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Abstract

We study the classical edge-searching pursuit-evasion problem where
a number of pursuers have to clear a given graph of fast-moving evaders
despite poor visibility, for example, where robots search a cave system to
ensure that no terrorists are hiding in it. We study when polynomial-time
algorithms exist to determine how many robots are needed to clear a given
graph (minimum robot problem) and how a given number of robots should
move on the graph to clear it with either a minimum sum of their travel
distances (minimum distance problem) or minimum task-completion time
(minimum time problem). The robots cannot clear a graph if the vertex
connectivity of some part of the graph exceeds the number of robots.
Researchers therefore focus on graphs whose subgraphs can always be
cut at a limited number of vertices, that is, graphs of low treewidth,
typically trees. We describe an optimal polynomial-time algorithm, called
CLEARTHETREE, that is shorter and algorithmically simpler than the
state-of-the-art algorithm for the minimum robot problem on unit-width
unit-length trees. We then generalize prior research to both unit-width
arbitrary-length and unit-length arbitrary-width graphs and derive both
algorithms and time complexity results for a variety of graph topologies.
Pursuit-evasion problems on the former graphs are generally simpler than
pursuit-evasion problems on the latter graphs. For example, the minimum
robot and distance problems are solvable in polynomial time on unit-width
arbitrary-length trees but NP-hard on unit-length arbitrary-width trees.

1 Introduction

Pursuit evasion or, synonymously, graph searching is an important problem in
robotics [36], agents [34] and artificial intelligence [15]. As described by an
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empirical robotics researcher, consider “. . . the problem of closing a museum for
the night. In order to be sure that no thieves or other malcontents remain inside
after closing, the guards must perform a thorough search of the building. They
must keep in mind that any intruders may try to avoid the guards. For example,
if a guard is checking each room along a hall, an intruder might sneak behind the
guard while he is checking one room and hide in a room that was already checked.
In this case, one solution might be to use two guards, with one always keeping
watch on the hall. . . . we are interested in scalable techniques for coordinating
the actions of teams of robots to clear entire buildings.” [14] Pursuit evasion
is important for many other practical applications as well [17], and teams of
robots can solve pursuit-evasion problems automatically in a secure, reliable and
efficient way, which explains the interest of empirical robotics researchers in the
topic. For example, several robotics groups have implemented pursuit-evasion
algorithms on actual robots; see the section on “Real Systems” in [23] and the
workshop on “Search and Pursuit/Evasion in the Physical World: Efficiency,
Scalability, and Guarantees” at the IEEE International Conference on Robotics
and Automation in 2010.

There are two main classes of pursuit-evasion algorithms. Visibility-based
pursuit-evasion algorithms still have severe limitations for practical applications
[23]. Graph-based pursuit-evasion algorithms depend on being able to construct
an appropriate graph from the terrain but several approaches exist for this pur-
pose [24] [27] [28], making them interesting for practical applications. Many
different assumptions about the capabilities of the robots and evaders are pos-
sible. Pursuit-evasion algorithms often make worst-case assumptions about the
evaders, such as their number and movement capabilities, making them inter-
esting if no information about the evaders is available and it is important not
to miss any evader. In terms of the other assumptions, we use a classic (and the
oldest) version of the pursuit-evasion problem in the literature, which provides
a clean formulation of the pursuit-evasion problem that is amenable to rigor-
ous analysis. In particular, we study a formulation of pursuit-evasion problems
where a number of pursuers have to clear (decontaminate) a given graph of fast-
moving evaders despite poor visibility [33]. Applications, besides our motivating
application above, include finding confused elderly people who wander off, cap-
turing fleeing animals, locating lost team members of first response teams or
survivors in disaster scenarios, and finding terrorists in cave systems. They also
include containing poisonous gas in a building, and tracking and destroying a
computer virus on a computer network. Consider, for example, a scenario where
robots search a known but twisty cave system to ensure that no terrorists are
hiding in it. The robots are the pursuers, and the terrorists are the evaders.
The cave system can be modeled as a graph with vertices that have widths and
edges that have both widths and lengths. Figure 1 illustrates the concepts of
edge widths and lengths for robots of the size of the grey squares in narrow cave
tunnels. The robots and evaders move on the edges of this graph and are able
to stop or change directions anywhere on the edges. The robots know the graph
but not how many evaders are present. They must catch all evaders despite
zero visibility, that is, robots are unable to detect the locations of evaders prior
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to capturing them. Initially, the entire graph is potentially contaminated. The
evaders can hide anywhere on the vertices or edges. They cannot be seen by the
robots and can move faster than them, with unbounded speed. They get caught
only if they collide with a number of robots at a vertex or the same point on
an edge that is no smaller than the width of the vertex or edge, respectively.
Thus, a vertex of width k can be guarded by at least k robots that wait at the
vertex, and an edge of width k can be cleared by at least k robots that move
along the edge in the same direction. The robots move at unit speed. Their
travel times or distances are thus equal to the lengths of their paths. A solution
of the pursuit-evasion problem is a movement strategy for a given number of
robots with given start vertices on a given graph that enables them to clear the
graph, that is, either ensure that no evaders are present or catch them all. This
is a common and very general model of pursuit-evasion problems on graphs. For
example, a solution remains a solution even if the evaders can be seen by the
robots over longer distances or can move only slowly.

We study three optimization problems, namely how many robots are needed
to clear a given graph (minimum robot problem) and how a given number of
robots should move on the graph to clear it with either a minimum sum of their
travel distances (minimum distance problem) or minimum task-completion time
(minimum time problem), depending on the desired cost objective. These three
problems can be defined more precisely as follows:

• Minimum robot problem: Given input graph G, determine the fewest
robots r such that a solution exists for clearing G using r robots.

• Minimum distance problem: Given input graph G and number of robots
r, determine the shortest total distance d such that a solution exists for
clearing graph G using r robots so that the sum of travel distances is at
most d. Special case: If it is not possible to clear graph G using r robots,
then the minimum distance is ∞.

• Minimum time: Given input graph G and number of robots r, determine
the shortest time t such that a solution exists for clearing graph G using
r robots within at most t time units. Special case: If it is not possible to
clear graph G using r robots, then the minimum time is ∞.

All the algorithms in this paper will be constructive, that is, they can be used
to construct a solution whenever one exists.

Consider, for example, the graph in Figure 2. All vertices and edges have
width one, with one exception: e1 has width 2. Four robots starting at vertex
t1 can clear the graph in many ways. One possible solution is the following
one: At time 0, send two robots from t1 to t2 along e1 and one robot from t1
to t2 along e4 to e8. At time 5, send one robot from t2 to t1 along e2 and one
robot from t2 to t1 along e3. The resulting task-completion time for clearing
the graph is 6 and the sum of travel distances is 9. Another possible solution
is the following one: At time 0, send two robots from t1 to t2 along e1 and one
robot from t1 to t2 along e2. At time 1, send one robot from t2 to t1 along e2.
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Figure 2: Example Graph

At time 2, send one robot from t1 to t2 along e3, one robot from t2 to t1 along
e3, one robot from t1 to t2 along e4 to e6 and one robot from t2 to t1 along e8
to e6. The resulting task-completion time for clearing the graph is 4.5 and the
sum of travel distances is 10.

