the learned function can also be more complex
by embedding the training examples into higher-dimensional spaces with the kernel
trick.

2.4.2 Unsupervised Learning

In unsupervised learning, an agent is provided with unlabeled examples, and its task
is to identify structure in the examples, for instance, to find simpler representations
of the examples while preserving as much information contained in them as possible
(dimensionality reduction, which compresses the information in a lossy way and
thus might decrease the amount of computation required to process the examples
and reduce overfitting), to group similar examples such as photos that contain similar
animals (clustering), or to generate new examples that are similar to the given ones
(generative modeling). We describe one unsupervised machine learning technique
for each of these purposes, namely principal component analysis for dimensionality
reduction, k-means clustering for clustering, and generative adversarial networks for
generative modeling. The unlabeled examples can again be partitioned into training,
validation, and test examples.

Principal Component Analysis

Principal Component Analysis (PCA) obtains a simpler representation of the
training examples by projecting them onto the first principal components to reduce
their number of features. The principal components are new features that are con-
structed as linear combinations (ormixtures) of the features such that the new features
are uncorrelated and contain most of the information in the training examples (that
is, preserve most of the variance). Dimensionality reduction of examples can make
them easier to visualize, process, and therefore also analyze, which addresses the
curse of dimensionality.

k-Means Clustering

k-means clustering partitions the training examples into : sets of similar examples,
see Figure 15. It randomly chooses : different centroids, one for each set, and then
repeats the following two steps until the sets no longer change: First, it assigns each
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Fig. 15: Clustering with the 4-means clustering technique on training examples
(shown as small colored dots) with two real-valued features x and y. Training exam-
ples in the same cluster are shown in same color. The centroids of the clusters are
shown as large red dots.

example to the set with the least squared Euclidean distance to its centroid. Second,
it updates the centroids of the sets to the means of all examples assigned to them.

Generative Adversarial Network Learning

Generative adversarial network learning generates new examples that are similar
to the training examples. Generative Adversarial Networks (GANs) consist of two
NNs that are trained simultaneously: The generator attempts to generate examples
that are similar to the training examples, and the discriminator attempts to distinguish
the generated examples from the training examples. Once the discriminator fails in
its task, the generator has achieved its task and can be used to generate new examples
that are similar to the training examples.

2.4.3 Reinforcement Learning

In Reinforcement Learning (RL), similar to operant conditioning in behavioral psy-
chology, an agent interacts with the environment by executing actions and receiving
feedback (reinforcement) in the form of possibly delayed penalties and rewards,
which are represented with real-valued costs. Its task is to identify a behavior (in
form of a policy) that minimizes its expected total (discounted) plan-execution cost.
RL can be used to figure out which actions worked and which did not when the
agent failed to achieve its objective after executing several actions in a row (credit-
assignment problem), for example, when falling down while learning how to ride a
bicycle. Genetic programming can be used for RL, but most RL is based on MDPs
and relaxes Assumption 2 from Section 2.3.2 by assuming that the probability distri-
butions over the cost and successor state resulting from an action execution in a state
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are unknown before the action execution but can be observed afterward.Model-based
RL uses frequencies to estimate these probability distributions from the observed
(state, action, cost, successor state) tuples when the agent interacts with the envi-
ronment by executing actions. It then determines a policy for the resulting MDP.
Model-free RL directly estimates a policy. Q-learning, the most popular model-free
RL technique, is a stochastic dynamic programming technique that learns a q-value
@(B, 0) for each (state, action) pair, that estimates the smallest possible expected total
(discounted) plan-execution cost (until the goal state is reached) if plan execution
starts with executing action 0 in state B. All q-values are initially zero. Whenever the
agent executes action 0 in state B and then observes cost 2 and successor state B′, it
updates

@(B, 0) ← (1 − U)@(B, 0) + U(2 + W min
0′ executable in B′

@(B′, 0′)) (2)

= @(B, 0) + U(2 + W min
0′ executable in B′

@(B′, 0′) − @(B, 0)). (3)

