
FastPivot: An Algorithm for Inverse Problems

Yuling Guan1 and Ang Li2 and Sven Koenig2 and Stephan Haas1 and T. K. Satish Kumar1,2

1Department of Physics and Astronomy
2Department of Computer Science
University of Southern California

{yulinggu, ali355, skoenig, shaas}@usc.edu, tkskwork@gmail.com

Abstract— The laws of physics are usually stated using
mathematical equations, allowing us to accurately map a given
physical system to its response. However, when building systems,
we are often faced with the inverse problem: How should we
design a physical system that produces a target response? In this
paper, we present a novel algorithm, called FastPivot, for solving
such inverse problems. FastPivot starts with a system state and
invokes alternating forward and backward passes through the
system variables. In a forward pass, it leads the current state
of the system to its response. In the subsequent backward pass,
a small amount of information is allowed to percolate from
the target response back to the system variables. FastPivot
produces good quality solutions efficiently. We demonstrate the
promise of FastPivot on the inverse problem of placing atoms
in a bounded region using a scanning tunneling microscope
to achieve target responses in the density of states. We also
compare FastPivot to Monte Carlo methods and analyze various
empirical observations.

I. INTRODUCTION

The laws of physics are usually stated using mathematical
equations at different spatiotemporal scales. These equations
allow us to accurately map a given physical system to
its response. For example, the mathematical equations that
describe gravity allow us to predict the trajectories of planets
in distant galaxies; and the mathematical equations that
describe Faraday’s law of electromagnetic induction allow us
to predict the amount of energy generated by wind turbines.
Similarly, at a microscopic scale, the Boltzmann equation
of statistical mechanics allows us to analyze hysteresis in
magnetic materials [1], [2]; and modern theories allow us to
calculate the density of states (DoS) for a given placement of
atoms of a specific kind in a bounded region on a substrate.

Despite the usefulness of mathematics in “forward” rea-
soning, i.e., from the system state to its response, we often
face the inverse question while building systems: How should
we design a physical system that produces a target response?
Such inverse problems arise at both macroscopic and micro-
scopic scales. At macroscopic scales, inverse problems can
involve the design of circuits [3], Carnot engines [4], radio-
frequency (RF) antennas [5], or aircraft with aerodynamic
optimizations [6], as illustrated in Figure 1. At microscopic
scales, inverse problems can involve the placement of atoms
in a bounded region using a scanning tunneling microscope
(STM) to achieve target responses in the DoS or in the
spectrum of plasmonic excitations [7]. Unfortunately, inverse
problems are combinatorial in nature and cannot always be
solved using standard tools from mathematics.

Fig. 1. Illustrates an inverse problem in the domain of aerodynamic
optimization. Given various parameters such as the shape, size, and the
material of the aircraft, the “forward” problem is to compute the four forces
acting on it, i.e., the lift, weight, thrust, and the drag. The inverse problem
is to compute the optimal values of the design parameters to achieve desired
values of the four forces.

Generally speaking, inverse problems in computational
physics present the following challenges: (a) The inverse map
from the response to the system is only implicitly defined,
i.e., we cannot input the target response into a mathematical
equation; (b) the inverse map is not unique; (c) the search
space is very large; and (d) there is a substantial involve-
ment of complex numbers, especially at microscopic scales.
Inverse problems are particularly hard to solve when the map
from the system to its response involves many cascading
steps. Each step may be hard to reverse or may introduce
branching possibilities if its inverse is not unique. For these
reasons, inverse problems are fundamentally combinatorial
in nature. Hence, we can benefit from techniques developed
in computer science, artificial intelligence (AI), machine
learning (ML), and operations research (OR).