The robots cannot clear a graph if the vertex connectivity of some part of
the graph exceeds the number of robots. For instance, suppose that the graph
contains a K7 subgraph, as shown in Figure 3. Between any two vertices in
that subgraph there are six vertex-disjoint connecting paths, so five robots can
not catch an evader. For example, if an evader is currently located at vertex
A and the five pursuers are at vertices B,C,D,E and F, then the evader could
escape to vertex G. Prior research has therefore rightfully studied graphs whose
subgraphs can always be cut at a limited number of vertices, that is, graphs
of low treewidth. It has focused on the minimum robot problem on unit-width
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unit-length graphs (where all vertices and edges have width one and all edges
have length one). It has shown that the pursuit-evasion problem is NP-hard on
such graphs in general and can be solved in polynomial time on trees.

Our objective is to provide a catalog of algorithmic and complexity results
for several variations of pursuit-evasion problems on several classes of graphs.
In Section 3, we describe a linear-time algorithm, called CLEARTHETREE,
that solves the minimum robot problem on unit-width unit-length trees and is
shorter and algorithmically simpler than the state-of-the-art algorithm [31]. In
Section 4, we then either develop polynomial-time algorithms or prove the NP-
hardness of the minimum robot, distance and time problems on both unit-width
arbitrary-length and arbitrary-width unit-length graphs of a variety of simple
topologies, including paths, cycles, stars, trees, two-vertex multi-graphs, series-
parallel graphs, and cliques. Pursuit-evasion problems on unit-width arbitrary-
length graphs are often simpler than pursuit-evasion problems on arbitrary-
width unit-length graphs. For example, the minimum distance problem is solv-
able in polynomial time on unit-width arbitrary-length trees but NP-hard on
arbitrary-width unit-length trees. In this paper we only consider graphs that
are connected; Figure 4 illustrates the different graph topologies. A path has two
vertices with degree 1, and each remaining vertex has degree 2. In a cycle, every
vertex has degree 2. A star has a central vertex, and an edge from the central
vertex to each other vertex. In a tree, no subset of vertices forms a cycle. A
clique (or complete graph) has an edge between every pair of vertices. In a two-
vertex multi-graph, multiple edges may exist between the two vertices. Finally, a
series-parallel graph is constructed inductively from individual edges by apply-
ing series, parallel, and/or jackknife operations as illustrated in Figure 5. Each
operation takes two subgraphs G1, G2, each having two special vertices (shown
with double boxes), and joins them by merging these special vertices as pictured.
Both the series and parallel operations can be generalized to arities larger than
two. So for example, the series-parallel graph in Figure 4 can be constructed
as p(s(e, e, e, e), e, s(e, p(s(e, e), s(e, e, e)), e)); and the star in Figure 4, which
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is also a series-parallel graph, can be constructed as j(j(j(j(j(e, e), e), e), e), e).
Within each expression, each occurrence of e denotes a new distinct edge.

Our main contribution is to generalize the assumptions made by prior re-
search to make them more realistic, while maintaining a clean formulation of
the pursuit-evasion problem that is amenable to rigorous analysis. Our time
complexity results go beyond unit-width unit-length graphs by applying to more
realistic graphs, namely unit-width arbitrary-length graphs and arbitrary-width
unit-length graphs. They also go beyond the minimum robot problem by apply-
ing also to the minimum time and distance problems, an important extension
as pointed out in [28]. Given that all of these problems turn out to be NP-
hard on general graphs, it is important to understand whether they remain
NP-hard even for restricted classes of topologies that are subsets of topologies
encountered for practical applications. If so, then one needs to concentrate on
developing heuristic or approximation algorithms for practical applications since
robots need to solve time-sensitive problems with a small sum of planning and
plan-execution time.

2 Related Work

Our version of the pursuit-evasion problem, called edge searching in the liter-
ature, is the oldest one [33]. The minimum robot problem has been studied
extensively for edge searching on unit-width unit-length graphs. The smallest
number of robots needed to clear a given graph is called its edge search num-
ber. The decision version of the minimum robot problem is in NP since there
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Figure 5: Series, Parallel, and Jackknife Operations

exists a solution for the smallest number of robots where no edge gets recon-
taminated [29] [4]. Each step of a solution can have the form “send k robots
along edge e”. If any solution exists, then there must be one with a polyno-
mial number of steps. One can thus guess a polynomial-size solution and verify
its correctness in polynomial time. This result can be extended to show that
the decision versions of all pursuit-evasion problems in this paper are in NP.
The decision problem can be solved in linear time on arbitrary graphs for any
constant bound (in time exponential in the bound) [8] [39] but is NP-complete
otherwise [31]. It remains NP-complete for chordal graphs [16], star-like graphs
[16] and planar graphs with maximum degree three [30] [32], as argued in [37] by
exploiting that the edge search number, node search number, vertex separation,
path width and interval thickness of a graph differ by at most a small constant
[10] [20] [4] [22]. It can be solved in polynomial time on cographs [7], permuta-
tion graphs [6], interval graphs [21], k-trees for fixed k [5] and grid graphs [11].
For example, an m-by-n grid graph can be cleared by min(m,n)+ 1 robots. On
trees, both the search number [31] [10] and the corresponding solution [9] [37]
can be determined in linear time. For example, the edge search number of a
graph is identical to the vertex separation of the two-expansion of the graph
(where every edge is replaced with three consecutive edges), an optimal layout
of the two-expansion of the graph can be transformed into an optimal solution
[10] in linear time [37], and an optimal layout can be computed in linear time
for a tree [37].

Many variations of the pursuit-evasion problem other than edge searching
have been considered in the literature, often making different assumptions about
movement or capture. Node searching, for example, assumes that robots and
evaders jump from vertex to adjacent vertex in a fraction of or a single time
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step, and an evader is captured if it is at the same vertex as a robot at some time
[22] [4]. Edge searching is more suited to robot, vehicle or human movement
for which an edge traversal has a physical meaning. Many other variations have
been studied as well [12], but the typical results are the same: NP-hardness
proofs for the minimum robot problem on unit-width unit-length graphs in
general, optimal polynomial-time algorithms for the minimum robot problem on
unit-width unit-length trees, no results for either the minimum time or minimum
distance problems, and very few results on graphs other than unit-width unit-
length graphs.

The concepts of arbitrary vertex and edge widths were introduced in [3],
but the problems studied in that paper differ from the current paper in several
ways: In that publication, the graph must be a tree, all robots must start at
the same location, and that the solution must preserve contiguity (the cleared
portion of the graph must always form a connected subgraph). Based on these
assumptions, that publication develops a linear-time algorithm for the minimum
robot problem. Arbitrary vertex and edge widths are also used in [25] and [26].
In those publications, the operations performed during a solution are called
“sweep” (clear a vertex or region) and “block” (clear an edge or doorway between
regions). The graph must be a tree, but contiguity is not required. These papers
provide polynomial-time algorithms for the minimum robot problem, but the
solutions are not guaranteed to be optimal.

Experimental validations on graphs obtained by discretizing real-world en-
vironments are performed in [18] and [19]. The algorithm in [19] produces a
solution that clears a graph by decreasing the set of contaminated vertices until
this set becomes empty. However, it is not always guaranteed that such a solu-
tion can be found. The algorithm in [18] produces a solution that performs well
both in the worst-case (when the evader is adversarial) and in the average-case
(when the evader moves randomly, assuming a Markovian motion model).