This formula can easily be understood by realizing that min0′ executable in B′ @(B′, 0′)
estimates the smallest possible expected total (discounted) plan-execution cost if
plan execution starts in state B′. Thus, the formula calculates a weighted average of
the old q-value @(B, 0) and the smallest possible expected total (discounted) plan-
execution cost after the agent executes action 0 in state B and then observes cost 2
and successor state B′, see (2). Equivalently, the formula changes @(B, 0) by taking
a small step in the direction of the smallest possible expected total (discounted)
plan-execution cost after the agent executes action 0 in state B and then observes
cost 2 and successor state B′, see (3). The learning rate U > 0 is a hyperparameter,
typically chosen close to zero, for calculating the weighted average or, equivalently,
step size. The discount factor 0 < W ≤ 1 is the hyperparameter from Section 2.3.2,
typically chosen close to one, that is used as a mathematical convenience. Deep NNs
can be used to approximate the q-values and generalize the experience of the agent
to situations that it did not experience during learning (deep RL). The policy, to
be used after learning, maps each state B to the action 0 with the smallest q-value
@(B, 0). These exploiting actions utilize the knowledge of the agent to achieve a
small expected total (discounted) plan-execution cost. During learning, the agent
also needs to execute exploring actions that allow it to gain new knowledge (for
example, help it to visit states that it has visited only a small number of times so far)
and improve its policy, as was already discussed in Section 2.1 in the context of local
search. The agent could tackle this exploration-exploitation problem, for example,
by choosing a random action that can be executed in its current state with a small
probability n > 0 and the exploiting action otherwise (n-greedy exploration).

2.4.4 Example Applications

Decision tree learning has been used for diagnosing faults and monitoring the condi-
tions of industrial machines [63] and identifying good features for such tasks [129].
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Random forest learning has been used for diagnosing faults of industrial machines
[150, 21] and classifying remote sensing data [7, 81]. Naïve Bayesian learning has
been used for diagnosing faults of industrial machines [155] and diseases [32, 140].
CNN learning has been used for segmenting manufacturing defects in images [147],
detecting and classifying faults in semiconductor manufacturing [72], and finding
good grasp configurations for novel objects [71]. The Dexterity Network Dataset
(Dex-Net) and Grasp Quality CNN (GQ-CNN) are used for robust learning-based
grasp planning [86, 83, 84, 82, 85]. RNN learning has been used for classifying
objects from their motion trajectories to allow self-driving cars to decide which ob-
stacles to avoid [31] and forecasting time series [50], such as taxi demand [149]. PCA
has been used for monitoring and diagnosing faults in industrial processes [23, 111].
SVM learning has been used for classifying remote sensing data [114]. :-nearest
neighbor learning has been used for detecting faults in semiconductor manufacturing
[77, 159]. :-means clustering has been used for understanding climate and meteo-
rological data, including monitoring pollution, identifying sources, and developing
effective control and mitigation strategies [42]. GANs have been used for diagnosing
faults [48, 19], detecting credit card fraud [34], and creating novel designs from
sketches for rapid prototyping [106]. RL has been used for dispatching orders in
the semiconductor industry [128], manipulating objects with industrial robots [62],
and following lanes for autonomous driving [65]. Machine vision systems, powered
by PCA, SVMs, NNs, and decision trees, have been used for the automated quality
inspection of fruit and vegetables [27] as well as machine components [107].

3 Combining AI Techniques

AI research has traditionally focused on improving individual AI techniques (some-
times assuming idealized conditions for their use) and thus on the narrow tasks
that they can handle. It is often nontrivial to combine them to create agents that
solve broad jobs, for example, perform search-and-rescue operations. For example,
it makes sense to combine AI techniques that acquire knowledge (like vision or ma-
chine learning) with AI techniques that use it (like planning). However, it is difficult
to figure out how different AI techniques should pass information and control back
and forth between them in order to achieve synergistic interactions. For example, the
combination of low-level motion planning in continuous state spaces and high-level
task planning in discrete state spaces has been studied for a long time in the context
of using robots to re-arrange objects [61], but no consensus has been reached yet
on good ways of combining the two planners. Of course, many complete agents
have been built. While one sometimes attempts to determine a monolithic function
for such agents directly, one often provides the function as a given composition
of subfunctions, resulting in modular agent architectures. Such agent architectures
describe how agents are composed of modules, what the modules do, and how they
interact. Many such agent architectures are ad hoc, but proposals have been made
for general agent architectures, mostly in the context of cognitive agents and robots.



Contents 37

Fig. 16: Amazon fulfillment center. Photos ©Amazon.com, lnc..

For example, the three-layer robot architecture consists of a slow planner, a behavior
sequencer that always chooses the current behavior during plan execution based on
the plan, and a fast reactive feedback controller that implements the chosen behavior.
Other agent architectures include the blackboard architecture and the subsumption
architecture. Meta-reasoning techniques can be used to decide which output quality a
module needs to provide or for how long it should run to allow the agent to maximize
its performance. For example, an anytime algorithm is one that provides an output
quickly and then improves the quality of its output the longer it runs, which can
be described by a mapping from its input quality and runtime to its output quality
(performance profile). It might simplify meta-reasoning if every module of an agent
architecture could be implemented as an anytime algorithm.