Some inverse algorithms have been designed for specific
inverse problems using data-driven methods like neural net-
works [8], [9], [10]. However, such methods are mostly
tailored to specific problems and are not broadly applicable.
In fact, it is even difficult to train a neural network to learn
the inverse mapping of a step that computes the eigenvalues
of a matrix satisfying a certain property P. This is so because
it is hard to identify a unique matrix that satisfies P given
only its eigenvalues. So far, very few general principles have
been developed for the design of inverse algorithms. The
Monte Carlo method [11] is one such general principle.

In this paper, we present a novel algorithm, called Fast-

Pivot, for solving inverse problems. FastPivot introduces
a general principle that can be described as follows. We
start with a system state and invoke alternating forward and
backward passes through the system variables. In a forward
pass, we calculate the system’s response from its current
state. In the subsequent backward pass, we percolate a small
amount of information from the target response back to
the system variables. The inner loop implements several
alternating forward and backward passes in the hope of
convergence. The outer loop keeps track of the best solution
found so far and triggers algorithm termination based on the
availability of computational resources.

While the Monte Carlo method works on a discrete space,
i.e., on a lattice, FastPivot works on a continuous space and
produces good quality solutions efficiently. We demonstrate
its success on the DoS design problem, i.e., the inverse
problem of placing atoms in a bounded region using an STM
to achieve target responses in the DoS. We also compare
FastPivot to the Monte Carlo method and analyze various
empirical observations. In general, we observe that FastPivot
outperforms the Monte Carlo method in higher dimensions
and is better suited for continuous spaces.

II. BACKGROUND

The STM is a type of microscope that can be used for
imaging surfaces at the atomic level. It does this by applying
an electrical voltage to a very sharp metal wire tip that
scans the surface (substrate) very closely. It can also be used
to manipulate individual atoms. In fact, the STM can be
used to place an individual atom at any desired location
in a bounded region on a substrate. IBM’s nanophysicists
have even created a minute-long film with 242 stop-motion
frames, called “A Boy and His Atom”, by moving individual
carbon atoms on a copper substrate. Figure 2 shows the
schematic and an actual STM.

Because of its ability to place individual atoms at desired
locations on a substrate, the STM supports nanofabrication.
In turn, nanofabrication is a cornerstone capability in nan-
otechnology for creating nanostructures. Because of their
size, nanostructures often have special properties that macro-
scopic structures of the same material may not have. These
special properties can be exploited for various applications,
including drug delivery and quantum dots.

In this context of using an STM for nanofabrication, one
of the fundamental inverse problems is the following: Given
N atoms of a certain kind and a bounded region on a
substrate, where should we place these atoms to achieve
a target response in the DoS? In order to understand this
question, we first need to understand the “forward” version
of this problem: For a given placement (configuration) of N
atoms, what is the DoS that it determines? This determination
is done as described below.

First, we subscribe to the tight-binding model in solid-state
physics. The tight-binding model [12], [13] is an effective
approach for estimating the electronic band structure by
using approximations of the atomic wave function. Even
though the tight-binding model is a single-electron model,

it provides good results for a wide variety of solids. We
consider a non-periodical system, which has the following
Hamiltonian:

Ĥ =−∑
i, j

ti, j
(

ĉ†
i ĉ j + ĉiĉ

†
j

)
, (1)

where ĉ†
i and ĉi represent the electron creation and annihi-

lation operators, respectively, at site ri, and ti, j is the spatial
decay long-range hopping term given by the power law:

ti, j =
t∣∣ri− r j

∣∣q . (2)

Here, t is a constant, and ri is the position vector of atom
i, for 1≤ i≤ N. Moreover, q is the power decay parameter
that reflects an algebraic variation of the overlap integral with
inter-atomic separation. It is specific to the material and is
measurable via experiments [14].

Given the position vectors r1,r2 . . .rN of the N atoms, the
steps required to determine the DoS are as follows:

1) Determine the Hamiltonian H as the N×N matrix with
Hi, j = ti, j.

2) Determine the eigenvalues e1,e2 . . .eN of H.
3) Determine the DoS by placing uniform Lorentzian

functions of appropriate height and width centered at
each of the eigenvalues.