A close relative of the pursuit-evasion problem is the perimeter-guarding
problem [1] [2], where guards also move along edges but intruder speeds are
bounded and intruder movement may not be restricted to the graph. Capture
is different since guards detect intruders within a given radius of capture. In
these problems, it is usually impossible to guarantee that the perimeter will not
be breached. Instead, the objective is to minimize the probability or maximize
the expected time to success for the intruders, usually by means of a randomized
strategy that is not predictable and has desirable game-theoretic properties [35]
[40].

3 Minimum Robots on Unit-Width Unit-

Length Trees

In this section, we study the minimum robot problem on unit-width unit-length
trees (treewidth-1 graphs), the classical setting. We describe a linear-time al-
gorithm, called CLEARTHETREE, that solves the minimum robot problem on
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Label the vertices and edges of T as follows while doing a postorder traversal.

• If v is a leaf then S(v) = {1}. Also Q(v, parent(v)) = 1 if v �= root(T ).

• If v is not a leaf then v has children c1, . . . , ck, where k ≥ 1. Let x be the largest value that
appears in at least two of the S(ci), or 0 if no such value exists. Let y = maxi min(S(ci)),
that is, the largest value that is the minimum of any S(ci).

– If x < y then S(v) =
⋃

i
S(ci) − {1, 2, . . . , y − 1}. Also if v �= root(T ) then

Q(v, parent(v)) = y.

– If x = y and this value appears in exactly two of the S(ci) and is the minimum in

both sets, then let S′ =
⋃

i
S(ci) − {1, 2, . . . , y − 1}.

∗ If v = root(T ) then S(v) = S′.
∗ If v �= root(T ) then let z be the smallest positive integer that is not in S′.

S(v) = S′ − {1, 2, . . . , z − 1} ∪ {z}. Also Q(v, parent(v)) = z.

– Otherwise, either x > y or (x = y and the conditions in the previous case do not

hold). Let z be the smallest integer exceeding x and that is not in
⋃

i
S(ci). S(v) =⋃

i
S(ci) − {1, 2, . . . , z − 1} ∪ {z}. Also if v �= root(T ) then Q(v, parent(v)) = z.

Figure 6: Algorithm CLEARTHETREE

unit-width unit-length trees and is shorter and algorithmically simpler than the
state-of-the-art algorithm [31].

Recall that the minimum robot problem can be solved in linear-time on such
trees [31]. Let Tr denote the smallest tree that requires r robots to clear. So T1

has only one edge, and T2 is a star with three edges. The following results were
obtained in [31]:

• For r ≥ 2, the smallest tree Tr that requires r robots can be obtained
by taking 3 copies of Tr−1 and fusing one leaf from each copy. So Tr has
n = 3r−1 + 1 vertices, and r = 1 + log3(n− 1) = O(lg n).

• If a given tree T can be cleared by r robots, then T can be cleared by r
robots in such a way that, at any instant, all robots lie along a common
path.

• A tree T can be cleared by r robots iff it contains a path P such that
splitting each degree-d vertex of P into d vertices of degree 1 produces a
forest of trees that can each be cleared by r − 1 robots.

We now present a new linear-time algorithm for the minimum robot problem
on trees T , called CLEARTHETREE, that is shorter and algorithmically simpler
than the existing algorithm because it uses a postorder traversal, see Figure 6.
We label each vertex v with a subset S(v) ⊆ {1, 2, . . . , r} where r is the minimum
number of robots. The intuition behind CLEARTHETREE is as follows: First,
when robot number min(S(v)) is at vertex v, the robots numbered in the range
{min(S(v)), . . . ,max(S(v))} will be located within the subtree rooted at v. Also,
any robots numbered above max(S(v)) will be located at ancestors of v. Second,
a robot that clears exactly one child of v should continue up the path to also
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clear v. Third, a robot that clears three or more children of v must not also clear
v, because this would contradict the path conditions stated earlier. Instead, v
must be cleared by some higher-numbered robot, and among such robots that
are available, we choose a robot with the lowest number. Finally, a robot that
clears exactly two children of v might also be able to clear v, thus forming a
single path that changes direction at v. If so, then we must also select another
robot to clear the edge leading upward from v, unless v is the root of the tree.
However, in certain circumstances given in Figure 6, merging two paths at v
would cause a violation of the stated path conditions, and, if so, then this case
is handled identically to the previous case (when a robot clears three or more
children of v).

During execution of CLEARTHETREE, each edge (v, parent(v)) is labeled
with a value Q(v, parent(v)) ∈ {1, 2, . . . , r} where again r is the minimum num-
ber of robots. The label Q(v, parent(v)) denotes which one of the r robots will
be responsible for clearing the edge (v, parent(v)).

CLEARTHETREE first locates the path P along which robot number r
moves. As robot r visits each vertex v along P , robots {1, 2, . . . , r−1} recursively
clear each subtree of v. Also, when robot r visits the vertex v of P nearest to
root(T ), robots {1, 2, . . . , r−1} recursively clear the portion of T that lies above
v, unless v = root(T ).

After CLEARTHETREE runs, T can be cleared using r = max(S(root(T )))
robots. (Note that sometimes a robot is listed in a vertex label S but not in
any incident edge labels.)

Theorem 1 Algorithm CLEARTHETREE solves the minimum robot problem
in linear time for unit-width unit-length trees (indeed, also unit-width arbitrary-
length trees).

Proof sketch: Most of the ideas to prove correctness have been discussed
above. CLEARTHETREE maintains the following invariant: Consider any fea-
sible set of robots that satisfies the same conditions required of S(v). Among all
possible such sets, when sorted into descending order, S(v) is lexicographically
minimum.

To establish the running time, first observe that CLEARTHETREE runs
in O(n · r) time, where the number of robots needed is r = O(lg n). This is
because the time used to determine S(v) at each node v is proportional to the
product of r and the number of v’s children. This assumes each set S(v) is
maintained as a sorted doubly-linked list, so that each union can be performed
in O(r) time. However, a more careful analysis of CLEARTHETREE shows
that it actually runs in O(n) time. The union operation can be implemented to
require at most j comparison steps, where j is the lesser of the maxima of the
two sets whose union is being performed. (Such a union is destructive, that is,
it might destroy the two sets whose union is being taken.) An induction shows
that for 1 ≤ j ≤ r, the number of unions that involve two sets that each contain
a value j or greater is at most 2n/2j. Therefore the total time for all the unions
is at most proportional to
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Figure 7: First Example for CLEARTHETREE

Σ1≤j≤r [j ∗ 2n/2j ] = Σ1≤j≤rΣ1≤i≤j [2n/2
j ]

= Σ1≤i≤rΣi≤j≤r[2n/2
j ] ≤ Σ1≤i≤r [4n/2

i] ≤ 4n = O(n).

�

Next we trace algorithm CLEARTHETREE using two example trees, which
together illustrate all the significant cases that occur within the algorithm.