4 Case Study: Automated Warehousing

In Amazon fulfillment centers, millions of items are stored on special shelves, see
Figure 16.When an order needs to be fulfilled, autonomous robots pick up the shelves
that store the ordered items and bring them to picking stations at the perimeter of the
fulfillment center, where a human worker takes the ordered items from the shelves
so that they can be boxed and shipped to the customer. The robots then return
the shelves, either to their original locations or different locations [148]. On the
order of one thousand robots can operate in such automated warehouses and similar
sorting centers (where robots carry packages to chutes that each serve a different
loading dock) per floor [2]. Each robot moves one shelf at a time and recharges when
necessary. Amazon puts stickers onto the floor that delineate a four-neighbor grid,
on which the robots move essentially without location uncertainty. Human workers
no longer need to move around in such automated warehouses, collecting the right
items under time pressure – a physically demanding job whose automation makes
it possible to store 40 percent more inventory [3] and at least doubles the picking
productivity of the human workers (for example, compared to conveyorized systems)
[148]. Many of the manipulation tasks in warehouses cannot be automated yet, but
the number of human workers required to operate automated warehouses will be
small once they are.
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Automated warehouses need to store as many items as possible, resulting in the
corridors needed to move the shelves being narrow. Robots carrying shelves cannot
pass each other in these corridors, and their movements thus need to be planned
carefully, which can be done centrally. Shelves close to the perimeter can be fetched
faster than shelves in the center. The following questions arise, among others: 1) How
should one move the robots to avoid them obstructing each other and allow them to
reach their goal locations as quickly as possible to maximize throughput? 2) Where
should one place the corridors to maximize throughput? 3) Which picking station
should one use for a given order? 4) Which one of several possible shelves should
one fetch to obtain an item for a given order? 5) Which robots should one use to
fetch a given shelf for a given order? 6) On which shelves should one put items when
restocking items? 7) Where should one place a given shelf to maximize throughput,
so that shelves that contain frequently ordered items can be fetched fast? 8) When
should one start to process a given order given that different orders have different
delivery deadlines? 9) How should one estimate the time that it takes a robot to fetch
a shelf and a human worker to pick an item, especially since the picking time varies
over the course of a shift?

AI techniques, such as those for multi-agent systems, can help make these deci-
sions. For example, the layout optimization problem of Question 2 can be solved with
GAs, and the scheduling problems of Questions 3-8 can be solved optimally with
MIP techniques or suboptimally with versions of hill climbing. Possible techniques
for Question 1 have been studied in the context of the NP-hard multi-agent path
finding (MAPF) problem, and are described in more detail below.

Centralized MAPF planning techniques plan paths for all robots. Efficient tech-
niques exist but do not result in movement plans with quality guarantees. Examples
include techniques based on either movement rules [28, 144] or planning paths for
one robot after the other, where each path avoids collisions with the paths already
planned (prioritized search) [79]. Search can also be used to find movement plans
with quality guarantees, but its runtime can then scale exponentially in the number of
robots [154, 80]. For example, searching a graph that represents tuples of locations
(one for each robot) with vertices is prohibitively slow. Instead, one often divides the
overall MAPF problem into mostly independent subproblems by planning a shortest
path for each robot under the assumption that the other robots do not exist. If the
resultingmovement plan has no collisions, then it is optimal. Otherwise, one needs to
resolve the collisions. One collision-resolution technique groups all colliding robots
into a team and plans for them jointly [126, 127], thus avoiding collisions among
them in the future. Another collision-resolution technique chooses one of the col-
lisions, for example, one where two robots are in the same location G at the same
time C [121]. It then chooses one of two robots and recursively considers two cases,
namely one where the chosen robot is not allowed to be at location G at time C and
one where it must be at location G at time C and the other robots are not allowed
to be at location G at time C (disjoint splitting) [76], thus avoiding this collision in
the future. The runtime of the search depends on the choice of collision and robot,
but choosing them well is poorly understood and can be slow. Machine learning can
be used to make good choices fast [55]. Finally, movement plans with and without
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quality guarantees can also be found by translating MAPF instances into different
optimization instances, such as IPs [153] or SAT instances [130].

Decentralized (and distributed) MAPF planning techniques allow each robot to
plan for itself, which avoids the issue of centralized planning that a multi-agent
system fails if the central planner fails. One decentralized MAPF planning technique
uses deep RL to learn a policy that maps the current state to the next movement of
the robot, similar to how Deepmind (which is now part of Google) learned to play
Atari video games [93]. The state is characterized by information such as the goal
location of the robot, the locations of the other robots and their goal locations, and
the locations of the obstacles – all in a field of view centered on the location of the
robot. All robots use the same policy. Learning it takes time but needs to be done
only once. Afterward, it allows for the quick retrieval of the next movement of the
robot based on the current state. A combination of deep RL and learning a policy
that imitates the movement plans found by a search technique (imitation learning)
works even better but is still incomplete [117].