Essentially, the DoS describes the proportion of states
occupied by the system at each energy level. It peaks at the
eigenvalues of H. Figure 3 shows the DoS for three different
configurations of atoms.

The inverse problem, of interest in this paper, is to find
the position vectors r1,r2 . . .rN in a bounded region given
the target eigenvalues of H, i.e., the positions of the peaks
in the target DoS.

III. METHODOLOGY

In this section, we provide a description of the Monte
Carlo and FastPivot algorithms.

Let the target eigenvalues be λ1 ≥ λ2 . . .λN . All these
eigenvalues are real since the Hamiltonian is always a
symmetric square matrix. For position vectors r1,r2 . . .rN
of the N atoms in a K-dimensional space, let R denote
the K × N position matrix with columns r1,r2 . . .rN . R
represents a configuration of the N atoms in K-dimensional
space, and K is usually 2 or 3. Let H be the Hamiltonian
corresponding to a position matrix R; and let e1 ≥ e2 . . .eN
be its eigenvalues. R can be assigned a score to measure
how close it is to achieving the target eigenvalues. One
such score is the Root Mean Square Error (RMSE) given

by score(R) =

√
∑

N
i=1(ei−λi)2

N .

A. The Monte Carlo Algorithm

The Monte Carlo algorithm works on a discretization
of the continuous space and is inherently limited by the
resulting discretized grid. It uses the Metropolis-Hastings
importance sampling procedure [11] in its inner loop and
generally works as follows.

Fig. 2. Shows an STM. The left panel, borrowed from Wikipedia, shows the schematic of an STM. The right panel, borrowed from https:
//tmi.utexas.edu/facilities/instrumentation/scanning-tunneling-microscopes, shows an actual STM.

Fig. 3. Shows the DoS corresponding to configurations of atoms in a 2D unit square. (a), (b), and (c) show three different configurations with 4, 4, and
8 atoms, respectively. (d), (e), and (f) show the DoS corresponding to (a), (b), and (c), respectively.

In the outer loop, the algorithm runs a user-specified num-
ber of trials. In the inner loop, i.e., in each trial, the algorithm
starts by generating a position matrix R0 by choosing the
position vector of each atom uniformly at random in the
bounded region. The corresponding Hamiltonian H0 is also
computed. Subsequently, with each increment in the iteration
number i, the algorithm updates the current position matrix
Ri and computes the corresponding Hamiltonian Hi. Ri+1 is
constructed from Ri after considering to move a randomly
chosen atom from its current position to a neighboring
empty position on the discretized grid to obtain R′. If
score(R′)< score(Ri), the move is accepted and Ri+1 is
set to R′. Otherwise, the move is accepted with probability

e
score(Ri)−score(R′)

kBT , where kB is the Boltzmann constant and
T is a “temperature” that starts high and decreases according

to an annealing rule as the iteration number increases. The
inner loop is repeated for a user-specified maximum number
of iterations before the next trial of the outer loop is initiated.
Upon termination, the algorithm returns the position matrix
with the lowest recorded score.

B. The FastPivot Algorithm

The FastPivot algorithm works on continuous spaces and
does not have the inherent limitations of a discretization.
The pseudocode for the FastPivot algorithm is presented in
Algorithm 1. Algorithm 1 uses Algorithms 2, 3, and 4 as
helper functions.

The input to Algorithm 1 consists of: (a) the number
of atoms N, (b) the target eigenvalues λ1 ≥ λ2 . . .λN , (c)
the number of dimensions K, (d) the bounded region of

Wikipedia
https://tmi.utexas.edu/facilities/instrumentation/scanning-tunneling-microscopes
https://tmi.utexas.edu/facilities/instrumentation/scanning-tunneling-microscopes

Algorithm 1: FastPivot: An algorithm that em-
beds N atoms in a K-dimensional space to achieve
target eigenvalues of their interaction Hamiltonian.