First see Figure 7 for an example of CLEARTHETREE using tree T4. Sets
S(v) are shown at the vertices, and labels Q(v, parent(v)) are shown along the
edges. The number of robots needed is 4, as computed at the root. During
the solution, robot 4 remains stationed at the root. Robot 3 clears edges (a,b),
(a,c), and (a,d). While robot 3 guards vertex b, robot 2 clears path k→e→l.
When robot 2 guards vertex k, robot 1 clears path q→k→r; when robot 2 guards
vertex e, robot 1 clears edge (e,b); and when robot 2 guards vertex l, robot 1
clears path s→l→t. The other two subtrees are cleared analogously while robot
3 guards vertices c and d.

Also see Figure 8 for another example of CLEARTHETREE. This is the
same tree T4 except that one leaf (bb) is now missing, and so only 3 robots
are needed. During this solution, robot 3 clears path b→a→c. The first two
subtrees are cleared the same as for Figure 11. While robot 3 guards vertex a,
robot 2 clears path o→i→d→a. When robot 2 guards vertex o, robot 1 clears
path y→o→z; when robot 2 guards vertex i, robot 1 clears path aa→p→i; and
when robot 2 guards vertex d, robot 1 clears edge (j,d).
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Figure 8: Second Example for CLEARTHETREE

Arbitrary-Width Unit-Length Graphs Unit-Width Arbitrary-Length Graphs
Minimum Minimum Minimum Minimum Minimum Minimum
Robot Distance Time Robot Distance Time

Paths P P Pseudo-P P P P
Cycles P Pseudo-P Pseudo-P P P P
Stars NP-c, Pseudo-P NP-c Strongly NP-c P P Strongly NP-c
Trees NP-c NP-c Strongly NP-c P* (Open) Strongly NP-c

Two-vertex multi-graphs NP-c, Pseudo-P NP-c Strongly NP-c P P Strongly NP-c
Series-parallel graphs NP-c NP-c Strongly NP-c (Open) (Open) Strongly NP-c

Cliques NP-c NP-c NP-c P P Strongly NP-c
General graphs NP-c* NP-c Strongly NP-c NP-c* NP-c Strongly NP-c

Figure 9: Summary of Results

4 Minimum Robots, Distance and Time on

Unit-Width Arbitrary-Length and Arbitrary-
Width Unit-Length Graphs

In this section, we study the minimum robot, distance and time problem on
unit-width arbitrary-length and arbitrary-width unit-length graphs. Each robot
can start and finish at any vertex of the graph. We either develop optimal
polynomial-time algorithms or prove the NP-hardness for a variety of simple
topologies, including paths, cycles, stars, trees, two-vertex multi-graphs (where
multiple edges may exist between the two vertices), series-parallel graphs, and
cliques. We prove NP-hardness by reduction from well-known NP-hard prob-
lems, such as partition (a weakly NP-hard problem) and 3-partition (a strongly
NP-hard problem). Weakly NP-hard problems might be solved optimally with
pseudo-polynomial-time algorithms, while strongly NP-hard problems cannot
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Figure 10: Hierarchy of Graph Classes

unless P=NP. Pseudo-polynomial-time algorithms can solve pursuit-evasion
problems with a small number of robots fast and will thus often be acceptable in
practice, which is why we develop optimal pseudo-polynomial-time algorithms
for NP-hard problems, where possible.

Figure 9 summarizes the results to be obtained in this section. P denotes that
a deterministic polynomial-time algorithm exists, and NP denotes that a non-
deterministic polynomial-time algorithm exists (that is, any proposed solution
can be verified in polynomial time). NP-hard denotes that the problem is at least
as hard as any problem in NP, and NP-c is shorthand for NP-complete which
denotes that the problem is both NP and NP-hard (and hence the best possible
algorithms are likely to require exponential time). Pseudo-P denotes that the
problem is solvable in pseudo-polynomial time, which assumes that numerical
values in the input are represented in unary rather than binary in order to
achieve polynomial-time. Strongly NP-c denotes that the problem would remain
NP-complete even if the input numbers were represented in unary rather than
binary. The complexity on arbitrary-width arbitrary-length graphs is always at
least as difficult as that on both unit-width arbitrary-length and arbitrary-width
unit-length graphs. The starred entries are found in [31]; CLEARTHETREE
provides an alternative proof for one of them. Each other result is either derived
directly by a theorem in Section 4.1 or 4.2, or can be inferred as a corollary of
a derived result by applying Propositions 2 and/or 3 below.

Proposition 2 pertains to subclass and superclass relations between graph
classes, as illustrated in Figure 10. That is, paths and stars are subclasses of
trees; trees, cycles, and two-vertex multi-graphs are subclasses of series-parallel
graphs; and series-parallel graphs and cliques are subclasses of general graphs.
Membership in each of these classes can be determined in linear time.

Proposition 2 If algorithm A solves problem Q on graph class C, then algo-
rithm A also solves problem Q for any subclass of C. Conversely, if problem Q
is NP-hard for some graph class C, then problem Q remains NP-hard for any
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superclass of C.

So, if some problem Q is polynomial-time solvable on trees, then problem
Q is also polynomial-time solvable on paths and on stars. (For example, the
CLEARTHETREE algorithm also applies to paths or to stars.) Alternatively,
if some problem Q is NP-hard on cliques, then problem Q is also NP-hard on
general graphs.

Proposition 3 Suppose the minimum robot problem is NP-hard for some graph
class C. Then, the minimum distance and time problems are also NP-hard for
graph class C. Moreover, there cannot exist any polynomial-time approximation
algorithms for these latter problems unless P=NP.

Proof: Minimum distance and minimum time are each finite iff the number
of robots is sufficient to clear the graph. So, if any such approximation algorithm
A exists, then the minimum robot problem could be solved in polynomial time
by checking whether A returns a finite value. �

For example, we know that the minimum robot problem is NP-hard on
general graphs [31]. Therefore, both the minimum distance problem and the
minimum time problem are also NP-hard on general graphs.

Section 4.1 describes our algorithms and time complexity results for
arbitrary-width unit-length graphs, and Section 4.2 describes our results for
unit-width arbitrary-length graphs. We use the following notation. Let
G = (V,E) denote a graph, where n = |V | and m = |E|. Each edge e has
a length L(e), that represents both the traversal distance and time. Each edge
e also has a width w(e), that denotes the least number of robots needed to clear
it by traversing it simultaneously, and each vertex v has a width w(v), that
denotes the least number of robots needed to guard it when it is incident upon
both cleared and contaminated edges. We consider both decision and optimiza-
tion versions of the minimum robot, distance and time problems. For example,
the decision version of the minimum robot problem is to determine whether a
given number of robots can clear a given graph, and the optimization version is
to determine the minimum number of robots.

In this paper we assume that each robot may start at any location, and
that each robot may end at any location. However, many other constraints
could also be deemed appropriate for certain applications, such as: the starting
location and/or ending location of each robot might be specified as part of the
instance; perhaps it is required that each robot must end at the same location
where it originally started; maybe all the robots must start at the same location
and/or all must end at the same location; or any combinations of these. Note
that the version we consider in this paper always yields the smallest distance
and the smallest time, and therefore may serve as a lower bound for all other
variations based on the initial and/or final deployment of the robots. We leave
such remaining variations for future work.