5 AI History

The state-of-the-art in AI, as described so far, has evolved over a period of more
than 60 years. In the 1940s and 1950s, researchers worked on creating artificial
brains. In 1950, Alan Turing published his paper “Computing Machinery and Intel-
ligence” [136], that asked whether machines could think and introduced the imitation
game (Turing test) to determine whether a computer is intelligent or, in our terminol-
ogy, a believable agent, namely if a human judge who corresponds via text messages
with two conversation partners, a human participant and a computer, cannot deter-
mine who is who. In 1956, the term AI was introduced at the Dartmouth conference
to name the newly created research field. AI was driven by the belief that “a phys-
ical symbol system has the necessary and sufficient means for general intelligent
action” [99], that logic provides a good means for knowledge representation, and
that reasoning can be achieved with search. In 1958, the AI programming language
Lisp was introduced. In the 1960s, AI thrived, but, in the 1970s, the first period of
pessimism characterized by reduced funding and interest in AI (AI winter) hit due
to lack of progress caused by the limited scalability of AI systems and the limited
expressiveness of perceptrons. In the 1980s, AI thrived again, due to expert systems
and their applications utilizing hand-coded knowledge to overcome the scalability
issues, starting an era of knowledge-intensive systems. In the 1980s, the backprop-
agation technique was re-invented and broadly discovered. It allowed one to train
networks of perceptrons, overcoming the limited expressiveness of single percep-
trons, starting the research field of connectionism, that provided an alternative to the
physical symbol system hypothesis. In the late 1980s and early 1990s, the second
AI winter hit due to a slowdown in the deployment of expert systems (since it was
challenging to build expert systems for complex domains with uncertainty) and the
collapse of the Lisp machine market (since many AI systems can easily be imple-
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mented with conventional programming languages on conventional computers). In
the 1990, AI started to thrive again, due to probabilistic reasoning and planning
replacing deterministic logic-based reasoning and planning, and machine learning
replacing knowledge acquisition via the work-intensive and error-prone interviewing
of experts and hand-coding of their knowledge. Lots of data became available due
to the networking of computers via the internet and the pervasiveness of mobile de-
vices, starting an era of big data and compute-intensive machine learning techniques
to understand and exploit them, such as deep learning with CNNs, resulting in many
newAI applications. In fact, it was argued that a substantial increase in the amount of
training data can result in much better predictions than improved machine learning
techniques [6, 47]. In 2017, the One Hundred Year Study on AI, a long-term effort
to study and predict how AI will affect society, issued its first AI Index Report. Its
reports show that the number of annual AI publications increased around nine-fold
from 1996 to 2017 [122] and the attendance at the machine learning conference
NeurIPS increased about eight-fold from 2012 to 2019 [103]. The funding for AI
startups increased more than thirty-fold from 2010 to 2018 worldwide [103]. As a
result, the percentage of AI-related jobs among all jobs in the US increased about
five-fold from 2010 to 2019 [103].

6 AI Achievements

The strength of game-playing AI is often used to evaluate the progress of AI as
a whole, probably because humans can demonstrate their intellectual strength by
winning games. Many initial AI successes were for board games. In the late 1950s,
a Checkers program achieved strong amateur level [115]. In the 1990s, the Othello
program BILL [73] defeated the highest-ranked US player, the Checkers program
Chinook [118] defeated the world champion, and the chess program DeepBlue [18]
defeated the world champion as well [103]. There have been lots of AI successes
for non-board games as well. In the 2010s, the Jeopardy! program Watson beat two
champions of this question-answer game show [33]. The Poker programs Libra-
tus [15] and DeepStack [95] beat professional players of this card game [103]. A
program that played 49 Atari video games demonstrated human-level performance
at these early video games by learning directly from video frames [93], the Go pro-
gram AlphaGo beat one of the world’s best Go players of this board game [123], and
the Starcraft II program AlphaStar reached Grandmaster level at this modern video
game [141].

AI systems now affect all areas of everyday life, industry, and beyond, with
especially large visibility in the areas of autonomous driving and intelligent voice
assistants. In the 1990s, the Remote Agent controlled a NASA spacecraft without
human supervision [11]. Also in the 1990s, a car drove from Pittsburgh to San Diego,
with only 2% of the 2,850 miles steered by hand [58]. In the 2000s, several cars
autonomously completed the 132-mile off-road course of the second DARPA Grant
Challenge and the subsequent DARPAUrban challenge, that required them to drive in
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realistic urban traffic and perform complexmaneuvers [16, 94, 134]. In 2018,Waymo
cars autonomously drove over 10 million miles on public roads [70], and, in 2020,
Waymo announced that it would open its fully driverless service to the general public
[74]. Data from GPS devices and other sensors are now used to estimate current and
future traffic conditions [51, 52] and improve public transportation systems [10].