Input: the number of atoms, N; the target
eigenvalues, λ1 ≥ λ2 . . .λN ; the number of
dimensions, K; the bounding length on each
dimension, B1,B2 . . .BK ; the power used in
the Hamiltonian terms, q; the seed position
matrix, R0; the sampling range vector, σ⃗ .

Parameters: maximum number of iterations of the
inner loop, MaxSteps; maximum
number of iterations of the outer loop,
MaxTrials; cutoff improvement
parameter in the inner loop, γ; threshold
error parameter in the outer loop, ε .

Output: K×N predicted position matrix, R.

1 Let Λ be a diagonal matrix of the target eigenvalues
λ1 ≥ λ2 . . .λN .

2 Let R be a K×N matrix with columns r1,r2 . . .rN .
3 bestScore← ∞.
4 bestR← Null.
5 for trial = 1,2 . . .MaxTrials do
6 for i = 1,2 . . .N do
7 Pick ri to be a K-dimensional vector, whose

k-th coordinate, for 1≤ k ≤ K, is chosen
uniformly at random from the interval
[min(0,r0

i [k]− σ⃗ [k]),max(Bk,r0
i [k]+ σ⃗ [k])].

8 H← ComputeHamiltonian(R,q).
9 currentScore← Score(H,Λ).

10 previousScore← ∞.
11 step← 1.
12 while (step≤ MaxSteps or

currentScore− previousScore≤−γ) and
(currentScore > ε) do

13 previousScore← currentScore.
14 R← EigenChange(R,H,Λ,K,q).
15 H← ComputeHamiltonian(R,q).
16 currentScore← Score(H,Λ).
17 step← step+1.

18 if currentScore < bestScore then
19 bestScore← currentScore.
20 bestR← R.

21 if bestScore≤ ε then
22 Break.

23 return bestR.

space specified by B1,B2 . . .BK and defined by the K-
dimensional orthotope between the farthest corners (0,0 . . .0)
and (B1,B2 . . .BK), and (e) the power used in the Hamiltonian
terms q. In addition to these inputs, the user can also choose
to input: (f) an initial guess of the position matrix R0, and
(g) an allowed perturbation on it using the sampling range
vector σ⃗ . The output of Algorithm 1 is a predicted position

Algorithm 2: EigenChange: A gradient-descent
algorithm that updates the position matrix based on
the target eigenvalues.

Input: K×N position matrix, R; the Hamiltonian,
H; the target diagonal eigenvalue matrix, Λ;
the number of dimensions, K; the power used
in the Hamiltonian terms, q.

Parameters: number of updates, τ; learning rate, η .
Output: modified position matrix, R.

1 Let V×E×V−1 be the eigendecomposition of H,
where E is a diagonal matrix of non-increasing
eigenvalues, and the columns of V represent the
corresponding eigenvectors.

2 D← V×Λ×V−1.
3 for update = 1,2 . . .τ do
4 R′← R.
5 for i = 1,2 . . .N do
6 grad←

2∑ j ̸=i(Di, j +
1

∥r′j−r′i∥q
)(−q
∥r′j−r′i∥q+2)(r′i− r′j).

7 ri← r′i−ηgrad.

8 return R.

Algorithm 3: ComputeHamiltonian: An algo-
rithm that computes the Hamiltonian given the posi-
tion matrix and the nature of the pairwise interactions.

Input: position matrix, R; the power used in the
Hamiltonian terms, q.

Output: the Hamiltonian, H.

1 Construct an N×N matrix H with the (i, j)-th term
defined as follows:

2 if i = j then
3 Hi, j← 0.

4 else
5 Hi, j←− 1

∥ri−r j∥q .

6 return H.

Algorithm 4: Score: A scoring function for mea-
suring the difference between the current eigenvalues
and target eigenvalues.

Input: the Hamiltonian, H; the target diagonal
eigenvalue matrix, Λ.

Output: a score, RMSE.

