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Abstract

Ant robots can repeatedly and robustly cover terrain by always maviray from the trails that they leave in
the terrain. This coverage strategy can be modeled with graph traséna@lgies similar to real-time search
methods (such as Learning Real-Time A*) and reinforcement leamitods (such as Real-Time Dynamic
Programming). The resulting worst-case cover times are known togmnential in the number of vertices
on both directed and undirected graphs in general. The known undirg@phs with large worst-case cover
times have unbounded degree vertices. However, existing ant rolgigate on grids, a special case of
undirected planar graphs with bounded degree vertices. Their exgraghtover times appear to scale almost
identically to those of coverage strategies with polynomial worst-case tioves. However, it is an open
problem to prove whether the resulting worst-case cover times on gededeged polynomial in the number
of vertices.

Antrobots are robots that either 1) leave trails in the termad use them for navigation, similar to learning
graphs by dropping indistinguishable pebbles (Bender. £2@02), and/or 2) use greedy navigation strategies
that depend only on local observations of the terrain and tequire only limited sensing, processing and
communication capabilities (Wagner & Bruckstein, 2001)esBarchers have built actual ant robots that
fit both definitions and cover terrain repeatedly by alwaywvimgp away from the trails that they leave in
the terrain, see Figure 1. Single ant robots (individuadlgyl groups of ant robots (cooperatively) cover
terrain robustly even if they do not have any memory, do naikthe terrain, cannot maintain maps of the
terrain nor plan complete paths. They cover terrain evewriies ant robots fail, they are moved without
realizing this (say, by people running into them and pushiregn accidentally to a different location), the
trails are of uneven quality or some trails are destroyectirldoverage strategy can be modeled with Node
Counting (Koenig et al., 2001; Wagner et al., 1999), a graphersal strategy similar to real-time search
methods (such as Learning Real-Time A* (Korf, 1990)) andf@icement learning methods (such as Real-
Time Dynamic Programming (Barto et al., 1995)). Node Caghissigns an integer counte(s) to every
vertex (= nodek of the graph, that represents the amount of trail in thattiona All counters are initially
zero. Every ant robot always increments the counter of &xdy one when it enters the vertex and then
moves to a successor vertex with the smallest counter (@sirgrbitrary tie breaking rule), see Figure 3.
Thus, it moves to a successor vertex that has been visitedlse number of times by ant robots, with
the idea to quickly get to a vertex that has not yet been dsitdote that Step 3 of Node Counting is:
u(s) = 1+ u(s). For simplicity, we consider only a single ant robot in thideing since it is easy to
generalize the results to groups of ant robots. Node Cagictiwers strongly connected graphs repeatedly,
which is why we assume in the following that the graphs arengfly connected. The worst-case cover
times of Node Counting are known to be exponential in the remu vertices on both directed graphs
(trivial proof for the graph topology shown in Figure 4 ledif)d undirected graphs (longer proof for the graph
topology shown in Figure 4 right) in general (Koenig et a002). The known undirected graphs with large
worst-case cover times are thus (planar) trees with untexiddgree vertices. However, existing ant robots
navigate on grids with blocked and unblocked cells, whiehsgrecial cases of undirected planar graphs with
bounded degree vertices, see Figure 2. The experimentat tioes of Node Counting on grids appear to
scale almost identically to those of known coverage strasegith polynomial worst-case cover times on
all strongly connected graphs. These coverage strateggesailar to Node Counting but more difficult to
implement on actual ant robots (Koenig & Simmons, 1992)luidiog Learning Real-Time A*. Step 3 of
Learning Real-Time A*isu(s) := 14 min,e a(s) u(succ(s, a)). We now list interesting open problems for

*This overview of open problems is based on (Svennebring & Koen@Rénd (Koenig et al., 2001) and the figures
contained therein. It was supported by, or in part by, NSF under actfgrant number 0413196, ARL/ARO under
contract/grant number W911NF-08-1-0468 and ONR under contrant/gumber NO0014-09-1-1031.
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Figure 1: Actual Ant Robot Figure 2: Coverage of Four-Neighbor Grid

start start

We use the following notationS denotes the finite set of vertices of the graph, apgd,,.+ € S
denotes the start vertex of an ant robot(s) # 0 is the finite, nonempty set of directed edges
that leave vertes € S . succ(s, a) denotes the successor vertex that results from the traversal
of edgea € A(s) invertexs € S. We also use two operators with the following semantics:
Given a finite setX, the expression “one-of” returns an element oK according to an arbitrary
rule. A subsequent invocation of “one-&f" can return the same or a different element. The ex-
pression “argningc x f(xz)" returns the elements € X that minimize f(z), that is, the set

{z € X|f(z) = mingcx f(z')}, wheref is a function fromX to the non-negative integers.
Initially, the valuesu(s) are zero for alls € S.

Step1: s = Sstart.

Step 2: a := one-of argming ¢ 4 (s) u(succ(s, a)).
Step 3: u(s) := 1 4 u(s).

Step 4: (Traverse edge)

Step 5: s = succ(s, a).

Step 6: Go to Step 2.

Figure 3: Node Counting Figure 4: Graphs

Node Counting, the solutions of which would help to lay addfieoretical foundation for ant robotics and
perhaps other kinds of simple agents (such as mobile codddsato explore computer networks): Prove
whether the cover times of Node Counting are polynomial @rttmber of vertices a) for undirected graphs
with bounded degree vertices or, if not, b) for grids (a stubséhese graphs) if the worst case in both cases
is taken over all graphs with a given number of verticest statices and equally good successor vertices (=
that is, successor vertices with the smallest counter) lamgltie breaking rules. If not, assume that the ant
robot uses the tie breaking rule to select randomly amorepalally good successor vertices. Prove whether
the resulting cover times are polynomial if the worst casgk&n over all graphs with a given number of
vertices and start vertices but the average case is takerathwezually good successor vertices. Of course,
it is also important to analyze more complex and thus morbsteaversions of Node Counting, such as
versions that model the saturation of the terrain with ¢rail the clean-up of trails by the ant robot to avoid
such a saturation. For example, Step 3 of a version of Nodent®guthat models the saturation of the
terrain with trails is: with probabilitfk — u(s))/k executeu(s) := 1 + u(s) for a given positive integek.
Additional information and related work are presented inef8ebring & Koenig, 2003), in (Koenig et al.,
2001) and on the ant robotics web pages at idm-lab.org/aotiso
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