14



4.1 Arbitrary-Width Unit-Length Graphs

This section considers only graphs for which all lengths L(e) = 1. However, note
that the widths are permitted to be arbitrary, that is, w(v) ≥ 1 and w(e) ≥ 1.
For conciseness, we denote such graphs as AWUL (arbitrary-width unit-length).
In this respect the assumptions are similar to those in [3] [25] [26].

4.1.1 Time Complexity Results

In the following theorems, we will reduce from the NP-hard partition problem
[13]. An instance of partition is defined by positive integers (a1, . . . , an). Let
k =

∑n
i=1 ai/2. The partition problem asks whether there exists any X ⊆

{1, . . . , n} such that Σ{ai : i ∈ X} = k = Σ{ai : i �∈ X}.

Theorem 4 The minimum robot problem is NP-hard for AWUL stars.

Proof: Let (a1, . . . , an) be an instance of partition, and let k =
∑n

i=1 ai/2.
Construct a star G = (V,E) as follows. Let V = {vi : 1 ≤ i ≤ n} ∪ {z}, and let
E = {(vi, z) : 1 ≤ i ≤ n}. Let w(vi) = 1 for 1 ≤ i ≤ n, and let w(z) = k. Also
let w(vi, z) = ai for 1 ≤ i ≤ n. We claim that G can be cleared using k robots
iff the partition instance has a solution.

“If” direction: Let the partition problem have solution X ⊆ {1, . . . , n}. For
all i ∈ X , ai robots start at vi, clear edge (vi, z), and simultaneously arrive at
z. Then, for all i �∈ X , ai robots exit z simultaneously, clear edge (vi, z), and
arrive at vi.

“Only if” direction: Suppose the pursuit-evasion problem has a solution.
Since there are only w(z) = k robots, no edge can be cleared while z is guarded.
Let X = {ai : (vi, z) is cleared before k robots reach z}. Then Σi∈Xai = k =
Σi�∈Xai, and the partition instance must have a solution. �

Corollary 5 The minimum robot problem is NP-hard for AWUL trees and
AWUL series-parallel graphs. Also, the minimum distance and minimum time
problems are NP-hard for AWUL stars, AWUL trees, and AWUL series-parallel
graphs.

Theorem 6 The minimum robot problem is NP-hard for AWUL two-vertex
multi-graphs.

Proof: Let (a1, . . . , an) be an instance of partition, and let k =
∑n

i=1 ai/2.
Construct a two-vertex multi-graph G = (V,E) as follows. Let V = {y, z}, and
let E = {e1, e2, . . . , en}. Let w(y) = 1 and let w(z) = k. Also let w(ei) = ai for
1 ≤ i ≤ n. We claim that G can be cleared using k + 1 robots iff the partition
instance has a solution.

“If” direction: Suppose the partition problem has a solution X ⊆ {1, . . . , n}.
Start all k + 1 robots at vertex y. One robot will remain at y throughout. For
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all i ∈ X , ai robots clear edge ei and simultaneously arrive at z. Then, for all
i �∈ X , ai robots exit z simultaneously, clear edge ei, and arrive at y.

“Only if” direction: Suppose the pursuit-evasion problem has a solution.
Because w(z) = k and there are only k+ 1 robots, the edges cleared before z is
cleared and after z is cleared must form a solution to the partition problem. �

Corollary 7 The minimum distance and minimum time problems are NP-hard
for AWUL two-vertex multi-graphs.

Theorem 8 The minimum robot problem is NP-hard for AWUL cliques.

Proof: Let (a1, . . . , an) be an instance of partition, and let k =
∑n

i=1 ai/2.
Construct a clique G = (V,E) as follows. Let V = {vi : 1 ≤ i ≤ n} and E =
{(vi, vj) : 1 ≤ i < j ≤ n}. Let each w(vi) = aik, and let each w(vi, vj) = aiaj .
We claim that G can be cleared using k2 robots iff the partition instance has a
solution.

“If” direction: Suppose the partition problem has a solution X ⊆ {1, . . . , n}.
Initially place a2i robots at vi for each i ∈ X . Also place 2aiaj robots midway
along the edge (vi, vj) for all i, j ∈ X . Note that this is a total of k2 robots.
Along each of these edges, aiaj robots move in each direction, all reaching the
endpoints simultaneously. Now there are aik robots at each vertex vi such that
i ∈ X . Next aiaj robots simultaneously traverse each edge (vi, vj) such that
i ∈ X , j �∈ X . Now there are ajk robots at each vertex vj such that j �∈ X .
Finally, aiaj robots traverse from each endpoint of edge (vi, vj) for i, j �∈ X ,
until they meet somewhere in the middle of each edge.

“Only if” direction: Suppose the pursuit-evasion problem has a solution.
Consider any moment of time at which some set Y of vertices simultaneously
becomes cleared (possibly |Y | = 1). Let X denote the vertices cleared before Y
and let Z denote the vertices cleared after Y . Let p(X) = Σ{ai : vi ∈ X}, and
similarly for Y and Z. During any solution, there must exist some such sets X ,
Y , and Z for which p(X) ≤ k and p(X ∪ Y ) > k. But p(X ∪ Y ∪ Z) = 2k,
so p(Z) < k. At this particular moment of time, for each x ∈ X , either x is
guarded or for all z ∈ Z the edge (x, z) is guarded. Also, by assumption, each
y ∈ Y becomes guarded. Therefore p(X)p(Z) + p(Y )k ≤ k2, or equivalently
p(X)p(Z) + [2k − p(X) − p(Z)]k ≤ k2. Hence [p(X) − k][p(Z) − k] ≤ 0, from
whence we must have p(X) = k, and X is a solution to the partition instance.
�

Corollary 9 The minimum distance and minimum time problems are NP-hard
for AWUL cliques.

In subsequent theorems, we will reduce from the strongly NP-hard 3-
partition problem [13]. An instance of 3-partition is defined by positive integers

(x1, . . . , x3n). Let k =
∑3n

i=1 xi/n. The 3-partition problem asks whether there
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exists any partition of (x1, . . . , x3n) into n groups of 3 elements each, such that
each group has sum exactly k.

Theorem 10 The minimum time problem is strongly NP-hard for AWUL stars,
even when all w(v) = 1.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and let k =
∑3n

i=1 xi/n. Construct a star G with 3n + 2 edges e1, . . . , e3n+2. The first 3n
edges have w(ei) = xi. The remaining two edges have w(e3n+1) = w(e3n+2) =
k + 1. All the vertices have w(v) = 1.

We claim that G can be cleared with k+1 robots in time 2n+2 iff the given
3-partition instance has a solution. Essentially, subject to the given constraints,
G can only be cleared as follows: Clear edge e3n+1 using all k+1 robots. Leave
one robot at the central vertex. Clear three edges in parallel using exactly k
robots, which then return to the central vertex. Repeat the previous step n
times, until all edges e1, . . . , e3n are cleared. Finally clear edge e3n+2 using all
k + 1 robots. Note that the two “extra” edges must be the first and last edge
cleared, which then forces all other edges to be traversed twice. �

Corollary 11 The minimum time problem is strongly NP-hard for AWUL
trees, AWUL series-parallel graphs, and AWUL general graphs, even when all
w(v) = 1.