1 E← a diagonal matrix of non-increasing eigenvalues
of H.

2 RMSE←
√

∑
N
i=1(Ei,i−Λi,i)2

N .
3 return RMSE.

matrix R intended to achieve the target eigenvalues.
Algorithm 1 also uses several parameters. It uses

MaxTrials for the maximum number of iterations of the
outer loop and MaxSteps for the maximum number of
iterations of the inner loop. It also uses a cutoff improvement
parameter γ in the inner loop to recognize quiescence and
a threshold error parameter ε in the outer loop to recognize
convergence to a high-quality configuration.

On Lines 1-4, Algorithm 1 performs initializations. It
stores the target eigenvalues in a diagonal matrix Λ with Λi,i
set to λi, for 1≤ i≤N. It also initializes bestR and bestScore,
which are intended to record the best configuration encoun-
tered so far and its corresponding score, respectively. On
Lines 5-22, the algorithm runs its outer loop for a maximum
of MaxTrials iterations. On Lines 12-17, the algorithm
runs its inner loop for a maximum of MaxSteps iterations.
On Lines 6-11, the outer loop performs the initializations for
the inner loop. On Lines 18-22, the outer loop processes the
results of the inner loop. On Line 23, the algorithm returns
the best position matrix recorded across all iterations of the
outer loop.

On Lines 6-7, the outer loop initializes a position matrix by
picking each of its columns, i.e., the position vectors of the
N atoms, at random. Each position vector is restricted to be
in the K-dimensional orthotope between the farthest corners
(0,0 . . .0) and (B1,B2 . . .BK). This can be done by picking
the k-th coordinate of each position vector ri to be within the
interval [0,Bk], for 1≤ k≤K. If the user specifies an area of
interest, this interval can be narrowed down to an interval of
length 2σ⃗ [k] centered around the coordinate of interest in that
dimension r0

i [k]. On Lines 8-9, the outer loop computes the
Hamiltonian and its score for the initialized position matrix.
On Lines 18-20, the outer loop checks whether the inner
loop just encountered a position matrix that is better than
the currently best one. If so, it updates bestR and bestScore.
On Lines 21-22, the outer loop checks whether the algorithm
has converged to a high-quality configuration with a score
no greater than the user-specified threshold error parameter
ε . If so, no further iterations of the outer loop are deemed
necessary.

On Lines 12-17, the inner loop continues only while
“reasonable” progress is made. That is, if the improvement
in score between consecutive iterations is no greater than
a user-specified cutoff parameter γ , we declare quiescence
and break out of the inner loop. The inner loop makes
calls to Algorithms 2, 3, and 4. Algorithm 3 computes the
Hamiltonian H for a given position matrix R according to
the specified value of q. Algorithm 4 computes the score of
H, corresponding to a position matrix R, by comparing its
eigenvalues against the target eigenvalues. In particular, it
returns the RMSE between the lists of eigenvalues sorted in
non-increasing order.

On Lines 15-16, the inner loop makes a forward pass, i.e.,
it computes the score of a position matrix via computing
the Hamiltonian. On Line 14, the inner loop makes a back-
ward pass using Algorithm 2. The objective is to percolate
information from the target eigenvalues back to the position
matrix. While this “reversal” of steps is the essence of the
inverse problem and is already known to be hard, the main

Algorithm N = 4 N = 8 N = 16 N = 32 N = 64

Monte Carlo 0.1283 0.3126 0.5007 0.9842 0.7322
FastPivot 0.0596 0.2958 0.6120 1.9073 2.5399

Monte Carlo 0.1382 0.0949 0.1412 0.1701 0.2323
FastPivot 0.0540 0.0947 0.1324 0.1396 0.1840

TABLE I
A COMPARISON OF AVERAGE RMSE VALUES IN 2D (FIRST TWO ROWS)

AND 3D (LAST TWO ROWS) WITH MAXSTEPS SET TO 10N .