Intelligent voice assistants, such as Amazon Alexa, recognize speech and help
their users with a variety of tasks, including finding nearby restaurants and placing
orders with them [9, 53].

In 2019, a study found that the diagnostic performance of deep NNs when clas-
sifying diseases from medical imaging data had likely matched that of health-care
professionals [78].

The future is always difficult to predict. In a survey of all authors of the machine
learning conferences ICML and NeurIPS in 2015, Asian respondents predicted that
unaided machines would be able to accomplish every individual task better and
more cheaply than human workers by 2046 with 50 percent probability, while North
American authors predicted that it would happen only by 2090 with 50 percent
probability [43].

7 AI Ethics

AI can result in cheaper, better performing, more adaptive, more flexible, and more
general automation solutions than more traditional automation techniques. Its in-
creasing commercialization has raised a variety of ethical concerns, as the following
examples demonstrate in the context of driverless cars: 1) Adding a small amount
of noise to images that is not noticeable by humans can change image recognition
results dramatically, which might result in driverless cars not recognizing stop signs
that have been slightly altered, for example, unintentionally with dirt or intentionally
with chewing gum [100]. 2) Driverless trucks might replace millions of truck drivers
in the future [68]. AI also creates jobs, but they often require different skill sets
than the eliminated ones [145]. 3) Driverless cars might have to make split-second
decisions on how to avoid accidents. If a child suddenly runs onto the road, they
might have to decide whether to hit the child or avoid it and potentially injure their
passengers (trolley problem [5, 132]), which ideally requires explicit ethical judg-
ment on their part [30]. Of course, other applications have also raised concerns: 1)
Microsoft’s learning chatbot Tay made racist remarks after less than a day on Twitter
[90], and 2) a tinder chatbot promoted the movie “Ex Machina” by pretending to
be a girl on an online dating site [29]. 3) Significantly fewer women than men were
shown online ads promoting well-paying jobs [87], and 4) decision-support systems
wrongly labeled more African-American than Caucasian arrested people as potential
re-offenders [104], which affects their bail bonds. Overall, AI systems can process
large quantities of data, detect regularities in them, draw inferences from them, and
determine effective courses of action – sometimes as part of hardware that is able to
perform many different, versatile, and potentially dangerous actions. The behavior



42 Contents

of AI systems can also be difficult to validate, predict, or explain since they are
complex, reason in ways different from humans, and can change their behavior with
learning. Finally, their behavior can also be difficult to monitor by humans in case
of fast decisions, such as buy and sell decisions on stock markets. Therefore, one
needs to worry about the reliability, robustness, and safety of AI systems, provide
oversight of their operation, ensure that their behavior is consistent with social norms
and human values, determine who is liable for their decisions, and ensure that they
impact the standard of living, distribution, and quality of work and other social and
economic aspects in a positive way. (The previous four sentences were rephrased
from [17].) The World Economic Forum, for example, has identified the following
nine important ethical issues raised by AI [13]:1) Unemployment. What happens
after the end of jobs? 2) Inequality: How do we distribute the wealth created by
machines? 3) Humanity: How do machines affect our behavior and interaction? 4)
Artificial stupidity: How can we guard against mistakes? 5) Racist robots: How do
we eliminate AI bias? 6) Security: How do we keep AI safe from adversaries? 7)
Evil genies: How do we protect against unintended consequences? 8) Singularity:
How do we stay in control of a complex intelligent system? 9) Robot rights: How do
we define the humane treatment of robots?

These issues have resulted in the AI community focusing more on the explain-
ability and fairness of decisions made by AI systems and starting conferences such
as the AAAI/ACM AI, Ethics, and Society (AIES) conference, policy makers trying
to regulate AI and its applications, and the IEEE Global Initiative on Ethics of Au-
tonomous and Intelligent Systems creating guidelines and standards for “ethically
aligned design” [22] to help designers and developers with the creation of AI sys-
tems and safeguard them from liability. In general, philosophy has studied ethics
for a long time and the resulting theories apply in this context as well, such as de-
ontology (law-based ethics, as exemplified by Asimov’s three laws of robotics [4]),
consequentialism (utilitarian ethics), and teleological ethics (virtue ethics) [152].