Theorem 12 The minimum time problem is strongly NP-hard for AWUL two-
vertex multi-graphs, even when all w(v) = 1.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and let k =
∑3n

i=1 xi/n. Construct a graph G with 2 vertices y, z and 3n + 2 edges
e1, . . . , e3n+2. The first 3n edges have w(ei) = xi. The remaining two edges
have w(e3n+1) = w(e3n+2) = k + 1. Both the vertices have w(y) = w(z) = 1.

We claim that G can be cleared with k+2 robots in time n+2 iff the given
3-partition instance has a solution. The justification is similar to that given
above for stars: First place one robot at vertex y. Then clear edge e3n+1 using
k+1 robots. Leave another robot at vertex z. Clear three edges in parallel using
exactly k robots. Repeat the previous step n times, until all edges e1, . . . , e3n are
cleared. Finally clear edge e3n+2 using k+1 robots. Note that the two “extra”
edges must be the first and last edge cleared, which then forces all other edges
to be traversed twice. �

4.1.2 Algorithmic Results

Theorem 13 The minimum robot problem can be solved in linear time for
AWUL paths.
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Proof: If G = (V,E) is a path, then obviously max({w(v) : v ∈ V }∪{w(e) :
e ∈ E}) robots is optimal. �

Theorem 14 The minimum robot problem can be solved in polynomial time for
AWUL cycles.

Proof: Denote the cycle G by (v1, e1, . . . , vn, en) = (x1, x2, . . . , x2n−1, x2n).
First construct a directed graph G′ = (V ′, E′) as follows. Let X = V ∪ E, and
initially define V ′ = X ×X . So V ′ corresponds to the possible borders between
cleared and contaminated portions of the cycle G, that is, vertex (xi, xj) in G′

means that the clockwise path from xi to xj is clear in G. E′ contains edges from
(xi, xj) to (xi−1, xj) and to (xi, xj+1), and these edges correspond to advancing
the border.

For each xi ∈ V , E′ also contains edges from (xi, xi) to (xi−1, xi+1) and
from (xi+1, xi−1) to (xi, xi). Note that we do not add similar edges to E′ when
xi ∈ E.

Split each vertex (xi, xi) into a source and sink, so that |V ′| = 4n2 + 2n.
Each source represents a possible starting location for the robots, and each sink
represents a final location after the cycle has been cleared.

Now define a function w′ on V ′ as follows: w′(xi, xi) = w(xi), and
w′(xi, xj) = w(xi) + w(xj) when i �= j. Observe that w′ represents the number
of robots needed to guard the border, that is, the width of the border.

Finally, the minimum number of robots needed to clear the cycle equals the
minimum possible maximum value of w′ encountered along any source-to-sink
path in G′. This bottleneck value of w′, and also the optimal path that yields
such w′, can be obtained via dynamic programming. �

See Figure 11 for an example of Theorem 14. The cycle G1 with widths w as
given reduces to the directed graph G′

1, with values for function w′ also given.
The bottleneck value of w′ is 2, which can be obtained along two source-to-sink
paths: (a, a) → (f, e) → (b, b), and (b, b) → (e, f) → (a, a).

Also see Figure 12 for another example of Theorem 14. Cycle G2 has widths
w as given. The bottleneck value of w′ is 3, which can be obtained along two
source-to-sink paths in G′

2. One such optimal path is shown, and the other is
its opposite. Note that in the middle of the solution sequence, one robot will
travel from d to b and then back to d. So using 3 robots, the minimum distance
is 10 and the minimum time is 6.

Theorem 15 The minimum distance problem can be solved in polynomial time
for AWUL paths. In fact, this result continues to hold even in the more general
case when edge lengths are also arbitrary.

Proof: First, we claim that without loss of generality all robots move from
left to right on the path in an optimal solution. Suppose some solution has
some pursuers moving right-to-left from vertex k to vertex j, where j < k.
Then this solution can be transformed to another solution where these same
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Figure 11: First Example for Theorem 14

pursuers move left-to-right from j to k. If j is the leftmost vertex they can
proceed immediately, otherwise they must wait until other pursuers arrive at j
from the left. Similarly if any other pursuers originally start at k and move right,
these must now wait until our pursuers arrive at k from j. This transformation
can increase the elapsed time, but it cannot increase the total distance, and also
the number of pursuers can only decrease. Now there is no reason to ever move
left, because at any given moment, all edges to the left of the current location
have been cleared.

Second, given a path (V,E) create a minimum cost flow instance with nodes
s, t and vin, vout ∀v ∈ V , and directed edges (s, vin), (vout, t) and (vin, vout)
∀v ∈ V , and also edges (vout, v

′
in) ∀(v, v′) ∈ E. Set the supply at s to r and

the demand at t to r. All other nodes have supply zero. Put lower bound w(v)
on the arc (vin, vout), lower bound w(e) on arc (vout, v

′
in) where e = (v, v′), and

cost L(e) on arc (vout, v
′
in) where e = (v, v′). All other lower bounds and costs

equal zero.
A robot starting at node i and stopping at node j is represented by a flow

s, viin , viout , . . . vjout , t. Conversely, by the flow decomposition principle, any
feasible flow decomposes into r such paths. The flow cost equals the total
distance traveled.

Third, apply a strongly polynomial algorithm for minimum cost flows such
as [38]. �
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Figure 12: Second Example for Theorem 14

Theorem 16 The minimum distance problem can be solved in pseudo-
polynomial time for AWUL cycles.

Proof: We extend the ideas in the proof of Theorem 14. Given cycle G,
construct a directed graph G′ to have nodes of the form (x, y, i, j, k) where x
and y denote locations along the cycle, i is the number of halted robots, j is
the number of robots at x, and k is the number of robots at y. The possible
locations for x, y are the vertices of G and the two ends of each edge of G. If
edge e = (a, b), then denote the ends of edge e by ea and eb, which are arbitrarily
close to vertices a and b respectively. Each node in G′ must satisfy w(x) ≤ j,
w(y) ≤ k, and i + j + k ≤ r. As a special case, when x = y we discard k, and
let there be two nodes (a source and a sink) each having the form (x, x, i, j).
The source corresponds to the starting position, and the sink corresponds to
the final position after G has been cleared.

Each edge z → z′ in G′ corresponds to one or more valid robot moves, and
is assigned a weight W (z, z′) equal to the shortest distance that robots must
travel in G to transition from vertex z to vertex z′. All-pairs shortest distances
can be precomputed for the cycle G in O(n2) time. The minimum distance
solution for the pursuit-evasion problem in G will be the minimum total weight
along any source-to-sink path in G′. Note that G′ is a directed acyclic graph
with O(n2r3) vertices and O(n2r4) edges, so the running time is O(n2r4). �

For example, again consider the cycle G2 given in Figure 12, and let r = 3
robots. Figure 13 shows an optimal path in the directed graph that is described
in the proof of Theorem 16. The minimum total distance, computed by summing
the weights W shown above the edges, is 10.

Theorem 17 For any fixed number r of robots, the minimum time problem can
be solved in pseudo-polynomial time for both AWUL paths and AWUL cycles.