idea is based on the observation that it becomes easy in the
context of the most recently completed forward pass. On Line
1, Algorithm 2 computes an eigendecomposition of H, where
E is a diagonal matrix of non-increasing eigenvalues, and
the columns of V represent the corresponding eigenvectors.
On Line 2, it uses this eigendecomposition to reconstitute
a new Hamiltonian D by merely replacing the diagonal
matrix of eigenvalues E with the diagonal matrix of the
target eigenvalues Λ. Such a reversal step from the target
eigenvalues to a new Hamiltonian with the same eigenvalues
is enabled by the most recently completed forward pass that
yields H (and consequently its eigenvectors).

Ideally, Algorithm 2 also needs to execute a reversal step
from the new Hamiltonian D to a new position matrix R.
Although doing this reversal directly is deemed to be hard,
it becomes slightly easier in the context of the most recently
completed forward pass since the current values of the
position vectors r1,r2 . . .rN are available. However, they do
not make the reversal straightforward either. Therefore, the
backward pass makes use of the observation that it suffices
to make only small updates in the direction of the reversal,
since doing so across many forward and backward passes
achieves the same overall effect. On Lines 3-7, Algorithm 2
does this by using τ steps of gradient descent with respect
to the position vectors aimed at minimizing the Frobenius
norm of D−H. The updates use a user-specified learning
rate η .

IV. RESULTS AND DISCUSSION

In this section, we present our empirical results and
analyses. Numerical experiments were conducted on a 3.6
GHz AMD Ryzen 5 3600 6-core CPU with 16 GB RAM.
All algorithms were implemented in Python 3.6. We used
the tight-binding model and placed atoms in either a 2D
or 3D bounded region of space to achieve the target DoS
eigenvalues. To facilitate a fair comparison of the Monte
Carlo and FastPivot algorithms, we gave both algorithms the
same number of inner loop and outer loop iterations. τ and
η were set to 50 and 0.1, respectively.

All our test instances were “reverse engineered”. That is,
they were generated as follows. We first picked a random
configuration of the N atoms in the bounded region of space.
We computed the Hamiltonian using the tight-binding model
and then its eigenvalues where the DoS peaks. We provided
these eigenvalues as input to the Monte Carlo and FastPivot
algorithms and challenged them to reconstruct the original

Fig. 4. Shows a comparison of the Monte Carlo and FastPivot algorithms. (a) and (b) show the DoS and eigenvalues, respectively, for the configurations
returned by the Monte Carlo and FastPivot algorithms in comparison with the target DoS and eigenvalues on a test instance with 8 atoms in a 2D bounded
region of space. (c) and (d) show the DoS and eigenvalues, respectively, for the configurations returned by the Monte Carlo and FastPivot algorithms in
comparison with the target DoS and eigenvalues on a test instance with 8 atoms in a 3D bounded region of space. Both algorithms were given a single
trial with 2496 steps in the 2D case and 4128 steps in the 3D case.

Algorithm ε = 0.10 ε = 0.08 ε = 0.06 ε = 0.04 ε = 0.02

Monte Carlo 7/10 7/10 5/10 1/10 1/10
FastPivot 10/10 8/10 10/10 10/10 9/10
Avg #Steps 72.75 103.84 356.97 647.38 2496.31

Monte Carlo 10/10 9/10 9/10 6/10 1/10
FastPivot 10/10 10/10 10/10 10/10 10/10
Avg #Steps 28.05 127.77 200.20 794.64 4128.07

TABLE II
A COMPARISON OF SUCCESS RATES IN 2D (FIRST THREE ROWS) AND 3D (LAST THREE ROWS) WITH N = 8 AND DIFFERENT VALUES OF ε .

configuration. Of course, the algorithms were also free to
construct any other configuration with the same eigenvalues.
The reverse engineering merely validates each test instance
and assures us that the DoS is achievable.