Further Reading

See [112], the most popular and very comprehensive AI textbook, for in-depth
information on AI and its techniques. We followed it in our emphasis of rational
agents and the description of the history of AI in Section 5. See [56, 88, 92] for
additional AI applications in automation.
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95. Moravčík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D., Bard, N., Davis, T., Waugh,
K., Johanson, M., Bowling, M.: DeepStack: Expert-level artificial intelligence in heads-up
no-limit Poker. Science 356(6337), 508–513 (2017)

96. Munir, A., Gordon-Ross, A.: AnMDP-based dynamic optimization methodology for wireless
sensor networks. IEEE Transactions on Parallel and Distributed Systems 23(4), 616–625
(2012)

97. Nägeli, T., Meier, L., Domahidi, A., Alonso-Mora, J., Hilliges, O.: Real-time planning for
automated multi-view drone cinematography. ACM Transactions on Graphics 36(4) (2017)

98. Nannapaneni, S., Mahadevan, S., Rachuri, S.: Performance evaluation of a manufacturing
process under uncertainty using Bayesian networks. Journal of Cleaner Production 113,
947–959 (2016)

99. Newell, A., Simon, H.A.: Computer science as empirical inquiry: Symbols and search. Com-
munication of the ACM 19(3), 113–126 (1976)

100. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-
box attacks against machine learning. In: ACM on Asia Conference on Computer and
Communications Security, pp. 506–519 (2017)

101. Pechoucek, M., Rehak, M., Charvat, P., Vlcek, T., Kolar, M.: Agent-based approach to
mass-oriented production planning: Case study. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 37(3), 386–395 (2007)



Contents 49

102. Peer, J.: A PDDL based tool for automatic web service composition. In: Principles and
Practice of Semantic Web Reasoning, pp. 149–163 (2004)

103. Perrault, R., Shoham, Y., Brynjolfsson, E., Clark, J., Etchemendy, J., Grosz, B., Lyons, T.,
Manyika, J., Mishra, S., Niebles, J.C.: The AI index 2019 annual report. Tech. rep., Stanford
University (2019)

104. Piano, S.L.: Ethical principles in machine learning and artificial intelligence: Cases from the
field and possible ways forward. Humanities and Social Sciences Communications 7(1), 1–7
(2020)

105. Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming. Springer
(2006)

106. Radhakrishnan, S., Bharadwaj, V.,Manjunath, V., Srinath, R.: Creative intelligence – automat-
ing car design studio with generative adversarial networks (GAN). In: Machine Learning and
Knowledge Extraction, pp. 160–175 (2018)

107. Ravikumar, S., Ramachandran, K.I., Sugumaran, V.: Machine learning approach for auto-
mated visual inspection of machine components. Expert Systems with Applications 38(4),
3260–3266 (2011)

108. Reddy, S., Gal, Y., Shieber, S.M.: Recognition of users’ activities using constraint satisfaction.
In: G.J. Houben, G. McCalla, F. Pianesi, M. Zancanaro (eds.) International Conference on
User Modeling, Adaptation, and Personalization, pp. 415–421 (2009)

109. Reyes, A., Ibargüengoytia, P.H., Sucar, L.E.: Power plant operator assistant: An industrial
application of factoredMDPs. In:Mexican International Conference onArtificial Intelligence,
pp. 565–573 (2004)

110. Rintanen, J.: Planning as satisfiability: Heuristics. Artificial Intelligence 193, 45–86 (2012)
111. Russell, E.L., Chiang, L.H., Braatz, R.D.: Fault detection in industrial processes using canoni-

cal variate analysis and dynamic principal component analysis. Chemometrics and Intelligent
Laboratory Systems 51(1), 81–93 (2000)

112. Russell, S.J., Norvig, P.: Artificial intelligence: A modern approach, fourth edn. Pearson
(2021)

113. Sakai, Y., Nonaka, Y., Yasuda, K., Nakano, Y.I.: Listener agent for elderly people with
dementia. In: ACM/IEEE International Conference on Human-Robot Interaction, pp. 199–
200 (2012)

114. Salcedo-Sanz, S., Rojo-Álvarez, J.L., Martínez-Ramón, M., Camps-Valls, G.: Support vector
machines in engineering: An overview. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 4(3), 234–267 (2014)

115. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development 3(3), 211–229 (1959)

116. Santoso, A.F., Supriana, I., Surendro, K.: Designing knowledge of the PPC with semantic
network. Journal of Physics: Conference Series 801, 12015 (2017)

117. Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Kumar, S., Koenig, S., Choset, H.: PRIMAL:
Pathfinding via reinforcement and imitation multi-agent learning. IEEE Robotics and Au-
tomation Letters 4(3), 2378–2385 (2019)

118. Schaeffer, J., Lake, R., Lu, P., Bryant, M.: CHINOOK: The world man-machine Checkers
champion. AI Magazine 17(1), 21–29 (1996)

119. Schmitt, P.H.: First-order logic. In: Deductive Software Verification, pp. 23–47. Springer
(2016)

120. Seto, E., Leonard, K.J., Cafazzo, J.A., Barnsley, J., Masino, C., Ross, H.J.: Developing
healthcare rule-based expert systems: Case study of a heart failure telemonitoring system.
International Journal of Medical Informatics 81(8), 556–565 (2012)

121. Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence 219, 40–66 (2015)