Proof sketch: Similar to Theorem 16, but more complicated. At most
r different border vertices and/or edges can be guarded, so at most r disjoint
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Figure 13: Example for Theorems 16 and 17

segments of the cycle can be cleared. ConstructG′ so that each node corresponds
to a set of at most r disjoint segments, the number of robots guarding each
border position, and the number of halted robots. Assign to each edge z → z′

in G′ a weight W (z, z′) equal to the shortest time needed in G to transition
from vertex z to vertex z′. The minimum time solution for the pursuit-evasion
problem in G has the minimum total weight along any source-to-sink path in
G′. The running time is O(nrrr+1). �

As an example, again consider the cycle G2 given in Figure 12, with r = 3
robots. Figure 13 shows an optimal path in the directed graph that is described
in the proof of Theorem 17. The minimum time, obtained by summing the
weights W shown below the edges, is 6.

Theorem 18 The minimum robot problem can be solved in pseudo-polynomial-
time for AWUL stars.

Proof: Let x denote the central vertex of the star. Then any procedure for
clearing the star must work in three phases as follows:

• Phase 1: Clear some edges before arriving at x. These edges must all be
cleared concurrently.

• Phase 2: Clear some edges while guarding x. These edges can be cleared
sequentially. If edge e is cleared in phase 2, and w(e) ≥ w(e′), then we
should also clear edge e′ during phase 2.

• Phase 3: Clear some edges after departing from x. These edges must all
be cleared concurrently.

All the edges of a star meet at the central vertex, so this three-phase approach
is the only way to clear a star without recontamination. Any of the phases 1,
2, 3 might be empty. Here then is the pseudo-polynomial-time algorithm:

• Let m denote the number of edges. For 1 ≤ i ≤ m let each edge ei =
(x, vi). Because max(w(ei), w(vi)) robots are needed to clear the edge ei
and its incident non-central vertex vi, assign w(ei) = max(w(ei), w(vi)).

• Sort edges e1, . . . , em by descending w(ei) values. Also, to properly handle
the case when phase 2 might be empty, let w(em+1) = 0.
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• For k = 1 to m do

– Suppose k edges e1, . . . , ek will be cleared during phases 1 and 3.

– The number of robots used during phase 2 is w(x) + w(ek+1).

– Let S =
∑k

i=1 w(ei).

– To balance edges e1, . . . , ek between phases 1 and 3, run a pseudo-
polynomial-time subset sum algorithm on w(e1), . . . , w(ek) that de-
termines the largest possible sum j ≤ S/2. [13]

– Split e1, . . . , ek into two subsets that use j and S − j robots respec-
tively during phases 1 and 3.

– Let rk = max{w(x) + w(ek+1), S − j}.

• Choose a value k such that rk is minimized. �

Theorem 19 The minimum robot problem can be solved in pseudo-polynomial-
time for AWUL two-vertex multi-graphs.

Proof: Let y, z denote the two vertices, such that w(y) ≤ w(z). Vertex
y will remain guarded during the entire procedure. Then any procedure for
clearing the graph must work in three phases similar to the algorithm for stars
described above, with central vertex x replaced by vertex z.

The pseudo-polynomial-time algorithm for two-vertex multi-graphs is es-
sentially the same as the algorithm given above for stars, with just two minor
changes: Replace w(x) in the star algorithm by w(z), and add w(y) extra robots
to the minimum value that is computed. �

4.2 Unit-Width Arbitrary-Length Graphs

This section considers only graphs for which all widths w(v) = 1 and all w(e) =
1. Also each length L(e) > 0 is arbitrary, but this is only relevant for the
minimum distance and time problems. For conciseness, we denote such graphs
as UWAL (unit-width arbitrary-length). The time complexity of the minimum
robot problem does not depend on the edge lengths and is thus the same as
for unit-width unit-length graphs. For example, we have seen already that the
minimum robot problem can be solved in linear and thus polynomial time on
unit-width unit-length trees.

4.2.1 Time Complexity Results

Theorem 20 The minimum time problem is NP-hard for UWAL stars, even
for fixed r = 3 robots.
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Proof: Let (x1, . . . , xn) be an instance of partition, and let k =
∑n

i=1 xi/2.
Construct a star G with edges e1, . . . , en+6. The first n edges have L(ei) = xi,
and the other six edges have L(ei) = k.

We claim that the given partition instance has a solution iff G can be cleared
with three robots in time 4k, as follows: Initially place three robots at the outer
endpoints of three of the six length-k edges (that is, not at the center vertex).
First traverse these three edges to reach the center vertex in time k. While one
robot guards the center vertex, the other two robots traverse each of the first
n edges twice (once in each direction) in time 2k, which is only possible if the
partition instance has a solution. Finally traverse the remaining three length-k
edges heading away from the center vertex in time k. �

Corollary 21 The minimum time problem is NP-hard for UWAL trees, UWAL
series-parallel graphs, and UWAL general graphs, even for fixed r = 3 robots.

Theorem 22 The minimum time problem is NP-hard for UWAL two-vertex
multi-graphs, even for fixed r = 4 robots.

Proof: Let (x1, . . . , xn) be an instance of partition, and let k =
∑n

i=1 xi/2.
Construct a graph G with vertices a, b and edges e1, . . . , en+7. The first n edges
have L(ei) = 2xi, the next six edges have L(ei) = 2k, and the remaining edge
has L(en+7) = 1.

We claim that the given partition instance has a solution iff G can be cleared
with four robots in time 6k+1, as follows: First, while one robot guards vertex
a, the other robots traverse three of the six length-2k edges from a to b in time
2k. Next, while two robots guard a and b, the other two traverse each of the
first n edges in time 2k, which is only possible if the partition instance has a
solution. Then, either one or both of those two robots traverse edge en+7 in
unit time so that afterward there are three robots at one vertex (say x) and one
robot at the other vertex (say y). Finally, while one robot guards vertex y, the
other robots traverse the remaining three length-2k edges from x to y in time
2k. �

Theorem 23 The minimum time problem is strongly NP-hard for UWAL stars.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and let k =
∑3n

i=1 xi/n. Construct a star G with edges e1, . . . , e5n+2. The first 3n edges
have L(ei) = xi, and the other 2n+ 2 edges have L(ei) = k.

We claim that the given 3-partition instance has a solution iff G can be
cleared with n + 1 robots in time 4k, as follows: First traverse n + 1 of the
2n + 2 length-k edges heading toward the center vertex in time k. While one
robot guards the center vertex, the other n robots traverse each of the first 3n
edges twice (once in each direction) in time 2k, which is only possible if the 3-
partition instance has a solution. Finally traverse the remaining n+ 1 length-k
edges heading away from the center vertex in time k. �
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Corollary 24 The minimum time problem is strongly NP-hard for UWAL
trees, UWAL series-parallel graphs, and UWAL general graphs.

Theorem 25 The minimum time problem is strongly NP-hard for UWAL two-
vertex multi-graphs.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and let k =
∑3n

i=1 xi/n. Construct a graph G with vertices a, b and edges e1, . . . , e5n+2.
The first 3n edges have L(ei) = xi, and the other 2n+ 2 edges have L(ei) = k.