Figure 4 shows the comparative performances of the
Monte Carlo and FastPivot algorithms on two example test
instances with 8 atoms each but one in 2D and one in 3D.
The FastPivot algorithm with γ = 0 outperforms the Monte
Carlo algorithm in these cases.

Table I shows the comparative performances of the Monte
Carlo and FastPivot algorithms on a suite of test instances.
Each entry in the table represents the RMSE value averaged
over the same 20 test instances supplied to both algorithms.
For each test instance, both algorithms were given 20 trials
and 10N steps in each trial. The test instances are categorized
according to the number of atoms N. The top two rows
correspond to test instances that use a 2D bounded region of
space; and the bottom two rows correspond to test instances
that use a 3D bounded region of space. The FastPivot
algorithm with γ = −∞ marginally outperforms the Monte

Carlo algorithm on (a) 3D test instances and (b) 2D test
instances when N is small.

Although the Monte Carlo algorithm marginally outper-
forms the FastPivot algorithm on 2D test instances when N
is large, this does not automatically imply that the Monte
Carlo algorithm is preferred on such instances. This is so
because, interestingly, the FastPivot algorithm marginally
outperforms the Monte Carlo algorithm on 2D test instances
when N is small. This observation can be exploited to design
a “hierarchical” version of the FastPivot algorithm for larger
values of N. A comparison of the proposed hierarchical
version of the FastPivot algorithm against the Monte Carlo
algorithm is delegated to future work.

Table II shows the comparative performances of the Monte
Carlo and FastPivot algorithms on another suite of test
instances with N = 8 and different values of ε . In this
scenario, we test FastPivot’s ability to avoid local minima
by giving it a single trial in the outer loop and an unlimited
number of steps in the inner loop with γ = 0. Under these
conditions, the FastPivot algorithm terminates only when

it either meets the targeted solution quality specified by
ε or reaches a local minimum. For a fair comparison, a
single trial and the same number of steps utilized by the
FastPivot algorithm before termination were also provided to
the Monte Carlo algorithm. For each value of ε , the same set
of 10 instances was supplied to both algorithms. The entries
‘-/10’ in the table indicate the number of instances solved by
them. The average number of steps required for the FastPivot
algorithm to terminate on these instances is also reported.
The FastPivot algorithm encounters local minima much less
often than the Monte Carlo algorithm. This accounts for its
superior performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented FastPivot, an algorithm for
solving inverse problems. FastPivot starts with a system state
and invokes alternating forward and backward passes through
the system variables. In a forward pass, it calculates the
system’s response from its current state. In the subsequent
backward pass, it percolates a small amount of information
from the target response back to the system variables. We
demonstrated the success of FastPivot in the context of using
an STM for nanofabrication. We addressed an important
problem: Given N atoms of a certain kind and a bounded
region on a substrate, where should we place these atoms
to achieve a target response in the DoS? We showed that
FastPivot produces good quality solutions efficiently for
this problem. We also compared FastPivot to Monte Carlo
methods and observed two advantages of FastPivot: (1) It
outperforms Monte Carlo methods in higher dimensions; and
(2) it solves the problem on continuous spaces.

In future work, we will impart various algorithmic en-
hancements to FastPivot. We will also develop a hierarchical
version of it. On the application side, we will address
other important nanofabrication tasks, such as the design of
collective response [15], [16], [17]. In particular, we will
apply the FastPivot approach to identify nanostructures with
specifically tailored plasmonic excitations, i.e., with cus-
tomized plasmon frequencies, intensities, and spatial profiles.
The benefit of such an endeavor is that controlling collective
modes in nanostructures would enable true functionality on
the quantum level, such as quantum sensing and switch-
ing [18].

VI. ACKNOWLEDGEMENTS

This work at the University of Southern California is
supported by NSF under grant number 2112533. The views,
opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official
views or policies of the sponsoring organizations, agencies,
or the U.S. Government.