122. Shoham, Y., Perrault, R., Brynjolfsson, E., Clark, J., LeGassick, C.: The AI index 2017 annual
report. Tech. rep., Stanford University (2017)

123. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,



50 Contents

J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature
529, 484–489 (2016)

124. Soh, L.K., Tsatsoulis, C., Gineris, D., Bertoia, C.: ARKTOS: An intelligent system for SAR
sea ice image classification. IEEE Transactions on Geoscience and Remote Sensing 42(1),
229–248 (2004)

125. Srinivasu, D., Babu, N.R.: A neuro-genetic approach for selection of process parameters in
abrasive waterjet cutting considering variation in diameter of focusing nozzle. Applied Soft
Computing 8(1), 809–819 (2008)

126. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: AAAI
Conference on Artificial Intelligence, pp. 173–178 (2010)

127. Standley, T., Korf, R.: Complete algorithms for cooperative pathfinding problems. In: Inter-
national Joint Conference on Artificial Intelligence, pp. 668–673 (2011)

128. Stricker, N., Kuhnle, A., Sturm, R., Friess, S.: Reinforcement learning for adaptive order
dispatching in the semiconductor industry. CIRP Annals 67(1), 511–514 (2018)

129. Sugumaran, V., Muralidharan, V., Ramachandran, K.: Feature selection using decision tree
and classification through proximal support vector machine for fault diagnostics of roller
bearing. Mechanical Systems and Signal Processing 21(2), 930–942 (2007)

130. Surynek, P.: Reduced time-expansion graphs and goal decomposition for solving cooperative
path finding sub-optimally. In: International Joint Conference on Artificial Intelligence, pp.
1916–1922 (2015)

131. Tchertchian, N., Yvars, P.A., Millet, D.: Benefits and limits of a constraint satisfaction prob-
lem/life cycle assessment approach for the ecodesign of complex systems: A case applied to
a hybrid passenger ferry. Journal of Cleaner Production 42, 1–18 (2013)

132. Thomson, J.J.: The trolley problem. The Yale Law Journal 94(6), 1395–1415 (1985)
133. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, chap. Application to Robot Control,

pp. 503–507. MIT Press (2005)
134. Thrun, S., Montemerlo,M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J.,

Halpenny,M., Hoffmann,G., Lau, K., Oakley, C., Palatucci,M., Pratt, V., Stang, P., Strohband,
S., Dupont, C., Jendrossek, L.E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen,
E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney,
P.: Stanley: The robot that won the DARPA grand challenge. Journal of Field Robotics 23(9),
661–692 (2006)

135. Tsiourti, C., Moussa, M.B., Quintas, J., Loke, B., Jochem, I., Lopes, J.A., Konstantas, D.: A
virtual assistive companion for older adults: Design implications for a real-world application.
In: SAI Intelligent Systems Conference, pp. 1014–1033 (2016)

136. Turing, A.M.: Computing Machinery and Intelligence. Mind LIX(236), 433–460 (1950)
137. Umarov, I., Mozgovoy, M.: Believable and effective AI agents in virtual worlds: Current

state and future perspectives. International Journal of Gaming and Computer-Mediated
Simulations 4(2), 37–59 (2012)

138. Vardoulakis, L.P., Ring, L., Barry, B., Sidner, C.L., Bickmore, T.W.: Designing relational
agents as long term social companions for older adults. In: International Conference on
Intelligent Virtual Agents, pp. 289–302 (2012)

139. Vecchi, M.P., Kirkpatrick, S.: Global wiring by simulated annealing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 2(4), 215–222 (1983)

140. Vembandasamy, K., Sasipriya, R., Deepa, E.: Heart diseases detection using naïve Bayes
algorithm. International Journal of Innovative Science, Engineering & Technology 2(9),
441–444 (2015)

141. Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung, J., Choi,
D.H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J.P., Jaderberg, M., Vezhnevets, A.S., Leblond, R.,
Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y., Molloy, J., Paine, T.L., Gulcehre, C., Wang,
Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul,
T., Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C., Silver, D.: Grandmaster level in
StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019)



Contents 51

142. Wang, C., Wang, L., Qin, J., Wu, Z., Duan, L., Li, Z., Cao, M., Ou, X., Su, X., Li, W., Lu,
Z., Li, M., Wang, Y., Long, J., Huang, M., Li, Y., Wang, Q.: Path planning of automated
guided vehicles based on improved a-star algorithm. In: IEEE International Conference on
Information and Automation, pp. 2071–2076 (2015)

143. Wang, G., Hasani, R.M., Zhu, Y., Grosu, R.: A novel Bayesian network-based fault prognostic
method for semiconductor manufacturing process. In: IEEE International Conference on
Industrial Technology, pp. 1450–1454 (2017)