We claim that the given 3-partition instance has a solution iff G can be
cleared with n+ 2 robots in time 3k, as follows: First, while one robot guards
vertex a, the other robots traverse n+1 of the 2n+2 length-k edges from a to b
in time k. Next, while two robots guard a and b, the other n robots traverse each
of the first 3n edges in time k, which is only possible if the 3-partition instance
has a solution. Observe that each of these n robots must traverse exactly three
such edges, from b to a to b to a. Finally, while one robot guards vertex b, the
other robots traverse the remaining n+ 1 length-k edges from a to b in time k.
�

Theorem 26 The minimum time problem is strongly NP-hard for UWAL
cliques.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and let k =
∑3n

i=1 xi/n. Note that if n is even, we can reduce it to the case when n is
odd by defining x3n+1 = 1, x3n+2 = 1, x3n+3 = k − 2, and n′ = n + 1. [For
our reduction, it won’t matter if these values are not between k/4 and k/2.] So
without loss of generality, we can assume that n is odd.

Construct a clique G with 6n+2 vertices {a}∪ {b1, . . . , b3n}∪ {c0, . . . , c3n}.
Let each L(a, bi) = xi, each L(bi, bj) = 2k + 1, and each L(ci, cj) = 6k. Also
let L(a, ci) = k − 1 when i ≤ n, L(a, ci) = 3k + 1 when n < i ≤ 2n, and
L(a, ci) = 3k when i > 2n. Finally let each L(ci, bj) = k − 1 when i < 3n/2,
and L(ci, bj) = 3k when i > 3n/2.

We claim that the given 3-partition instance has a solution iff G can be
cleared with (3n+ 1)(6n+ 1) robots in time 3k, as follows:

“If” direction: Begin with 6n + 1 robots at each ci vertex, and let these
6n+ 1 robots traverse the 6n+ 1 edges outward from ci. Note that each edge
(ci, cj) with length 6k will be cleared in exactly 3k time, so we can now consider
only the remaining edges. Of the (3n + 1)/2 robots that arrive at each bj at
time k− 1, one remains at bj and the others head toward bj+1, . . . , bj+(3n−1)/2.
[Arithmetic in preceding subscripts is modulo 3n.] Hence all the (bi, bj) edges
and remaining (ci, bj) edges will be cleared at time 3k.

The only edges yet to be considered are the edges incident to vertex a. Note
that n+1 robots will arrive at a at time k− 1. One robot remains at a, and the
other n robots traverse each of the (a, bi) edges twice (once in each direction)
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Graph G = (V, E) Minimum robots

Path 1

Cycle 2

Star with |E| ≥ 3 2

Two-vertex multi-graph with |E| ≥ 3 3

Clique with |V | = n ≥ 4 n

Figure 14: Simple Cases

in time 2k, which is only possible if the 3-partition instance has a solution. At
time 3k − 1 there will again be n + 1 robots at a. One remains at a, and the
other n robots head toward cn+1, . . . , c2n. Hence all the remaining (a, ci) edges
will be cleared at time 3k.

“Only if” direction: The opposite direction of this proof is a simple but huge
case analysis, and is omitted. �

4.2.2 Algorithmic Results

Proposition 27 We begin with some simple cases as shown in Figure 14. For
each kind of UWAL graph specified in the left column, the minimum number of
robots needed to clear such a graph is given in the right column.

Proof: All cases except possibly the clique should be obvious. For the

clique, start n− 1 robots at any n− 1 distinct vertices, and use the nth robot
to clear all the edges between these n − 1 vertices. Finally the original n − 1
robots each move to the one remaining vertex. �

Theorem 28 The minimum distance and minimum time problems can be
solved in polynomial time for UWAL paths.

Proof: Let L denote the length of the path, and let r denote the number of
robots. Divide the path into r segments s1, . . . , sr of length L/r each. Note that
each endpoint between two consecutive segments does not necessarily coincide
with a vertex. For 1 ≤ i ≤ r, place robot i at the left endpoint of its segment
if i is odd, and otherwise place robot i at the right endpoint of its segment.
Now all robots simultaneously move exactly distance L/r each to clear their
respective segments. So the minimum possible time is L/r, and the minimum
possible total distance is L. �

Theorem 29 The minimum distance and minimum time problems can be
solved in polynomial time for UWAL cycles.
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Proof: Let L denote the total length of the cycle, and let r ≥ 2 denote the
number of robots. Define r′ = r if r is even, and r′ = r − 1 if r is odd, so r′ is
even in either case. Beginning at any point, divide the cycle into r′ segments
s1, . . . , sr′ of length L/r′ each. Arbitrarily use “left” for clockwise, and “right”
for counterclockwise around the cycle. For 1 ≤ i ≤ r′, place robot i at the
left endpoint of its segment if i is odd, and otherwise place robot i at the right
endpoint of its segment. Now all robots simultaneously move exactly distance
L/r′ each to clear their respective segments. So the minimum possible time is
L/r′, and the minimum possible total distance is L. �

Theorem 30 The minimum distance problem can be solved in polynomial time
for UWAL stars.

Proof: If |E| ≤ 2 then solve using the path algorithm. Now suppose |E| ≥ 3,
and hence r ≥ 2. First consider when the number of edges |E| ≥ 2r. Find A ⊆ E
which consists of the longest 2r edges. The shortest distance is obtained by first
traversing r of the edges in A heading toward the center vertex, then traversing
each edge in E−A twice (once in each direction) while the center vertex remains
guarded, and finally traversing the remaining r edges of A heading away from
the center. Alternatively, if |E| < 2r, then the minimum distance is trivially
Σe∈E L(e). �

Theorem 31 The minimum distance problem can be solved in polynomial time
for UWAL two-vertex multi-graphs.

Proof: If |E| = 1 then r ≥ 1, and solve using the path algorithm. If |E| = 2
then r ≥ 2, and solve using the cycle algorithm. Now suppose |E| ≥ 3, and
hence r ≥ 3. One robot resides at each of the two vertices, and a third robot
traverses each edge. The minimum distance is Σe∈E L(e). �

Theorem 32 The minimum distance problem can be solved in polynomial time
for UWAL cliques.

Proof: If |V | ≤ 3, then solve using the path or cycle algorithm. Now suppose
|V | ≥ 4, and hence r ≥ |V |, so without loss of generality assume r = |V |. First
let r− 1 robots start at some vertex z and traverse the edges to the other r− 1

vertices. If r is even, the rth robot now traverses an Eulerian circuit of G− z.

Alternatively, if r is odd, let M be any perfect matching in G − z. The rth

robot now traverses an Eulerian circuit of G − z − M , and then it is easy for
the remaining r − 1 robots to clear the edges of M . In any case, the minimum
distance is Σe∈E L(e). �

26



5 Conclusion

We studied pursuit-evasion problems where a number of robots have to clear a
given graph, and we provided a catalog of algorithmic and complexity results
for several kinds of pursuit-evasion problems on several classes of graphs. First,
we described a linear-time algorithm, called CLEARTHETREE, that solves the
minimum robot problem on unit-width unit-length trees. Second, we either
developed optimal polynomial-time algorithms or proved the NP-hardness of
the minimum robot, distance and time problems on both unit-width arbitrary-
length and arbitrary-width unit-length graphs of a variety of simple topologies.
It is future research to resolve the open cases in Figure 9, and to extend our
results to other formulations of pursuit-evasion problems [22] [4].
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