REFERENCES

[1] A. Li, Y. Guan, S. Koenig, S. Haas, and T. K. S. Kumar, “Generating
the top k solutions to weighted CSPs: A comparison of different
approaches,” in Proceedings of the IEEE International Conference on
Tools with Artificial Intelligence, 2020.

[2] Y. Guan, A. Li, S. Koenig, S. Haas, and T. K. S. Kumar, “Hysteresis
in combinatorial optimization problems,” in Proceedings of the Inter-
national FLAIRS Conference, 2021.

[3] S. Richer and D. DiVincenzo, “Circuit design implementing lon-
gitudinal coupling: A scalable scheme for superconducting qubits,”
Phys. Rev. B, vol. 93, 2016.

[4] L. Chen, X. Zhu, F. Sun, and C. Wu, “Exergy-based ecological
optimization of linear phenomenological heat-transfer law irreversible
carnot-engines,” Applied Energy, vol. 83, no. 6, 2006.

[5] L. M. Borges, N. Barroca, H. M. Saraiva, J. Tavares, P. T. Gouveia, F. J.
Velez, C. Loss, R. Salvado, P. Pinho, R. Gonçalves, N. B. Carvalho,
R. Chavéz-Santiago, and I. Balasingham, “Design and evaluation of
multi-band RF energy harvesting circuits and antennas for WSNs,” in
Proceedings of the International Conference on Telecommunications,
2014.

[6] S. N. Skinner and H. Zare-Behtash, “State-of-the-art in aerodynamic
shape optimisation methods,” Applied Soft Computing, vol. 62, 2018.

[7] E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer Duchemin,
G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “En-
gineering the emission of light from a scanning tunneling microscope
using the plasmonic modes of a nanoparticle,” Phys. Rev. B, vol. 93,
2016.

[8] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep
neural networks for inverse problems in imaging: Beyond analytical
methods,” IEEE Signal Processing Magazine, vol. 35, no. 1, 2018.

[9] E. A. Voronin, V. N. Nosov, and A. S. Savin, “Neural network
approach to solving the inverse problem of surface-waves generation,”
Journal of Physics: Conference Series, 2019.

[10] Y. Gao, H. Liu, X. Wang, and K. Zhang, “On an artificial neural
network for inverse scattering problems,” Journal of Computational
Physics, vol. 448, 2022.

[11] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo
Methods. New York: Wiley Series in Probability and Statistics, John
Wiley and Sons, 2011.

[12] A. N. Rudenko and M. I. Katsnelson, “Quasiparticle band structure
and tight-binding model for single- and bilayer black phosphorus,”
Phys. Rev. B, vol. 89, 2014.

[13] M. Nakhaee, S. A. Ketabi, and F. M. Peeters, “Tight-binding model
for borophene and borophane,” Phys. Rev. B, vol. 97, 2018.

[14] G. V. Nazin, X. H. Qiu, and W. Ho, “Visualization and spectroscopy
of a metal-molecule-metal bridge,” Science, vol. 302, no. 5642, 2003.

[15] Y. Guan, Z. Jiang, and S. Haas, “Control of plasmons in topological
insulators via local perturbations,” Phys. Rev. B, vol. 104, 2021.

[16] H. Schlömer, Z. Jiang, and S. Haas, “Plasmons in two-dimensional
topological insulators,” Phys. Rev. B, vol. 103, 2021.

[17] Y. Guan, S. Haas, H. Schlomer, and Z. Jiang, “Plasmons
in z2 topological insulators,” 2022. [Online]. Available: https:
//arxiv.org/abs/2205.04062

[18] A. Levi and S. Haas, Optimal Device Design. Cambridge University
Press, 2009.

https://arxiv.org/abs/2205.04062
https://arxiv.org/abs/2205.04062

	Introduction
	Background
	Methodology
	The Monte Carlo Algorithm
	The FastPivot Algorithm

	Results and Discussion
	Conclusions and Future Work
	Acknowledgements
	References