144. Wang, K., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability
and completeness guarantees. Journal of Artificial Intelligence Research 42, 55–90 (2011)

145. Wilson, H.J., Daugherty, P.R., Morini-Bianzino, N.: The jobs that artificial intelligence will
create. MIT Sloan Management Review 58(4), 14–16 (2017)

146. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation 1(1), 67–82 (1997)

147. Wong, V.W., Ferguson, M., Law, K., Lee, Y.T.T., Witherell, P.: Automatic volumetric seg-
mentation of additive manufacturing defects with 3D U-Net. In: AAAI Spring Symposium
on AI in Manufacturing (2020)

148. Wurman, P., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous
vehicles in warehouses. AI Magazine 29(1), 9–20 (2008)

149. Xu, J., Rahmatizadeh, R., Bölöni, L., Turgut, D.: Real-time prediction of taxi demand using
recurrent neural networks. IEEE Transactions on Intelligent Transportation Systems 19(8),
2572–2581 (2018)

150. Yang, B.S., Di, X., Han, T.: Random forests classifier for machine fault diagnosis. Journal of
Mechanical Science and Technology 22(9), 1716–1725 (2008)

151. Younes, H.L.S., Littman, M.L.: PPDDL1.0: an extension to PDDL for expressing planning
domains with probabilistic effects. Tech. rep., Carnegie Mellon University (2004)

152. Yu, H., Shen, Z., Miao, C., Leung, C., Lesser, V.R., Yang, Q.: Building ethics into artificial
intelligence. In: International Joint Conference on Artificial Intelligence, pp. 5527–5533
(2018)

153. Yu, J., LaValle, S.: Planning optimal paths for multiple robots on graphs. In: IEEE Interna-
tional Conference on Robotics and Automation, pp. 3612–3617 (2013)

154. Yu, J., LaValle, S.: Structure and intractability of optimalmulti-robot path planning on graphs.
In: AAAI Conference on Artificial Intelligence, pp. 1444–1449 (2013)

155. Yusuf, S., Brown, D.J., Mackinnon, A., Papanicolaou, R.: Fault classification improvement
in industrial condition monitoring via hidden Markov models and naïve Bayesian modeling.
In: IEEE Symposium on Industrial Electronics & Applications, pp. 75–80 (2013)

156. Yvars, P.A.: Using constraint satisfaction for designing mechanical systems. International
Journal on Interactive Design and Manufacturing 2, 161–167 (2008)

157. Zhao, Y., Collins, E.G.: Fuzzy PI control design for an industrial weigh belt feeder. IEEE
Transactions on Fuzzy Systems 11(3), 311–319 (2003)

158. Zhao, Z., Yu, Z., Sun, Z.: Research on fuzzy road surface identification and logic control for
anti-lock braking system. In: IEEE International Conference on Vehicular Electronics and
Safety, pp. 380–387 (2006)

159. Zhou, Z., Wen, C., Yang, C.: Fault detection using random projections and k-nearest neigh-
bor rule for semiconductor manufacturing processes. IEEE Transactions on Semiconductor
Manufacturing 28(1), 70–79 (2014)

160. Zolpakar, N.A., Lodhi, S.S., Pathak, S., Sharma, M.A.: Application of multi-objective genetic
algorithm (MOGA) optimization in machining processes. In: Optimization of Manufacturing
Processes, pp. 185–199. Springer (2020)



52 Contents

Author Biographies

Sven Koenig is a professor in computer science at the University of
Southern California. His research focuses on AI techniques for making
decisions that enable single situated agents (such as robots or decision-
support systems) and teams of agents to act intelligently in their environ-
ments and exhibit goal-directed behavior in real-time, even if they have
only incomplete knowledge of their environments, imperfect abilities to
manipulate them, limited or noisy perception, or insufficient reasoning speed.

Shao-Hung Chan is a Ph.D. student in computer science at the Uni-
versity of Southern California. He received a Bachelor of Science degree
from National Cheng-Kung University in 2017 and a Master of Science
degree from National Taiwan University in 2019. His research focuses
on designing planning techniques for real-world applications, including
hierarchical planning techniques that allow teams of agents to navigate
without collisions.

Jiaoyang Li is a Ph.D. student in computer science at the University
of Southern California. She received a Bachelor’s degree in automa-
tion from Tsinghua University in 2017. Her research is on multi-agent
systems and focuses on developing efficient planning techniques that
enable hundreds of autonomous robots to fulfill navigation requests
without collisions.

Yi Zheng is a Ph.D. student in computer science at the University
of Southern California. He received a Bachelor of Science degree in
computer science from the University of Southampton in 2019. His
research focuses on developing scalable planning techniques for multi-
agent systems. He is also interested in applying machine learning to
multi-agent planning problems.


